
MATLAB® Coder™
User's Guide

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Coder™ User's Guide
© COPYRIGHT 2011–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
April 2011 Online only New for Version 2 (R2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 3.0 (Release 2015b)
October 2015 Online only Rereleased for Version 2.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 3.1 (Release 2016a)
September 2016 Online only Revised for Version 3.2 (Release 2016b)
March 2017 Online only Revised for Version 3.3 (Release 2017a)
September 2017 Online only Revised for Version 3.4 (Release 2017b)
March 2018 Online only Revised for Version 4.0 (Release 2018a)
September 2018 Online only Revised for Version 4.1 (Release 2018b)

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

About MATLAB Coder
1

MATLAB Coder Product Description . 1-2
Key Features . 1-2

Product Overview . 1-3
When to Use MATLAB Coder . 1-3
Code Generation for Embedded Software Applications 1-3
Code Generation for Fixed-Point Algorithms 1-3

Code Generation Workflow . 1-5
See Also . 1-5

Design Considerations for C/C++ Code Generation
2

When to Generate Code from MATLAB Algorithms 2-2
When Not to Generate Code from MATLAB Algorithms 2-2

Which Code Generation Feature to Use 2-4

Prerequisites for C/C++ Code Generation from MATLAB 2-5

MATLAB Code Design Considerations for Code Generation . . 2-6
See Also . 2-7

Differences Between Generated Code and MATLAB Code 2-8
Character Size . 2-8
Order of Evaluation in Expressions . 2-9
Termination Behavior . 2-10
Size of Variable-Size N-D Arrays . 2-10

vii

Contents

Size of Empty Arrays . 2-10
Size of Empty Array That Results from Deleting Elements of an

Array . 2-10
Floating-Point Numerical Results . 2-11
NaN and Infinity . 2-12
Negative Zero . 2-12
Code Generation Target . 2-13
MATLAB Class Property Initialization 2-13
MATLAB Class Property Access Methods That Modify Property

Values . 2-13
MATLAB Handle Class Destructors . 2-14
Variable-Size Data . 2-14
Complex Numbers . 2-15
Converting Strings with Consecutive Unary Operators to

double . 2-15

Potential Differences Reporting . 2-16
Addressing Potential Differences Messages 2-16
Disabling and Enabling Potential Differences Reporting 2-16

Potential Differences Messages . 2-18
Automatic Dimension Incompatibility 2-18
mtimes No Dynamic Scalar Expansion 2-19
Matrix-Matrix Indexing . 2-19
Vector-Vector Indexing . 2-20
Size Mismatch . 2-20

MATLAB Language Features Supported for C/C++ Code
Generation . 2-23

MATLAB Features That Code Generation Supports 2-23
MATLAB Language Features That Code Generation Does Not

Support . 2-24

Functions, Classes, and System Objects Supported for
Code Generation

3
Functions and Objects Supported for C/C++ Code Generation

— Alphabetical List . 3-2

viii Contents

Functions and Objects Supported for C/C++ Code Generation
— Category List . 3-82

5G Toolbox . 3-84
Aerospace Toolbox . 3-86
Arithmetic Operations in MATLAB . 3-86
Audio System Toolbox . 3-87
Automated Driving System Toolbox . 3-89
Bit-Wise Operations MATLAB . 3-90
Casting in MATLAB . 3-90
Characters and Strings in MATLAB . 3-91
Communications Toolbox . 3-92
Complex Numbers in MATLAB . 3-99
Computer Vision System Toolbox . 3-99
Control Flow in MATLAB . 3-103
Control System Toolbox . 3-103
Data and File Management in MATLAB 3-104
Data Type Conversion in MATLAB 3-104
Data Types in MATLAB . 3-105
Deep Learning Toolbox . 3-106
Descriptive Statistics in MATLAB . 3-106
Desktop Environment in MATLAB . 3-107
Discrete Math in MATLAB . 3-107
DSP System Toolbox . 3-108
Error Handling in MATLAB . 3-114
Exponents in MATLAB . 3-114
Filtering and Convolution in MATLAB 3-114
Fixed-Point Designer . 3-115
Fuzzy Logic Toolbox . 3-121
Histograms in MATLAB . 3-121
Image Acquisition Toolbox . 3-122
Image Processing in MATLAB . 3-122
Image Processing Toolbox . 3-122
Input and Output Arguments in MATLAB 3-126
Interpolation and Computational Geometry in MATLAB . . . 3-126
Linear Algebra in MATLAB . 3-127
Logical and Bit-Wise Operations in MATLAB 3-128
MATLAB Compiler . 3-128
Matrices and Arrays in MATLAB . 3-129
Model Predictive Control Toolbox 3-132
Numerical Integration and Differentiation in MATLAB 3-133
Optimization Functions in MATLAB 3-133
Optimization Toolbox . 3-134
Phased Array System Toolbox . 3-134
Polynomials in MATLAB . 3-141

ix

Preprocessing Data in MATLAB . 3-142
Programming Utilities in MATLAB 3-142
Property Validation in MATLAB . 3-142
Relational Operators in MATLAB . 3-143
Robotics System Toolbox . 3-143
Rounding and Remainder Functions in MATLAB 3-147
Sensor Fusion and Tracking Toolbox 3-147
Set Operations in MATLAB . 3-153
Signal Processing in MATLAB . 3-153
Signal Processing Toolbox . 3-154
Special Values in MATLAB . 3-157
Specialized Math in MATLAB . 3-157
Statistics and Machine Learning Toolbox 3-158
System Identification Toolbox . 3-165
System object Methods . 3-166
Trigonometry in MATLAB . 3-166
Wavelet Toolbox . 3-168
WLAN Toolbox . 3-169

Defining MATLAB Variables for C/C++ Code
Generation

4
Variables Definition for Code Generation 4-2

Best Practices for Defining Variables for C/C++ Code
Generation . 4-3
Define Variables By Assignment Before Using Them 4-3
Use Caution When Reassigning Variables 4-5
Use Type Cast Operators in Variable Definitions 4-5
Define Matrices Before Assigning Indexed Variables 4-6

Eliminate Redundant Copies of Variables in Generated
Code . 4-7

When Redundant Copies Occur . 4-7
How to Eliminate Redundant Copies by Defining Uninitialized

Variables . 4-7
Defining Uninitialized Variables . 4-8

Reassignment of Variable Properties . 4-9

x Contents

Reuse the Same Variable with Different Properties 4-10
When You Can Reuse the Same Variable with Different

Properties . 4-10
When You Cannot Reuse Variables . 4-10
Limitations of Variable Reuse . 4-12

Avoid Overflows in for-Loops . 4-13

Supported Variable Types . 4-15

Defining Data for Code Generation
5

Data Definition for Code Generation . 5-2

Code Generation for Complex Data . 5-4
Restrictions When Defining Complex Variables 5-4
Code Generation for Complex Data with Zero-Valued Imaginary

Parts . 5-4
Results of Expressions That Have Complex Operands 5-8

Encoding of Characters in Code Generation 5-9

Array Size Restrictions for Code Generation 5-10

Code Generation for Constants in Structures and Arrays . . . 5-11

Code Generation for Strings . 5-13
Limitations . 5-13
Differences from MATLAB . 5-13

Define String Scalar Inputs . 5-15
Define String Scalar Types at the Command Line 5-15
Define String Scalar Inputs in the MATLAB Coder App 5-16

Code Generation for Sparse Matrices 5-18
Sparse Data Types in Generated Code 5-18
Input Definition . 5-19
Code Generation Guidelines . 5-20
Code Generation Limitations . 5-20

xi

Code Generation for Variable-Size Data
6

Code Generation for Variable-Size Arrays 6-2
Memory Allocation for Variable-Size Arrays 6-3
Enabling and Disabling Support for Variable-Size Arrays 6-3
Variable-Size Arrays in a Code Generation Report 6-3

Control Memory Allocation for Variable-Size Arrays 6-5
Provide Upper Bounds for Variable-Size Arrays 6-5
Disable Dynamic Memory Allocation . 6-5
Configure Code Generator to Use Dynamic Memory Allocation

for Arrays Bigger Than a Threshold 6-6

Specify Upper Bounds for Variable-Size Arrays 6-8
Specify Upper Bounds for Variable-Size Inputs 6-8
Specify Upper Bounds for Local Variables 6-8

Define Variable-Size Data for Code Generation 6-10
Use a Matrix Constructor with Nonconstant Dimensions 6-10
Assign Multiple Sizes to the Same Variable 6-11
Define Variable-Size Data Explicitly by Using coder.varsize . . 6-11

C Code Interface for Arrays . 6-16
C Code Interface for Statically Allocated Arrays 6-16
C Code Interface for Dynamically Allocated Arrays 6-17
Utility Functions for Creating emxArray Data Structures . . . 6-19

Diagnose and Fix Variable-Size Data Errors 6-22
Diagnosing and Fixing Size Mismatch Errors 6-22
Diagnosing and Fixing Errors in Detecting Upper Bounds . . . 6-24

Incompatibilities with MATLAB in Variable-Size Support for
Code Generation . 6-26

Incompatibility with MATLAB for Scalar Expansion 6-26
Incompatibility with MATLAB in Determining Size of Variable-

Size N-D Arrays . 6-28
Incompatibility with MATLAB in Determining Size of Empty

Arrays . 6-28
Incompatibility with MATLAB in Determining Class of Empty

Arrays . 6-30
Incompatibility with MATLAB in Matrix-Matrix Indexing 6-30

xii Contents

Incompatibility with MATLAB in Vector-Vector Indexing 6-31
Incompatibility with MATLAB in Matrix Indexing Operations for

Code Generation . 6-32
Incompatibility with MATLAB in Concatenating Variable-Size

Matrices . 6-33
Differences When Curly-Brace Indexing of Variable-Size Cell

Array Inside Concatenation Returns No Elements 6-33

Variable-Sizing Restrictions for Code Generation of Toolbox
Functions . 6-35

Common Restrictions . 6-35
Toolbox Functions with Restrictions for Variable-Size Data . . 6-36

Code Generation for MATLAB Structures
7

Structure Definition for Code Generation 7-2

Structure Operations Allowed for Code Generation 7-3

Define Scalar Structures for Code Generation 7-4
Restrictions When Defining Scalar Structures by

Assignment . 7-4
Adding Fields in Consistent Order on Each Control Flow

Path . 7-4
Restriction on Adding New Fields After First Use 7-5

Define Arrays of Structures for Code Generation 7-6
Ensuring Consistency of Fields . 7-6
Using repmat to Define an Array of Structures with Consistent

Field Properties . 7-6
Defining an Array of Structures by Using struct 7-7
Defining an Array of Structures Using Concatenation 7-7

Index Substructures and Fields . 7-8

Assign Values to Structures and Fields 7-10

xiii

Code Generation for Cell Arrays
8

Code Generation for Cell Arrays . 8-2
Homogeneous vs. Heterogeneous Cell Arrays 8-2
Controlling Whether a Cell Array Is Homogeneous or

Heterogeneous . 8-3
Naming the Structure Type That Represents a Heterogeneous

Cell Array in the Generated Code . 8-4
Cell Arrays in Reports . 8-4

Control Whether a Cell Array Is Variable-Size 8-6

Define Cell Array Inputs . 8-9

Cell Array Limitations for Code Generation 8-10
Cell Array Element Assignment . 8-10
Definition of Variable-Size Cell Array by Using cell 8-11
Cell Array Indexing . 8-14
Growing a Cell Array by Using {end + 1} 8-15
Variable-Size Cell Arrays . 8-16
Cell Array Contents . 8-16
Passing Cell Arrays to External C/C++ Functions 8-17

Code Generation for Enumerated Data
9

Code Generation for Enumerations . 9-2
Define Enumerations for Code Generation 9-2
Allowed Operations on Enumerations 9-4
MATLAB Toolbox Functions That Support Enumerations 9-5

Customize Enumerated Types in Generated Code 9-8
Specify a Default Enumeration Value 9-9
Specify a Header File . 9-10
Include Class Name Prefix in Generated Enumerated Type Value

Names . 9-10

xiv Contents

Code Generation for MATLAB Classes
10

MATLAB Classes Definition for Code Generation 10-2
Language Limitations . 10-2
Code Generation Features Not Compatible with Classes 10-3
Defining Class Properties for Code Generation 10-4
Calls to Base Class Constructor . 10-6
Inheritance from Built-In MATLAB Classes Not Supported . . 10-7

Classes That Support Code Generation 10-9

Generate Code for MATLAB Value Classes 10-10

Generate Code for MATLAB Handle Classes and System
Objects . 10-15

Code Generation for Handle Class Destructors 10-18
Guidelines and Restrictions . 10-18
Behavioral Differences of Objects in Generated Code and

in MATLAB . 10-19

Class Does Not Have Property . 10-22
Solution . 10-22

Passing By Reference Not Supported for Some
Properties . 10-24

Handle Object Limitations for Code Generation 10-25
A Variable Outside a Loop Cannot Refer to a Handle Object

Created Inside a Loop . 10-25
A Handle Object That a Persistent Variable Refers To Must Be a

Singleton Object . 10-26
References to Handle Objects Can Appear Undefined 10-27

System Objects in MATLAB Code Generation 10-29
Usage Rules and Limitations for System Objects for Generating

Code . 10-29
System Objects in codegen . 10-32
System Objects in the MATLAB Function Block 10-32
System Objects in the MATLAB System Block 10-32
System Objects and MATLAB Compiler Software 10-32

xv

Specify Objects as Inputs at the Command Line 10-33
Consistency Between coder.ClassType Object and Class
Definition File . 10-35

Limitations for Using Objects as Entry-Point Function
Inputs . 10-35

Specify Objects as Inputs in the MATLAB Coder App 10-37
Automatically Define an Object Input Type 10-37
Provide an Example . 10-38
Consistency Between the Type Definition and Class Definition

File . 10-39
Limitations for Using Objects as Entry-Point Function

Inputs . 10-39

Code Generation for Function Handles
11

Function Handle Limitations for Code Generation 11-2

Defining Functions for Code Generation
12

Code Generation for Variable Length Argument Lists 12-2

Specify Number of Entry-Point Function Input or Output
Arguments to Generate . 12-3

Control Number of Input Arguments 12-3
Control the Number of Output Arguments 12-4

Code Generation for Anonymous Functions 12-7
Anonymous Function Limitations for Code Generation 12-7

Code Generation for Nested Functions 12-8
Nested Function Limitations for Code Generation 12-8

xvi Contents

Calling Functions for Code Generation
13

Resolution of Function Calls for Code Generation 13-2
Key Points About Resolving Function Calls 13-4
Compile Path Search Order . 13-4
When to Use the Code Generation Path 13-5

Resolution of File Types on Code Generation Path 13-6

Compilation Directive %#codegen . 13-8

Extrinsic Functions . 13-9
Declaring MATLAB Functions as Extrinsic Functions 13-10
Calling MATLAB Functions Using feval 13-14
Extrinsic Declaration for Nonstatic Methods 13-14
Resolution of Extrinsic Functions During Simulation 13-15
Working with mxArrays . 13-16
Restrictions on Extrinsic Functions for Code Generation . . . 13-18
Limit on Function Arguments . 13-18

Code Generation for Recursive Functions 13-19
Compile-Time Recursion . 13-19
Run-Time Recursion . 13-21
Disallow Recursion . 13-21
Disable Run-Time Recursion . 13-21
Recursive Function Limitations for Code Generation 13-21

Force Code Generator to Use Run-Time Recursion 13-23
Treat the Input to the Recursive Function as a

Nonconstant . 13-23
Make the Input to the Recursive Function Variable-Size . . . 13-25
Assign Output Variable Before the Recursive Call 13-25

Fixed-Point Conversion
14

Detect Dead and Constant-Folded Code 14-2
What Is Dead Code? . 14-2

xvii

Detect Dead Code . 14-3
Fix Dead Code . 14-4

Convert MATLAB Code to Fixed-Point C Code 14-5

Propose Fixed-Point Data Types Based on Simulation
Ranges . 14-7

Propose Fixed-Point Data Types Based on Derived
Ranges . 14-21

Specify Type Proposal Options . 14-35

Detect Overflows . 14-40

Replace the exp Function with a Lookup Table 14-50

Replace a Custom Function with a Lookup Table 14-59

Enable Plotting Using the Simulation Data Inspector 14-67

Visualize Differences Between Floating-Point and Fixed-Point
Results . 14-68

View and Modify Variable Information 14-79
View Variable Information . 14-79
Modify Variable Information . 14-79
Revert Changes . 14-81
Promote Sim Min and Sim Max Values 14-81

Automated Fixed-Point Conversion . 14-83
Automated Fixed-Point Conversion Capabilities 14-83
Code Coverage . 14-84
Proposing Data Types . 14-88
Locking Proposed Data Types . 14-90
Viewing Functions . 14-91
Viewing Variables . 14-98
Log Data for Histogram . 14-100
Function Replacements . 14-102
Validating Types . 14-103
Testing Numerics . 14-103
Detecting Overflows . 14-103

xviii Contents

Convert Fixed-Point Conversion Project to MATLAB
Scripts . 14-105

Generated Fixed-Point Code . 14-108
Location of Generated Fixed-Point Files 14-108
Minimizing fi-casts to Improve Code Readability 14-109
Avoiding Overflows in the Generated Fixed-Point Code . . . 14-109
Controlling Bit Growth . 14-110
Avoiding Loss of Range or Precision 14-110
Handling Non-Constant mpower Exponents 14-112

Fixed-Point Code for MATLAB Classes 14-114
Automated Conversion Support for MATLAB Classes 14-114
Unsupported Constructs . 14-114
Coding Style Best Practices . 14-115

Automated Fixed-Point Conversion Best Practices 14-117
Create a Test File . 14-117
Prepare Your Algorithm for Code Acceleration or Code

Generation . 14-119
Check for Fixed-Point Support for Functions Used in Your

Algorithm . 14-119
Manage Data Types and Control Bit Growth 14-120
Convert to Fixed Point . 14-120
Use the Histogram to Fine-Tune Data Type Settings 14-121
Optimize Your Algorithm . 14-122
Avoid Explicit Double and Single Casts 14-125

Replacing Functions Using Lookup Table Approximations 14-126

MATLAB Language Features Supported for Automated Fixed-
Point Conversion . 14-127

MATLAB Language Features Supported for Automated Fixed-
Point Conversion . 14-127

MATLAB Language Features Not Supported for Automated
Fixed-Point Conversion . 14-129

Inspecting Data Using the Simulation Data Inspector . . . 14-130
What Is the Simulation Data Inspector? 14-130
Import Logged Data . 14-130
Export Logged Data . 14-130
Group Signals . 14-131
Run Options . 14-131

xix

Create Report . 14-131
Comparison Options . 14-131
Enabling Plotting Using the Simulation Data Inspector . . . 14-131
Save and Load Simulation Data Inspector Sessions 14-132

Custom Plot Functions . 14-133

Data Type Issues in Generated Code 14-135
Enable the Highlight Option in the MATLAB Coder App . . 14-135
Enable the Highlight Option at the Command Line 14-135
Stowaway Doubles . 14-135
Stowaway Singles . 14-136
Expensive Fixed-Point Operations 14-136

Automated Fixed-Point Conversion Using
Programmatic Workflow

15
Convert MATLAB Code to Fixed-Point C Code 15-2

Propose Fixed-Point Data Types Based on Simulation
Ranges . 15-5

Propose Fixed-Point Data Types Based on Derived
Ranges . 15-11

Detect Overflows . 15-21

Replace the exp Function with a Lookup Table 15-25

Replace a Custom Function with a Lookup Table 15-27

Enable Plotting Using the Simulation Data Inspector 15-30

Visualize Differences Between Floating-Point and Fixed-Point
Results . 15-31

xx Contents

Single-Precision Conversion
16

Generate Single-Precision C Code at the Command Line . . . 16-2
Prerequisites . 16-2
Create a Folder and Copy Relevant Files 16-2
Determine the Type of the Input Argument 16-4
Generate and Run Single-Precision MEX to Verify Numerical

Behavior . 16-5
Generate Single-Precision C Code . 16-5
View the Generated Single-Precision C Code 16-6
View Potential Data Type Issues . 16-6

Generate Single-Precision C Code Using the MATLAB Coder
App . 16-7

Prerequisites . 16-7
Create a Folder and Copy Relevant Files 16-8
Open the MATLAB Coder App . 16-9
Select the Source Files . 16-10
Enable Single-Precision Conversion 16-10
Define Input Types . 16-11
Check for Run-Time Issues . 16-12
Generate Single-Precision C Code 16-12
View the Generated C Code . 16-12
View Potential Data Type Issues . 16-13

Generate Single-Precision MATLAB Code 16-14
Prerequisites . 16-14
Create a Folder and Copy Relevant Files 16-14
Set Up the Single-Precision Configuration Object 16-16
Generate Single-Precision MATLAB Code 16-16
View the Type Proposal Report . 16-17
View Generated Single-Precision MATLAB Code 16-18
View Potential Data Type Issues . 16-19
Compare the Double-Precision and Single-Precision

Variables . 16-19
Optionally Generate Single-Precision C Code 16-21

Choose a Single-Precision Conversion Workflow 16-23

Single-Precision Conversion Best Practices 16-24
Use Integers for Index Variables . 16-24
Limit Use of assert Statements . 16-24

xxi

Initialize MATLAB Class Properties in Constructor 16-24
Provide a Test File That Calls Your MATLAB Function 16-25
Prepare Your Code for Code Generation 16-25
Verify Double-Precision Code Before Single-Precision

Conversion . 16-25
Best Practices for Generation of Single-Precision C/C++

Code . 16-26
Best Practices for Generation of Single-Precision MATLAB

Code . 16-27

Warnings from Conversion to Single-Precision C/C++
Code . 16-29

Function Uses Double-Precision in the C89/C90 Standard . . 16-29
Built-In Function Is Implemented in Double-Precision 16-30
Built-In Function Returns Double-Precision 16-30

Combining Integers and Double-Precision Numbers 16-32

MATLAB Language Features Supported for Single-Precision
Conversion . 16-33

MATLAB Language Features Supported for Single-Precision
Conversion . 16-33

MATLAB Language Features Not Supported for Single-Precision
Conversion . 16-34

Setting Up a MATLAB Coder Project
17

Set Up a MATLAB Coder Project . 17-2
Create a Project . 17-2
Open an Existing Project . 17-2

Specify Properties of Entry-Point Function Inputs Using the
App . 17-4

Why Specify Input Properties? . 17-4
Specify an Input Definition Using the App 17-4

Automatically Define Input Types by Using the App 17-5

xxii Contents

Make Dimensions Variable-Size When They Meet Size
Threshold . 17-6

Define Input Parameter by Example by Using the App 17-8
Define an Input Parameter by Example 17-8
Specify Input Parameters by Example 17-10
Specify a String Scalar Input Parameter by Example 17-11
Specify a Structure Type Input Parameter by Example 17-12
Specify a Cell Array Type Input Parameter by Example 17-12
Specify an Enumerated Type Input Parameter by

Example . 17-14
Specify an Object Input Type Parameter by Example 17-15
Specify a Fixed-Point Input Parameter by Example 17-17
Specify an Input from an Entry-Point Function Output

Type . 17-17

Define or Edit Input Parameter Type by Using the App 17-20
Define or Edit an Input Parameter Type 17-20
Specify a String Scalar Input Parameter 17-21
Specify an Enumerated Type Input Parameter 17-22
Specify a Fixed-Point Input Parameter 17-22
Specify a Structure Input Parameter 17-23
Specify a Cell Array Input Parameter 17-27

Define Constant Input Parameters Using the App 17-32

Define Inputs Programmatically in the MATLAB File 17-33

Add Global Variables by Using the App 17-34

Specify Global Variable Type and Initial Value Using the
App . 17-35

Why Specify a Type Definition for Global Variables? 17-35
Specify a Global Variable Type . 17-35
Define a Global Variable by Example 17-36
Define or Edit Global Variable Type 17-36
Define Global Variable Initial Value 17-37
Define Global Variable Constant Value 17-38
Remove Global Variables . 17-38

Undo and Redo Changes to Type Definitions in the App . . . 17-39

xxiii

Changing Output Type . 17-40
Project Settings . 17-40
Configuration Object Parameters . 17-41

Code Generation Readiness Screening in the MATLAB Coder
App . 17-43

Slow Operations in MATLAB Coder App 17-45

Unable to Open a MATLAB Coder Project 17-46

Preparing MATLAB Code for C/C++ Code Generation
18

Workflow for Preparing MATLAB Code for Code
Generation . 18-2

See Also . 18-3

Fixing Errors Detected at Design Time 18-4
See Also . 18-4

Using the Code Analyzer . 18-5

Check Code with the Code Analyzer . 18-6

Check Code by Using the Code Generation Readiness
Tool . 18-8

Run Code Generation Readiness Tool at the Command
Line . 18-8

Run Code Generation Readiness Tool from the Current Folder
Browser . 18-8

Run the Code Generation Readiness Tool Using the MATLAB
Coder App . 18-8

Code Generation Readiness Tool . 18-10
Summary Tab . 18-11
Code Structure Tab . 18-13

Unable to Determine Code Generation Readiness 18-17

xxiv Contents

Generate MEX Functions by Using the MATLAB Coder
App . 18-18
Workflow for Generating MEX Functions Using the MATLAB

Coder App . 18-18
Generate a MEX Function Using the MATLAB Coder App . . 18-18
Configure Project Settings . 18-21
Build a MATLAB Coder Project . 18-21
See Also . 18-22

Generate MEX Functions at the Command Line 18-23
Command-line Workflow for Generating MEX Functions . . . 18-23
Generate a MEX Function at the Command Line 18-23

Fix Errors Detected at Code Generation Time 18-25
See Also . 18-25

Design Considerations When Writing MATLAB Code for Code
Generation . 18-26

See Also . 18-27

Running MEX Functions . 18-28
Debugging MEX Functions . 18-28

Debugging Strategies . 18-29

Collect and View Line Execution Counts for Your MATLAB
Code . 18-30

Testing MEX Functions in MATLAB
19

Why Test MEX Functions in MATLAB? 19-2

Workflow for Testing MEX Functions in MATLAB 19-3
See Also . 19-3

Running MEX Functions . 19-5
Debugging MEX Functions . 19-5

xxv

Check for Run-Time Issues by Using the App 19-6
Collect MATLAB Line Execution Counts 19-6
Disable JIT Compilation for Parallel Loops 19-7

Verify MEX Functions in the MATLAB Coder App 19-8

Verify MEX Functions at the Command Line 19-9

Debug Run-Time Errors . 19-10
Viewing Errors in the Run-Time Stack 19-10
Handling Run-Time Errors . 19-11

Using MEX Functions That MATLAB Coder Generates 19-13

Generating C/C++ Code from MATLAB Code
20

Code Generation Workflow . 20-3
See Also . 20-3

C/C++ Code Generation . 20-4
Specify Custom Files to Build . 20-4

Generating C/C++ Static Libraries from MATLAB Code 20-6
Generate a C Static Library Using the MATLAB Coder

App . 20-6
Generate a C Static Library at the Command Line 20-8

Generating C/C++ Dynamically Linked Libraries from MATLAB
Code . 20-10

Dynamic Libraries Generated by MATLAB Coder 20-10
Generate a C Dynamically Linked Library Using the MATLAB

Coder App . 20-10
Generate a C Dynamic Library at the Command Line 20-13

Generating Standalone C/C++ Executables from MATLAB
Code . 20-15

Generate a C Executable Using the MATLAB Coder App . . . 20-15
Generate a C Executable at the Command Line 20-24
Specifying main Functions for C/C++ Executables 20-25

xxvi Contents

Specify main Functions . 20-26

Configure Build Settings . 20-28
Specify Build Type . 20-28
Specify a Language for Code Generation 20-30
Specify Output File Name . 20-32
Specify Output File Locations . 20-32
Parameter Specification Methods . 20-34
Specify Build Configuration Parameters 20-34

Specify Data Types Used in Generated Code 20-40
Specify Data Type Using the MATLAB Coder App 20-40
Specify Data Type at the Command Line 20-40

Change the Standard Math Library . 20-41

Share Build Configuration Settings . 20-42
Export Settings . 20-42
Import Settings . 20-43
See Also . 20-43

Convert MATLAB Coder Project to MATLAB Script 20-44
Convert a Project Using the MATLAB Coder App 20-44
Convert a Project Using the Command-Line Interface 20-44
Run the Script . 20-44

Preserve Variable Names in Generated Code 20-46

Specify Properties of Entry-Point Function Inputs 20-48
Why You Must Specify Input Properties 20-48
Properties to Specify . 20-48
Rules for Specifying Properties of Primary Inputs 20-52
Methods for Defining Properties of Primary Inputs 20-52
Define Input Properties by Example at the Command Line . 20-53
Specify Constant Inputs at the Command Line 20-56
Specify Variable-Size Inputs at the Command Line 20-57

Specify Cell Array Inputs at the Command Line 20-59
Specify Cell Array Inputs by Example 20-59
Specify the Type of the Cell Array Input 20-60
Make a Homogeneous Copy of a Type 20-61
Make a Heterogeneous Copy of a Type 20-62
Specify Variable-Size Cell Array Inputs 20-63

xxvii

Specify Type Name for Heterogeneous Cell Array Inputs . . 20-64
Specify Constant Cell Array Inputs 20-64

Constant Input Checking in MEX Functions 20-66
Control Whether a MEX Function Checks the Value of a

Constant Input . 20-68

Define Input Properties Programmatically in the
MATLAB File . 20-71

How to Use assert with MATLAB Coder 20-71
Rules for Using assert Function . 20-77
Specifying General Properties of Primary Inputs 20-78
Specifying Properties of Primary Fixed-Point Inputs 20-79
Specifying Properties of Cell Arrays 20-79
Specifying Class and Size of Scalar Structure 20-81
Specifying Class and Size of Structure Array 20-82

Speed Up Compilation by Generating Only Code 20-83

Disable Creation of the Code Generation Report 20-84

Paths and File Infrastructure Setup 20-85
Compile Path Search Order . 20-85
Specify Folders to Search for Custom Code 20-85
Naming Conventions . 20-86

Generate Code for Multiple Entry-Point Functions 20-92
Generating Code for Multiple Entry-Point Functions 20-92
Call a Single Entry-Point Function from a MEX Function . . 20-93
Generate Code for More Than One Entry-Point Function Using

the MATLAB Coder App . 20-94

Pass an Entry-Point Function Output as an Input 20-98
Pass an Entry-Point Function Output as an Input to Another

Entry-Point Function . 20-98
Use coder.OutputType to Facilitate Code

Componentization . 20-100

Generate Code for Global Data . 20-102
Workflow . 20-102
Declare Global Variables . 20-102
Define Global Data . 20-103
Synchronizing Global Data with MATLAB 20-104

xxviii Contents

Define Constant Global Data . 20-108
Global Data Limitations for Generated Code 20-111

Specify Global Cell Arrays at the Command Line 20-113

Generate Code for Enumerations . 20-115

Generate Code for Variable-Size Data 20-116
Disable Support for Variable-Size Data 20-116
Control Dynamic Memory Allocation 20-117
Generating Code for MATLAB Functions with Variable-Size

Data . 20-119
Generate Code for a MATLAB Function That Expands a Vector in

a Loop . 20-120

How MATLAB Coder Partitions Generated Code 20-126
Partitioning Generated Files . 20-126
How to Select the File Partitioning Method 20-126
Partitioning Generated Files with One C/C++ File Per MATLAB

File . 20-127
Generated Files and Locations . 20-132
File Partitioning and Inlining . 20-134

Requirements for Signed Integer Representation 20-138

Build Process Customization . 20-139
Build Information Methods . 20-139
coder.updateBuildInfo Function . 20-165
coder.ExternalDependency Class 20-165
Post-Code-Generation Command 20-166

Run-time Stack Overflow . 20-168

Pass Structure Arguments by Reference or by Value in
Generated Code . 20-169

Name the C Structure Type to Use With a Global Structure
Variable . 20-178

Generate Code for an LED Control Function That Uses
Enumerated Types . 20-181

xxix

Generate Code That Uses N-Dimensional Indexing 20-185
Improve Readability with N-Dimensional Indexing and Row-

Major Layout . 20-186
Column-Major Layout and N-Dimensional Indexing 20-187
Other Code Generation Considerations 20-188

Edge Detection on Images . 20-190

C Code Generation for a MATLAB Kalman Filtering
Algorithm . 20-195

Portfolio Optimization (Black Litterman Approach) 20-207

Working with Persistent Variables . 20-219

Working with Structure Arrays . 20-222

Adding a Custom Toolchain . 20-225

Verify Generated C/C++ Code
21

Tracing Generated C/C++ Code to MATLAB Source Code . . . 21-2
Generate Traceability Tags . 21-2
Format of Traceability Tags . 21-2
Location of Comments in Generated Code 21-3
Traceability Tag Limitations . 21-7

Code Generation Reports . 21-9
Report Generation . 21-9
Report Location . 21-10
Errors and Warnings . 21-10
Files and Functions . 21-10
MATLAB Source . 21-12
MATLAB Variables . 21-13
Tracing Code . 21-15
Code Insights . 21-15
Additional Reports . 21-16
Report Limitations . 21-16

xxx Contents

Run-Time Error Detection and Reporting in Standalone C/C++
Code . 21-17

Generate Standalone Code That Detects and Reports Run-Time
Errors . 21-19

Testing Code Generated from MATLAB Code 21-22

Unit Test Generated Code with MATLAB Coder 21-23

Unit Test External C Code with MATLAB Coder 21-31

Code Replacement for MATLAB Code
22

What Is Code Replacement? . 22-2
Code Replacement Libraries . 22-2
Code Replacement Terminology . 22-4
Code Replacement Limitations . 22-7

Choose a Code Replacement Library . 22-8
About Choosing a Code Replacement Library 22-8
Explore Available Code Replacement Libraries 22-8
Explore Code Replacement Library Contents 22-8

Replace Code Generated from MATLAB Code 22-10

Custom Toolchain Registration
23

Custom Toolchain Registration . 23-2
What Is a Custom Toolchain? . 23-2
What Is a Factory Toolchain? . 23-2
What is a Toolchain Definition? . 23-3
Key Terms . 23-4
Typical Workflow . 23-4

xxxi

About coder.make.ToolchainInfo . 23-6

Create and Edit Toolchain Definition File 23-8

Toolchain Definition File with Commentary 23-10
Steps Involved in Writing a Toolchain Definition File 23-10
Write a Function That Creates a ToolchainInfo Object 23-10
Setup . 23-11
Macros . 23-12
C Compiler . 23-12
C++ Compiler . 23-13
Linker . 23-13
Archiver . 23-14
Builder . 23-14
Build Configurations . 23-14

Create and Validate ToolchainInfo Object 23-16

Register the Custom Toolchain . 23-17

Use the Custom Toolchain . 23-19

Troubleshooting Custom Toolchain Validation 23-20
Build Tool Command Path Incorrect 23-20
Build Tool Not in System Path . 23-20
Tool Path Does Not Exist . 23-21
Path Incompatible with Builder or Build Tool 23-21
Unsupported Platform . 23-22
Toolchain is Not installed . 23-22
Project or Configuration is Using the Template Makefile . . . 23-22
Skipped Validation of Build Tool “Download” or “Execute” . 23-23

Prevent Circular Data Dependencies with One-Pass or Single-
Pass Linkers . 23-25

Build 32-bit DLL on 64-bit Windows® Platform Using MSVC
Toolchain . 23-26

xxxii Contents

Deploying Generated Code
24

Using C/C++ Code That MATLAB Coder Generates 24-2

C Compiler Considerations for Signed Integer Overflows . . . 24-3

Call a Generated C Static Library Function from C Code 24-4

Call a C/C++ Static Library Function from MATLAB Code . . 24-6

Call Generated C/C++ Functions . 24-8
Conventions for Calling Functions in Generated Code 24-8
How to Call C/C++ Functions from MATLAB Code 24-8
Calling Initialize and Terminate Functions 24-9
Calling C/C++ Functions with Multiple Outputs 24-10
Calling C/C++ Functions that Return Arrays 24-10

Use a Dynamic Library in a Microsoft Visual Studio
Project . 24-11

Incorporate Generated Code Using an Example Main
Function . 24-15
Workflow for Using an Example Main Function 24-15
Control Example Main Generation Using the MATLAB Coder

App . 24-16
Control Example Main Generation Using the Command-Line

Interface . 24-17

Use an Example C Main in an Application 24-18
Prerequisites . 24-18
Create a Folder and Copy Relevant Files 24-19
Run the Sobel Filter on the Image 24-21
Generate and Test a MEX Function 24-23
Generate an Example Main Function for sobel.m 24-23
Copy the Example Main Files . 24-26
Modify the Generated Example Main Function 24-26
Generate the Sobel Filter Application 24-38
Run the Sobel Filter Application . 24-39
Display the Resulting Image . 24-39

xxxiii

Package Code for Other Development Environments 24-41
When to Package Code . 24-41
Package Generated Code Using the MATLAB Coder App . . . 24-41
Package Generated Code at the Command Line 24-43
Specify packNGo Options . 24-44

Structure of Generated Example C/C++ Main Function . . . 24-46
Contents of the File main.c or main.cpp 24-46
Contents of the File main.h . 24-49

Troubleshoot Failures in Deployed Code 24-50

Using Dynamic Memory Allocation for an "Atoms"
Simulation . 24-51

MATLAB Coder Supported Hardware 24-58

Accelerating MATLAB Algorithms
25

Workflow for Accelerating MATLAB Algorithms 25-2
See Also . 25-3

Best Practices for Using MEX Functions to Accelerate MATLAB
Algorithms . 25-4

Accelerate Code That Dominates Execution Time 25-4
Include Loops Inside MEX Function 25-4
Avoid Generating MEX Functions from Unsupported

Functions . 25-5
Avoid Generating MEX Functions if Built-In MATLAB Functions

Dominate Run Time . 25-6
Minimize MEX Function Calls . 25-6

Accelerate MATLAB Algorithms . 25-7

Modifying MATLAB Code for Acceleration 25-8
How to Modify Your MATLAB Code for Acceleration 25-8

Profile MEX Functions by Using MATLAB Profiler 25-9
MEX Profile Generation . 25-9

xxxiv Contents

Example . 25-10
Effect of Folding Expressions on MEX Code Coverage 25-14

Control Run-Time Checks . 25-17
Types of Run-Time Checks . 25-17
When to Disable Run-Time Checks 25-17
How to Disable Run-Time Checks . 25-18

Algorithm Acceleration Using Parallel for-Loops (parfor) . . 25-20
Parallel for-Loops (parfor) in Generated Code 25-20
How parfor-Loops Improve Execution Speed 25-21
When to Use parfor-Loops . 25-21
When Not to Use parfor-Loops . 25-21
parfor-Loop Syntax . 25-22
parfor Restrictions . 25-22

Control Compilation of parfor-Loops 25-26
When to Disable parfor . 25-26

Reduction Assignments in parfor-Loops 25-27
What are Reduction Assignments? 25-27
Multiple Reductions in a parfor-Loop 25-27

Classification of Variables in parfor-Loops 25-28
Overview . 25-28
Sliced Variables . 25-29
Broadcast Variables . 25-30
Reduction Variables . 25-30
Temporary Variables . 25-35

Accelerate MATLAB Algorithms That Use Parallel for-Loops
(parfor) . 25-37

Specify Maximum Number of Threads in parfor-Loops 25-38

Troubleshooting parfor-Loops . 25-39
Global or Persistent Declarations in parfor-Loop 25-39
Compiler Does Not Support OpenMP 25-39

Accelerating Simulation of Bouncing Balls 25-40

General Relativity . 25-45

xxxv

Reverberation Using MATLAB Classes 25-51

Using PARFOR to Speed Up an Image Contrast Enhancement
Algorithm . 25-53

Use Generated Code to Accelerate an Application Deployed
with MATLAB Compiler . 25-64

External Code Integration
26

Call C/C++ Code from MATLAB Code 26-2
Call C Code . 26-2
Return Multiple Values from a C Function 26-4
Pass Data by Reference . 26-4
Integrate External Code that Uses Custom Data Types 26-6
Integrate External Code that Uses Pointers, Structures, and

Arrays . 26-7

Configure Build for External C/C++ Code 26-10
Provide External Files for Code Generation 26-10
Configure Build from Within a Function 26-10
Configure Build by Using the Configuration Object 26-11
Configure Build by Using the MATLAB Coder App 26-12

Develop Interface for External C/C++ Code 26-14
Create a class from coder.ExternalDependency 26-14
Best Practices for Using coder.ExternalDependency 26-16

Mapping MATLAB Types to Types in Generated Code 26-18
Complex Types . 26-19
Structure Types . 26-20
Fixed-Point Types . 26-20
Character Vectors . 26-21
Multiword Types . 26-21

Read a Text File . 26-23

xxxvi Contents

Generate Efficient and Reusable Code
27

Optimization Strategies . 27-3

Modularize MATLAB Code . 27-6

Eliminate Redundant Copies of Function Inputs 27-7

Inline Code . 27-10

Control Inlining . 27-11
Control Size of Functions Inlined . 27-11
Control Size of Functions After Inlining 27-12
Control Stack Size Limit on Inlined Functions 27-12

Fold Function Calls into Constants . 27-14

Control Stack Space Usage . 27-16

Stack Allocation and Performance . 27-18
Allocate Heap Space from Command Line 27-18
Allocate Heap Space Using the MATLAB Coder App 27-18

Dynamic Memory Allocation and Performance 27-19
When Dynamic Memory Allocation Occurs 27-19

Minimize Dynamic Memory Allocation 27-20

Provide Maximum Size for Variable-Size Arrays 27-21

Disable Dynamic Memory Allocation During Code
Generation . 27-26

Set Dynamic Memory Allocation Threshold 27-27
Set Dynamic Memory Allocation Threshold Using the MATLAB

Coder App . 27-27
Set Dynamic Memory Allocation Threshold at the Command

Line . 27-28

Excluding Unused Paths from Generated Code 27-29

xxxvii

Prevent Code Generation for Unused Execution Paths 27-30
Prevent Code Generation When Local Variable Controls

Flow . 27-30
Prevent Code Generation When Input Variable Controls

Flow . 27-31

Generate Code with Parallel for-Loops (parfor) 27-33

Minimize Redundant Operations in Loops 27-35

Unroll for-Loops . 27-37
Force Loop Unrolling by Using coder.unroll 27-37
Set Loop Unrolling Threshold for All for-Loops in the MATLAB

Code . 27-38

Disable Support for Integer Overflow or Nonfinites 27-42
Disable Support for Integer Overflow 27-42
Disable Support for Nonfinite Numbers 27-43

Integrate External/Custom Code . 27-44

MATLAB Coder Optimizations in Generated Code 27-50
Constant Folding . 27-50
Loop Fusion . 27-51
Successive Matrix Operations Combined 27-51
Unreachable Code Elimination . 27-52
memcpy Calls . 27-52
memset Calls . 27-53

Use coder.const with Extrinsic Function Calls 27-54
Reduce Code Generation Time by Using coder.const with

feval . 27-54
Force Constant-Folding by Using coder.const with

coder.feval . 27-54

memcpy Optimization . 27-56

memset Optimization . 27-58

Reuse Large Arrays and Structures . 27-60

LAPACK Calls in Generated Code . 27-62

xxxviii Contents

Speed Up Linear Algebra in Generated Standalone Code by
Using LAPACK Calls . 27-63

Specify LAPACK Library . 27-63
Write LAPACK Callback Class . 27-63
Generate LAPACK Calls by Specifying a LAPACK Callback

Class . 27-64
Locate LAPACK Library in Execution Environment 27-65

BLAS Calls in Generated Code . 27-67

Speed Up Matrix Operations in Generated Standalone Code by
Using BLAS Calls . 27-68

Specify BLAS Library . 27-68
Write BLAS Callback Class . 27-68
Generate BLAS Calls by Specifying a BLAS Callback

Class . 27-70
Locate BLAS Library in Execution Environment 27-71
Usage Notes and Limitations for OpenBLAS Library 27-72

Speed Up Fast Fourier Transforms in Generated Standalone
Code by Using FFTW Library Calls 27-73

Install FFTW Library . 27-73
Write an FFT Callback Class . 27-74
Generate FFTW Library Calls by Specifying an FFT Library

Callback Class . 27-75

Synchronize Multithreaded Access to FFTW Planning in
Generated Standalone Code . 27-77

Prerequisites . 27-77
Create a MATLAB Function . 27-78
Write Supporting C Code . 27-78
Write an FFT Library Callback Class 27-79
Generate a Dynamically Linked Library 27-80
Specify Configuration Parameters in the MATLAB

Coder App . 27-81

Speed Up MEX Generation by Using JIT Compilation 27-82
Specify Use of JIT Compilation in the MATLAB Coder App . 27-82
Specify Use of JIT Compilation at the Command Line 27-82
JIT Compilation Incompatibilities . 27-83

xxxix

Generating Reentrant C Code from MATLAB Code
28

Generate Reentrant C Code from MATLAB Code 28-2
About This Tutorial . 28-2
Copying Files Locally . 28-3
About the Example . 28-4
Providing a C main Function . 28-5
Configuring Build Parameters . 28-7
Generating the C Code . 28-7
Viewing the Generated C Code . 28-8
Running the Code . 28-8
Key Points to Remember . 28-9
Learn More . 28-9

Reentrant Code . 28-10

Specify Generation of Reentrant Code 28-12
Specify Generation of Reentrant Code Using the MATLAB Coder

App . 28-12
Specify Generation of Reentrant Code Using the Command-Line

Interface . 28-12

API for Generated Reusable Code . 28-14

Call Reentrant Code in a Single-Threaded Environment . . . 28-15

Call Reentrant Code in a Multithreaded Environment 28-16
Multithreaded Examples . 28-16

Call Reentrant Code with No Persistent or Global Data (UNIX
Only) . 28-18

Provide a Main Function . 28-18
Generate Reentrant C Code . 28-20
Examine the Generated Code . 28-21
Run the Code . 28-22

Call Reentrant Code — Multithreaded with Persistent Data
(Windows Only) . 28-23

MATLAB Code for This Example . 28-23
Provide a Main Function . 28-24
Generate Reentrant C Code . 28-26

xl Contents

Examine the Generated Code . 28-27
Run the Code . 28-28

Call Reentrant Code — Multithreaded with Persistent Data
(UNIX Only) . 28-29

MATLAB Code for This Example . 28-29
Provide a Main Function . 28-30
Generate Reentrant C Code . 28-32
Examine the Generated Code . 28-33
Run the Code . 28-34

Troubleshooting Code Generation Problems
29

JIT MEX Incompatibility Warning . 29-2
Issue . 29-2
Cause . 29-2
Solution . 29-2

JIT Compilation Does Not Support OpenMP 29-3
Issue . 29-3
Cause . 29-3
Solution . 29-3

Output Variable Must Be Assigned Before Run-Time Recursive
Call . 29-4

Issue . 29-4
Cause . 29-4
Solution . 29-4

Compile-Time Recursion Limit Reached 29-7
Issue . 29-7
Cause . 29-7
Solutions . 29-7
Force Run-Time Recursion . 29-7
Increase the Compile-Time Recursion Limit 29-10

Unable to Determine That Every Element of Cell Array Is
Assigned . 29-12

Issue . 29-12

xli

Cause . 29-12
Solution . 29-14

Nonconstant Index into varargin or varargout in a for-
Loop . 29-16

Issue . 29-16
Cause . 29-16
Solution . 29-17

Unknown Output Type for coder.ceval 29-19
Issue . 29-19
Cause . 29-19
Solution . 29-19

Row-Major Array Layout
30

Row-Major and Column-Major Array Layouts 30-2
Array Storage in Computer Memory 30-2
Conversions Between Different Array Layouts 30-3

Generate Code That Uses Row-Major Array Layout 30-4
Specify Row-Major Layout . 30-4
Array Layout and Algorithmic Efficiency 30-5
Row-Major Layout for N-Dimensional Arrays 30-6
Specify Array Layout in External Function Calls 30-8

Specify Array Layout in Functions and Classes 30-11
Specify Array Layout in a Function 30-11
Query Array Layout of a Function . 30-12
Specify Array Layout in a Class . 30-13

Code Design for Row-Major Array Layout 30-16
Understand Potential Inefficiencies Caused by

Array Layout . 30-16
Linear Indexing Uses Column-Major Array Layout 30-20

xlii Contents

Deep Learning with MATLAB Coder
31

Prerequisites for Deep Learning with MATLAB Coder 31-2
MathWorks Products . 31-2
Third-Party Hardware and Software 31-2
Environment Variables . 31-3

Workflow for Deep Learning Code Generation with
MATLAB Coder . 31-5

Deep Learning Networks and Layers Supported for C++ Code
Generation . 31-7

Supported Pretrained Networks . 31-7
Supported Layers . 31-8

Load Pretrained Networks for Code Generation 31-10
Load a Network by Using

coder.loadDeepLearningNetwork 31-10
Load a Network Directly from a Network Function 31-10
Provide the Network Object to the Code Generator 31-11

Code Generation for Deep Learning Networks with MKL-
DNN . 31-12

Requirements . 31-12
Generate Code by Using codegen . 31-13
Generate Code by Using the App . 31-15
Generate Code by Using cnncodegen 31-16

Code Generation for Deep Learning Networks with ARM
Compute Library . 31-19

Requirements for Code Generation with ARM Compute
Library . 31-19

Code Generation by Using cnncodegen 31-19

Deep Learning Prediction with Intel MKL-DNN 31-22

Deep Learning Prediction with ARM Compute 31-31

xliii

About MATLAB Coder

• “MATLAB Coder Product Description” on page 1-2
• “Product Overview” on page 1-3
• “Code Generation Workflow” on page 1-5

1

MATLAB Coder Product Description
Generate C and C++ code from MATLAB code

MATLAB Coder generates readable and portable C and C++ code from MATLAB code. It
supports most of the MATLAB language and a wide range of toolboxes. You can integrate
the generated code into your projects as source code, static libraries, or dynamic
libraries. You can also use the generated code within the MATLAB environment to
accelerate computationally intensive portions of your MATLAB code. MATLAB Coder lets
you incorporate legacy C code into your MATLAB algorithm and into the generated code.

By using MATLAB Coder with Embedded Coder®, you can further optimize code efficiency
and customize the generated code. You can then verify the numerical behavior of the
generated code using software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution.

Key Features
• ANSI®/ISO® compliant C and C++ code generation
• Code generation support for toolboxes including Communications Toolbox™,

Computer Vision System Toolbox™, DSP System Toolbox™, Image Processing
Toolbox™, and Signal Processing Toolbox™

• MEX function generation for code verification and acceleration
• Legacy C code integration into MATLAB algorithms and generated code
• Multicore-capable code generation using OpenMP
• Static or dynamic memory-allocation control
• App and equivalent command-line functions for managing code generation projects

1 About MATLAB Coder

1-2

Product Overview
In this section...
“When to Use MATLAB Coder” on page 1-3
“Code Generation for Embedded Software Applications” on page 1-3
“Code Generation for Fixed-Point Algorithms” on page 1-3

When to Use MATLAB Coder
Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.
• Generate MEX functions from MATLAB code to:

• Accelerate your MATLAB algorithms.
• Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

Code Generation for Embedded Software Applications
The Embedded Coder product extends the MATLAB Coder product with features that are
important for embedded software development. Using the Embedded Coder add-on
product, you can generate code that has the clarity and efficiency of professional
handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time simulators, on-
target rapid prototyping boards, microprocessors used in mass production, and
embedded systems.

• Customize the appearance of the generated code.
• Optimize the generated code for a specific target environment.
• Enable tracing options that help you to verify the generated code.
• Generate reusable, reentrant code.

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Designer™ product, you can generate:

 Product Overview

1-3

• MEX functions to accelerate fixed-point algorithms.
• Fixed-point code that provides a bit-wise match to MEX function results.

1 About MATLAB Coder

1-4

Code Generation Workflow

See Also
• “Set Up a MATLAB Coder Project” on page 17-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 18-2
• “Workflow for Testing MEX Functions in MATLAB” on page 19-3
• “Code Generation Workflow” on page 20-3
• “Workflow for Accelerating MATLAB Algorithms” on page 25-2

 Code Generation Workflow

1-5

Design Considerations for C/C++
Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 2-2
• “Which Code Generation Feature to Use” on page 2-4
• “Prerequisites for C/C++ Code Generation from MATLAB” on page 2-5
• “MATLAB Code Design Considerations for Code Generation” on page 2-6
• “Differences Between Generated Code and MATLAB Code” on page 2-8
• “Potential Differences Reporting” on page 2-16
• “Potential Differences Messages” on page 2-18
• “MATLAB Language Features Supported for C/C++ Code Generation” on page 2-23

2

When to Generate Code from MATLAB Algorithms
Generating code from MATLAB algorithms for desktop and embedded systems allows you
to perform your software design, implementation, and testing completely within the
MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation
• Generate efficient, readable, and compact C/C++ code automatically, which eliminates

the need to manually translate your MATLAB algorithms and minimizes the risk of
introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific requirements of
desktop and embedded applications, such as data type management, memory use, and
speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

• Accelerate MATLAB algorithms in certain applications.
• Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms
Do not generate code from MATLAB algorithms for the following applications. Use the
recommended MathWorks® product instead.

To: Use:
Deploy an application that uses handle
graphics

MATLAB Compiler™

Use Java® MATLAB Compiler SDK™
Use toolbox functions that do not support
code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI applications on
a supported MATLAB host

MATLAB Compiler

2 Design Considerations for C/C++ Code Generation

2-2

To: Use:
Deploy web-based or Windows®

applications
MATLAB Compiler SDK

Interface C code with MATLAB MATLAB mex function

 When to Generate Code from MATLAB Algorithms

2-3

Which Code Generation Feature to Use
To... Use... Required Product To Explore Further...
Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation at
the Command Line”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded systems.

MATLAB Coder app MATLAB Coder Try this in “C Code
Generation Using the
MATLAB Coder App”.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

Generate MEX
functions to accelerate
MATLAB algorithms

MATLAB Coder app MATLAB Coder See “Accelerate
MATLAB Algorithms”
on page 25-7.

codegen function MATLAB Coder

Integrate MATLAB code
into Simulink®

MATLAB Function
block

Simulink Try this in “Track
Object Using MATLAB
Code” (Simulink).

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and Code
Generation from
MATLAB” (Fixed-Point
Designer).

Integrate custom C
code into MATLAB and
generate efficient,
readable code

codegen function MATLAB Coder Learn more in “Call C/C
++ Code from MATLAB
Code” on page 26-2.

Integrate custom C
code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder™

Learn more at
www.mathworks.com/
products/
slhdlcoder.

2 Design Considerations for C/C++ Code Generation

2-4

https://www.mathworks.com/products/slhdlcoder/
https://www.mathworks.com/products/slhdlcoder/
https://www.mathworks.com/products/slhdlcoder/
https://www.mathworks.com/products/slhdlcoder/

Prerequisites for C/C++ Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install the following
software:

• MATLAB Coder product
• C/C++ compiler

 Prerequisites for C/C++ Code Generation from MATLAB

2-5

MATLAB Code Design Considerations for Code
Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use,
MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that varies
in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense of
time to manage the memory. With static memory, you get better speed, but with higher
memory usage. Most MATLAB code takes advantage of the dynamic sizing features in
MATLAB, therefore dynamic memory allocation typically enables you to generate code
from existing MATLAB code without modifying it much. Dynamic memory allocation
also allows some programs to compile even when upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is
suitable for applications where there is a limited amount of available memory, such as
embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough to
meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. Do not use the default compiler that MathWorks
supplies with MATLAB for Windows 64-bit platforms.

• Consider disabling run-time checks.

2 Design Considerations for C/C++ Code Generation

2-6

By default, for safety, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks result in more
generated code and slower simulation. Disabling run-time checks usually results in
streamlined generated code and faster simulation. Disable these checks only if you
have verified that array bounds and dimension checking is unnecessary.

See Also
• “Data Definition Basics”
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Control Run-Time Checks” on page 25-17

 MATLAB Code Design Considerations for Code Generation

2-7

Differences Between Generated Code and MATLAB Code
To convert MATLAB code to efficient C/C++ code, the code generator introduces
optimizations that intentionally cause the generated code to behave differently, and
sometimes produce different results, than the original source code.

Here are some of the differences:

• “Character Size” on page 2-8
• “Order of Evaluation in Expressions” on page 2-9
• “Termination Behavior” on page 2-10
• “Size of Variable-Size N-D Arrays” on page 2-10
• “Size of Empty Arrays” on page 2-10
• “Size of Empty Array That Results from Deleting Elements of an Array” on page 2-10
• “Floating-Point Numerical Results” on page 2-11
• “NaN and Infinity” on page 2-12
• “Negative Zero” on page 2-12
• “Code Generation Target” on page 2-13
• “MATLAB Class Property Initialization” on page 2-13
• “MATLAB Class Property Access Methods That Modify Property Values” on page 2-13
• “MATLAB Handle Class Destructors” on page 2-14
• “Variable-Size Data” on page 2-14
• “Complex Numbers” on page 2-15
• “Converting Strings with Consecutive Unary Operators to double” on page 2-15

When you run your program, run-time error checks can detect some of these differences.
By default, run-time error checks are enabled for MEX code and disabled for standalone
C/C++ code. To help you identify and address differences before you deploy code, the
code generator reports a subset of the differences as potential differences on page 2-16.

Character Size
MATLAB supports 16-bit characters, but the generated code represents characters in 8
bits, the standard size for most embedded languages like C. See “Encoding of Characters
in Code Generation” on page 5-9.

2 Design Considerations for C/C++ Code Generation

2-8

Order of Evaluation in Expressions
Generated code does not enforce order of evaluation in expressions. For most
expressions, order of evaluation is not significant. However, for expressions with side
effects, the generated code may produce the side effects in different order from the
original MATLAB code. Expressions that produce side effects include those that:

• Modify persistent or global variables
• Display data to the screen
• Write data to files
• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical operators
that do not short circuit.

For more predictable results, it is good coding practice to split expressions that depend
on the order of evaluation into multiple statements.

• Rewrite

A = f1() + f2();

as

A = f1();
A = A + f2();

so that the generated code calls f1 before f2.
• Assign the outputs of a multi-output function call to variables that do not depend on

one another. For example, rewrite

[y, y.f, y.g] = foo;

as

[y, a, b] = foo;
y.f = a;
y.g = b;

• When you access the contents of multiple cells of a cell array, assign the results to
variables that do not depend on one another. For example, rewrite

[y, y.f, y.g] = z{:};

 Differences Between Generated Code and MATLAB Code

2-9

as

[y, a, b] = z{:};
y.f = a;
y.g = b;

Termination Behavior
Generated code does not match the termination behavior of MATLAB source code. For
example, if infinite loops do not have side effects, optimizations remove them from
generated code. As a result, the generated code can possibly terminate even though the
corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different result in
generated code than in MATLAB source code. The size function sometimes returns
trailing ones (singleton dimensions) in generated code, but always drops trailing ones in
MATLAB. For example, for an N-D array X with dimensions [4 2 1 1], size(X) might
return [4 2 1 1] in generated code, but always returns [4 2] in MATLAB. See
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on page
6-28.

Size of Empty Arrays
The size of an empty array in generated code might be different from its size in MATLAB
source code. See “Incompatibility with MATLAB in Determining Size of Empty Arrays” on
page 6-28.

Size of Empty Array That Results from Deleting Elements of
an Array
Deleting all elements of an array results in an empty array. The size of this empty array in
generated code might differ from its size in MATLAB source code.

2 Design Considerations for C/C++ Code Generation

2-10

Case Example Code Size of Empty
Array in MATLAB

Size of Empty
Array in
Generated Code

Delete all elements
of an m-by-n array by
using the colon
operator (:).

coder.varsize('X',[4,4],[1,1]);
X = zeros(2);
X(:) = [];

0-by-0 1-by-0

Delete all elements
of a row vector by
using the colon
operator (:).

coder.varsize('X',[1,4],[0,1]);
X = zeros(1,4);
X(:) = [];

0-by-0 1-by-0

Delete all elements
of a column vector by
using the colon
operator (:).

coder.varsize('X',[4,1],[1,0]);
X = zeros(4,1);
X(:) = [];

0-by-0 0-by-1

Delete all elements
of a column vector by
deleting one element
at a time.

coder.varsize('X',[4,1],[1,0]);
X = zeros(4,1);
for i = 1:4
 X(1)= [];
end

1-by-0 0-by-1

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical results as
MATLAB in these:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended precision floating-
point registers. Computation results might not match MATLAB calculations because of
different compiler optimization settings or different code surrounding the floating-point
calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain advanced library
functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement svd to
accommodate a smaller footprint. Results might also vary according to matrix properties.

 Differences Between Generated Code and MATLAB Code

2-11

For example, MATLAB might detect symmetric or Hermitian matrices at run time and
switch to specialized algorithms that perform computations faster than implementations
in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions, generated C/C++ code uses reference
implementations of BLAS functions. These reference implementations might produce
different results from platform-specific BLAS implementations in MATLAB.

NaN and Infinity
The generated code might not produce exactly the same pattern of NaN and Inf values as
MATLAB code when these values are mathematically meaningless. For example, if
MATLAB output contains a NaN, output from the generated code should also contain a
NaN, but not necessarily in the same place.

The bit pattern for NaN can differ between MATLAB code output and generated code
output because the C99 standard math library that is used to generate code does not
specify a unique bit pattern for NaN across all implementations. Avoid comparing bit
patterns across different implementations, for example, between MATLAB output and SIL
or PIL output.

Negative Zero
In a floating-point type, the value 0 has either a positive sign or a negative sign.
Arithmetically, 0 is equal to -0, but some operations are sensitive to the sign of a 0 input.
Examples include rdivide, atan2, atan2d, and angle. Division by 0 produces Inf, but
division by -0 produces -Inf. Similarly, atan2d(0,-1) produces 180, but atan2d
(-0,-1) produces -180.

If the code generator detects that a floating-point variable takes only integer values of a
suitable range, then the code generator can use an integer type for the variable in the
generated code. If the code generator uses an integer type for the variable, then the
variable stores -0 as +0 because an integer type does not store a sign for the value 0. If
the generated code casts the variable back to a floating-point type, the sign of 0 is
positive. Division by 0 produces Inf, not -Inf. Similarly, atan2d(0,-1) produces 180,
not -180.

2 Design Considerations for C/C++ Code Generation

2-12

Code Generation Target
The coder.target function returns different values in MATLAB than in the generated
code. The intent is to help you determine whether your function is executing in MATLAB
or has been compiled for a simulation or code generation target. See coder.target.

MATLAB Class Property Initialization
Before code generation, at class loading time, MATLAB computes class default values.
The code generator uses the values that MATLAB computes. It does not recompute
default values. If the property definition uses a function call to compute the initial value,
the code generator does not execute this function. If the function has side effects such as
modifying a global variable or a persistent variable, then it is possible that the generated
code can produce different results that MATLAB produces. For more information, see
“Defining Class Properties for Code Generation” on page 10-4.

MATLAB Class Property Access Methods That Modify Property
Values
When using objects with property access methods, MEX function results can differ from
MATLAB results. These differences occur when the objects are:

• Input to or output from an entry-point function.
• Passed to or returned from an extrinsic function.
• Loaded into memory by using load.
• Used as globals.

The results can differ under these conditions:

• A get method returns a different value from the stored property value.
• A set method modifies an input value before assigning it to the property.
• A get method or a set method has side effects such as modifying a global variable or

writing to a file.

Results can differ due to inconsistencies in the use of property access methods when
MATLAB and the generated code pass objects to each other:

• When you call a MEX function with an input that is an object, or return an object from
an extrinsic function, MATLAB passes the object to the generated code. The generated

 Differences Between Generated Code and MATLAB Code

2-13

code creates its own version of the object. To provide property values to the object
creation process, MATLAB calls get methods. The object creation process assigns
these property values from MATLAB directly to the new object without calling set
methods.

• When you return an object from a MEX function or call an extrinsic function with an
object as input, the MEX function passes the object to MATLAB. To provide property
values to MATLAB, instead of using get methods, the generated code directly reads
the property values. To assign property values in the MATLAB version of the object,
the creation process uses set methods.

To avoid differences in results between MATLAB and a MEX function, do not use classes
with property access methods in these cases.

For more information, see “Defining Class Properties for Code Generation” on page 10-
4.

MATLAB Handle Class Destructors
The behavior of handle class destructors in the generated code can be different from the
behavior in MATLAB in these situations:

• The order of destruction of several independent objects might be different in MATLAB
than in the generated code.

• The lifetime of objects in the generated code can be different from their lifetime in
MATLAB.

• The generated code does not destroy partially constructed objects. If a handle object is
not fully constructed at run time, the generated code produces an error message but
does not call the delete method for that object. For a System object™, if there is a
run-time error in setupImpl, the generated code does not call releaseImpl for that
object.

MATLAB does call the delete method to destroy a partially constructed object.

For more information, see “Code Generation for Handle Class Destructors” on page 10-
18.

Variable-Size Data
See “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on
page 6-26.

2 Design Considerations for C/C++ Code Generation

2-14

Complex Numbers
See “Code Generation for Complex Data” on page 5-4.

Converting Strings with Consecutive Unary Operators to
double
Converting a string that contains multiple, consecutive unary operators to double can
produce different results between MATLAB and the generated code. Consider this
function:

function out = foo(op)
out = double(op + 1);
end

For an input value "--", the function converts the string "--1" to double. In MATLAB,
the answer is NaN. In the generated code, the answer is 1.

See Also

More About
• “Potential Differences Reporting” on page 2-16
• “Potential Differences Messages” on page 2-18

 See Also

2-15

Potential Differences Reporting
Generation of efficient C/C++ code from MATLAB code sometimes results in behavior
differences between the generated code and the MATLAB code on page 2-8. When you
run your program, run-time error checks can detect some of these differences. By default,
run-time error checks are enabled for MEX code and disabled for standalone C/C++ code.
To help you identify and address differences before you deploy code, the code generator
reports a subset of the differences as potential differences. A potential difference is a
difference that occurs at run time only under certain conditions.

Addressing Potential Differences Messages
If the code generator detects a potential difference, it displays a message for the
difference on the Potential Differences tab of the report or the MATLAB Coder app. To
highlight the MATLAB code that corresponds to the message, click the message.

The presence of a potential difference message does not necessarily mean that the
difference will occur when you run the generated code. To determine whether the
potential difference affects your application:

• Analyze the behavior of your MATLAB code for the range of data for your application.
• Test a MEX function generated from your MATLAB code. Use the range of data that

your application uses. If the difference occurs, the MEX function reports an error.

If your analysis or testing confirms the reported difference, consider modifying your code.
Some potential differences messages provide a workaround. For additional information
about some of the potential differences messages, see “Potential Differences Messages”
on page 2-18. Even if you modify your code to prevent a difference from occurring at run
time, the code generator might still report the potential difference.

The set of potential differences that the code generator detects is a subset of the
differences that MEX functions report as errors. It is a best practice to test a MEX
function over the full range of application data.

Disabling and Enabling Potential Differences Reporting
By default, potential differences reporting is enabled for:

• Code generation with the codegen command

2 Design Considerations for C/C++ Code Generation

2-16

• The Check for Run-Time Issues step in the MATLAB Coder app

To disable potential differences reporting:

• In a code configuration object, set ReportPotentialDifferences to false.
• In the MATLAB Coder app, in the Debugging settings, clear the Report differences

from MATLAB check box.

By default, potential differences reporting is disabled for the Generate code step and the
code generation report in the MATLAB Coder app. To enable potential differences
reporting, in the Debugging settings, select the Report differences from MATLAB
check box.

See Also

More About
• “Potential Differences Messages” on page 2-18
• “Differences Between Generated Code and MATLAB Code” on page 2-8
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on

page 6-26
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 21-

17

 See Also

2-17

Potential Differences Messages
When you enable potential differences on page 2-16 reporting, the code generator reports
potential differences between the behavior of the generated code and the behavior of the
MATLAB code. Reviewing and addressing potential differences before you generate
standalone code helps you to avoid errors and incorrect answers in generated code.

Here are some of the potential differences messages:

• “Automatic Dimension Incompatibility” on page 2-18
• “mtimes No Dynamic Scalar Expansion” on page 2-19
• “Matrix-Matrix Indexing” on page 2-19
• “Vector-Vector Indexing” on page 2-20
• “Size Mismatch” on page 2-20

Automatic Dimension Incompatibility
In the generated code, the dimension to operate along is
selected automatically, and might be different from MATLAB.
Consider specifying the working dimension explicitly as a
constant value.

This restriction applies to functions that take the working dimension (the dimension along
which to operate) as input. In MATLAB and in code generation, if you do not supply the
working dimension, the function selects it. In MATLAB, the function selects the first
dimension whose size does not equal 1. For code generation, the function selects the first
dimension that has a variable size or that has a fixed size that does not equal 1. If the
working dimension has a variable size and it becomes 1 at run time, then the working
dimension is different from the working dimension in MATLAB. Therefore, when run-time
error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the
generated code, sum(X) behaves like sum(X,2). In MATLAB, sum(X) behaves like
sum(X,2) unless size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves
like sum(X,3).

To avoid this issue, specify the intended working dimension explicitly as a constant value.
For example, sum(X,2).

2 Design Considerations for C/C++ Code Generation

2-18

mtimes No Dynamic Scalar Expansion
The generated code performs a general matrix multiplication.
If a variable-size matrix operand becomes a scalar at run
time, dimensions must still agree. There will not be an
automatic switch to scalar multiplication.

Consider the multiplication A*B. If the code generator is aware that A is scalar and B is a
matrix, the code generator produces code for scalar-matrix multiplication. However, if the
code generator is aware that A and B are variable-size matrices, it produces code for a
general matrix multiplication. At run time, if A turns out to be scalar, the generated code
does not change its behavior. Therefore, when run-time error checks are enabled, a size
mismatch error can occur.

Matrix-Matrix Indexing
For indexing a matrix with a matrix, matrix1(matrix2), the
code generator assumed that the result would have the same
size as matrix2. If matrix1 and matrix2 are vectors at run
time, their orientations must match.

In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB,
the general rule for matrix-matrix indexing is that the size and orientation of the result
match the size and orientation of the index matrix. For example, if A and B are matrices,
size(A(B)) equals size(B). When A and B are vectors, MATLAB applies a special rule.
The special vector-vector indexing rule is that the orientation of the result is the
orientation of the data matrix. For example, iA is 1-by-5 and B is 3-by-1, then A(B) is 1-
by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B
are variable-size matrices, to apply the matrix-matrix indexing rules, the code generator
assumes that the size(A(B)) equals size(B). If, at run time, A and B become vectors
and have different orientations, then the assumption is incorrect. Therefore, when run-
time error checks are enabled, an error can occur.

To avoid this issue, force your data to be a vector by using the colon operator for
indexing. For example, suppose that your code intentionally toggles between vectors and
regular matrices at run time. You can do an explicit check for vector-vector indexing.

...
if isvector(A) && isvector(B)
 C = A(:);

 Potential Differences Messages

2-19

 D = C(B(:));
else
 D = A(B);
end
...

The indexing in the first branch specifies that C and B(:) are compile-time vectors.
Therefore, the code generator applies the indexing rule for indexing one vector with
another vector. The orientation of the result is the orientation of the data vector, C.

Vector-Vector Indexing
For indexing a vector with a vector, vector1(vector2), the
code generator assumed that the result would have the same
orientation as vector1. If vector1 is a scalar at run time,
the orientation of vector2 must match vector1.

In MATLAB, the special rule for vector-vector indexing is that the orientation of the result
is the orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B)
is 1-by-3. If, however, the data vector A is a scalar, then the orientation of A(B) is the
orientation of the index vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B
are variable-size vectors, to apply the indexing rules, the code generator assumes that the
orientation of B matches the orientation of A. At run time, if A is scalar and the orientation
of A and B do not match, then the assumption is incorrect. Therefore, when run-time error
checks are enabled, a run-time error can occur.

To avoid this issue, make the orientations of the vectors match. Alternatively, index single
elements by specifying the row and column. For example, A(row, column).

Size Mismatch
The generated code assumes that the sizes on the left and
right sides match.

Scalar expansion is a method of converting scalar data to match the dimensions of vector
or matrix data. If one operand is a scalar and the other is not, scalar expansion applies
the scalar to every element of the other operand.

During code generation, scalar expansion rules apply except when operating on two
variable-size expressions. In this case, both operands must be the same size. The

2 Design Considerations for C/C++ Code Generation

2-20

generated code does not perform scalar expansion even if one of the variable-size
expressions turns out to be scalar at run time. Therefore, when run-time error checks are
enabled, a run-time error can occur.

Consider this function:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
 case 0
 z = 0;
 case 1
 z = 1;
 otherwise
 z = zeros(3);
end
y(:) = z;

When you generate code for this function, the code generator determines that z is
variable size with an upper bound of 3.

If you run the MEX function with u equal to 0 or 1, the generated code does not perform
scalar expansion, even though z is scalar at run time. Therefore, when run-time error
checks are enabled, a run-time error can occur.

scalar_exp_test_err1_mex(0)
Subscripted assignment dimension mismatch: [9] ~= [1].

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

To avoid this issue, use indexing to force z to be a scalar value.

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
 case 0
 z = 0;

 Potential Differences Messages

2-21

 case 1
 z = 1;
 otherwise
 z = zeros(3);
end
y(:) = z(1);

See Also

More About
• “Potential Differences Reporting” on page 2-16
• “Differences Between Generated Code and MATLAB Code” on page 2-8
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on

page 6-26
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 21-

17

2 Design Considerations for C/C++ Code Generation

2-22

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB Features That Code Generation Supports
Code generation from MATLAB code supports the following language features:

• n-dimensional arrays (see “Array Size Restrictions for Code Generation” on page 5-
10)

• matrix operations, including deletion of rows and columns
• Variable-size data (see “Code Generation for Variable-Size Arrays” on page 6-2)
• subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for

Code Generation” on page 6-32)
• complex numbers (see “Code Generation for Complex Data” on page 5-4)
• numeric classes (see “Supported Variable Types” on page 4-15)
• double-precision, single-precision, and integer math
• fixed-point arithmetic
• program control statements if, switch, for, while, and break
• arithmetic, relational, and logical operators
• local functions
• persistent variables
• global variables (see “Specify Global Variable Type and Initial Value Using the App” on

page 17-35)
• structures (see “Structure Definition for Code Generation” on page 7-2)
• cell arrays (see “Cell Arrays”)
• characters (see “Encoding of Characters in Code Generation” on page 5-9)
• string scalars (see “Code Generation for Strings” on page 5-13)
• sparse matrices (see “Code Generation for Sparse Matrices” on page 5-18)
• function handles (see “Function Handle Limitations for Code Generation” on page 11-

2)
• anonymous functions (see “Code Generation for Anonymous Functions” on page 12-

7)

 MATLAB Language Features Supported for C/C++ Code Generation

2-23

• recursive functions (see “Code Generation for Recursive Functions” on page 13-19)
• nested functions (see “Code Generation for Nested Functions” on page 12-8)
• variable length input and output argument lists (see “Code Generation for Variable

Length Argument Lists” on page 12-2)
• subset of MATLAB toolbox functions (see “Functions and Objects Supported for C/C++

Code Generation — Alphabetical List” on page 3-2)
• subset of functions and System objects in several toolboxes (see “Functions and

Objects Supported for C/C++ Code Generation — Category List” on page 3-82)
• MATLAB classes (see “MATLAB Classes Definition for Code Generation” on page 10-

2)
• function calls (see “Resolution of Function Calls for Code Generation” on page 13-2)

MATLAB Language Features That Code Generation Does Not
Support
Code generation from MATLAB does not support the following frequently used MATLAB
features:

• scripts
• implicit expansion

Code generation does not support implicit expansion of arrays with compatible sizes
during execution of element-wise operations or functions. If your MATLAB code relies
on implicit expansion, code generation results in a size-mismatch error. For fixed-size
arrays, the error occurs at compile time. For variable-size arrays, the error occurs at
run time. For more information about implicit expansion, see “Compatible Array Sizes
for Basic Operations” (MATLAB).

• GPU arrays

MATLAB Coder does not support GPU arrays. However, if you have GPU Coder™, you
can generate CUDA® MEX code that takes GPU array inputs.

• categorical arrays
• date and time arrays
• Java
• Map containers

2 Design Considerations for C/C++ Code Generation

2-24

• tables
• time series objects
• try/catch statements

This list is not exhaustive. To see if a feature is supported for code generation, see
“MATLAB Features That Code Generation Supports” on page 2-23.

 MATLAB Language Features Supported for C/C++ Code Generation

2-25

Functions, Classes, and System
Objects Supported for Code
Generation

• “Functions and Objects Supported for C/C++ Code Generation — Alphabetical List”
on page 3-2

• “Functions and Objects Supported for C/C++ Code Generation — Category List”
on page 3-82

3

Functions and Objects Supported for C/C++ Code
Generation — Alphabetical List

You can generate efficient C/C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
function, classes, and System objects appear in alphabetical order in the following table.

To find supported functions, classes, and System objects by MATLAB category or toolbox,
see “Functions and Objects Supported for C/C++ Code Generation — Category List” on
page 3-82.

Note For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB” (Fixed-Point Designer).

In the following table, an asterisk (*) indicates that the reference page has usage notes
and limitations for C/C++ code generation.

Name Product
abs MATLAB
abs Fixed-Point Designer
accelparams Sensor Fusion and Tracking

Toolbox™
accumneg Fixed-Point Designer
accumpos Fixed-Point Designer
acos* MATLAB
acosd MATLAB
acosh* MATLAB
acot MATLAB
acotd MATLAB
acoth MATLAB
acsc MATLAB
acscd MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-2

Name Product
acsch MATLAB
activations* Deep Learning Toolbox™
adaptthresh* Image Processing Toolbox
add* Fixed-Point Designer
affine2d* Image Processing Toolbox
ahrsfilter* Sensor Fusion and Tracking Toolbox
aictest* Phased Array System Toolbox™
airy* MATLAB
albersheim* Phased Array System Toolbox
alexnet* Deep Learning Toolbox
alignsignals Signal Processing Toolbox
all* MATLAB
all Fixed-Point Designer
AlphaBetaFilter Phased Array System Toolbox
ambgfun* Phased Array System Toolbox
and MATLAB
angdiff Robotics System Toolbox™
angle MATLAB
any* MATLAB
any Fixed-Point Designer
aperture2gain* Phased Array System Toolbox
appcoef* Wavelet Toolbox™
appcoef2* Wavelet Toolbox
apskdemod Communications Toolbox
apskmod Communications Toolbox
asec MATLAB
asecd MATLAB
asech MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-3

Name Product
asin* MATLAB
asind MATLAB
asinh MATLAB
assert* MATLAB
assignauction Sensor Fusion and Tracking Toolbox
assignDetectionsToTracks Computer Vision System Toolbox
assignjv Sensor Fusion and Tracking Toolbox
assignkbest Sensor Fusion and Tracking Toolbox
assignkbestsd Sensor Fusion and Tracking Toolbox
assignmunkres Sensor Fusion and Tracking Toolbox
assignsd Sensor Fusion and Tracking Toolbox
assignTOMHT Sensor Fusion and Tracking Toolbox
atan MATLAB
atan2 MATLAB
atan2 Fixed-Point Designer
atan2d MATLAB
atand MATLAB
atanh* MATLAB
audioDeviceReader* Audio System Toolbox™
audioDeviceWriter* Audio System Toolbox
audioDeviceWriter* DSP System Toolbox
audioOscillator* Audio System Toolbox
audioPluginInterface Audio System Toolbox
audioPluginParameter Audio System Toolbox
audioPlugin Audio System Toolbox
audioPluginSource Audio System Toolbox
awgn* Communications Toolbox
axang2quat Robotics System Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-4

Name Product
axang2rotm Robotics System Toolbox
axang2tform Robotics System Toolbox
az2broadside* Phased Array System Toolbox
azel2phitheta* Phased Array System Toolbox
azel2phithetapat* Phased Array System Toolbox
azel2uv* Phased Array System Toolbox
azel2uvpat* Phased Array System Toolbox
azelaxes* Phased Array System Toolbox
bandwidth* MATLAB
barthannwin* Signal Processing Toolbox
bartlett* Signal Processing Toolbox
bboxOverlapRatio* Computer Vision System Toolbox
bbox2points Computer Vision System Toolbox
bchgenpoly* Communications Toolbox
beat2range* Phased Array System Toolbox
besselap* Signal Processing Toolbox
besseli* MATLAB
besselj* MATLAB
beta MATLAB
betacdf Statistics and Machine Learning

Toolbox™
betafit Statistics and Machine Learning

Toolbox
betainc* MATLAB
betaincinv* MATLAB
betainv Statistics and Machine Learning

Toolbox
betalike Statistics and Machine Learning

Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-5

Name Product
betaln MATLAB
betapdf Statistics and Machine Learning

Toolbox
betarnd* Statistics and Machine Learning

Toolbox
betastat Statistics and Machine Learning

Toolbox
bi2de Communications Toolbox
billingsleyicm* Phased Array System Toolbox
bin2dec* MATLAB
bin2gray Communications Toolbox
binocdf Statistics and Machine Learning

Toolbox
binoinv Statistics and Machine Learning

Toolbox
binopdf Statistics and Machine Learning

Toolbox
binornd* Statistics and Machine Learning

Toolbox
binostat Statistics and Machine Learning

Toolbox
bitand MATLAB
bitand* Fixed-Point Designer
bitandreduce Fixed-Point Designer
bitcmp MATLAB
bitcmp Fixed-Point Designer
bitconcat Fixed-Point Designer
bitget MATLAB
bitget Fixed-Point Designer
bitor MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-6

Name Product
bitor* Fixed-Point Designer
bitorreduce Fixed-Point Designer
bitreplicate Fixed-Point Designer
bitrevorder Signal Processing Toolbox
bitrol Fixed-Point Designer
bitror Fixed-Point Designer
bitset MATLAB
bitset Fixed-Point Designer
bitshift MATLAB
bitshift Fixed-Point Designer
bitsliceget Fixed-Point Designer
bitsll* Fixed-Point Designer
bitsra* Fixed-Point Designer
bitsrl* Fixed-Point Designer
bitxor* MATLAB
bitxor Fixed-Point Designer
bitxorreduce Fixed-Point Designer
blackman Signal Processing Toolbox
blackmanharris* Signal Processing Toolbox
blanks MATLAB
blkdiag MATLAB
bohmanwin* Signal Processing Toolbox
boundarymask* Image Processing Toolbox
break MATLAB
BRISKPoints* Computer Vision System Toolbox
broadside2az* Phased Array System Toolbox
bsc* Communications Toolbox
bsxfun* MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-7

Name Product
builtin MATLAB
buttap* Signal Processing Toolbox
butter* Signal Processing Toolbox
buttord* Signal Processing Toolbox
bw2range* Phased Array System Toolbox
bwareaopen* Image Processing Toolbox
bwboundaries* Image Processing Toolbox
bwconncomp* Image Processing Toolbox
bwdist* Image Processing Toolbox
bweuler* Image Processing Toolbox
bwlabel* Image Processing Toolbox
bwlookup* Image Processing Toolbox
bwmorph* Image Processing Toolbox
bwpack* Image Processing Toolbox
bwperim* Image Processing Toolbox
bwselect* Image Processing Toolbox
bwtraceboundary* Image Processing Toolbox
bwunpack* Image Processing Toolbox
cameas Automated Driving System Toolbox™
cameas Sensor Fusion and Tracking Toolbox
cameasjac Automated Driving System Toolbox
cameasjac Sensor Fusion and Tracking Toolbox
cameraMatrix* Computer Vision System Toolbox
cameraParameters* Computer Vision System Toolbox
cameraPose* Computer Vision System Toolbox
cameraPoseToExtrinsics Computer Vision System Toolbox
cart2hom Robotics System Toolbox
cart2pol MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-8

Name Product
cart2sph MATLAB
cart2sphvec* Phased Array System Toolbox
cast* MATLAB
cat* MATLAB
cbfweights* Phased Array System Toolbox
cconv Signal Processing Toolbox
cdf* Statistics and Machine Learning

Toolbox
ceil MATLAB
ceil Fixed-Point Designer
cell* MATLAB
cepstralFeatureExtractor* Audio System Toolbox
cfirpm* Signal Processing Toolbox
char* MATLAB
cheb1ap* Signal Processing Toolbox
cheb1ord* Signal Processing Toolbox
cheb2ap* Signal Processing Toolbox
cheb2ord* Signal Processing Toolbox
chebwin* Signal Processing Toolbox
cheby1* Signal Processing Toolbox
cheby2* Signal Processing Toolbox
checkConfirmation of trackscoreLogic Sensor Fusion and Tracking Toolbox
checkDeletion of trackscoreLogic Sensor Fusion and Tracking Toolbox
chi2cdf Statistics and Machine Learning

Toolbox
chi2inv Statistics and Machine Learning

Toolbox
chi2pdf Statistics and Machine Learning

Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-9

Name Product
chi2rnd* Statistics and Machine Learning

Toolbox
chi2stat Statistics and Machine Learning

Toolbox
chol* MATLAB
cholupdate* MATLAB
circpol2pol* Phased Array System Toolbox
circshift MATLAB
cl2tf* DSP System Toolbox
class MATLAB
ClassificationDiscriminant* and
CompactClassificationDiscriminant*

Statistics and Machine Learning
Toolbox

ClassificationECOC* and
CompactClassificationECOC*

Statistics and Machine Learning
Toolbox

ClassificationEnsemble*,
ClassificationBaggedEnsemble*, and
CompactClassificationEnsemble*

Statistics and Machine Learning
Toolbox

ClassificationKNN* Statistics and Machine Learning
Toolbox

ClassificationLinear* Statistics and Machine Learning
Toolbox

ClassificationSVM* and CompactClassificationSVM* Statistics and Machine Learning
Toolbox

ClassificationTree* and
CompactClassificationTree*

Statistics and Machine Learning
Toolbox

classUnderlying of quaternion Robotics System Toolbox
clone of AlphaBetaFilter Phased Array System Toolbox
classUnderlying of quaternion Sensor Fusion and Tracking Toolbox
clone of trackingCKF Sensor Fusion and Tracking Toolbox
clone of trackscoreLogic Sensor Fusion and Tracking Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-10

Name Product
clusterTrackBranches* Sensor Fusion and Tracking Toolbox
colon* MATLAB
comm.ACPR* Communications Toolbox
comm.AGC* Communications Toolbox
comm.AlgebraicDeinterleaver* Communications Toolbox
comm.AlgebraicInterleaver* Communications Toolbox
comm.APPDecoder* Communications Toolbox
comm.AWGNChannel* Communications Toolbox
comm.BarkerCode* Communications Toolbox
comm.BasebandFileReader* Communications Toolbox
comm.BasebandFileWriter* Communications Toolbox
comm.BCHDecoder* Communications Toolbox
comm.BCHEncoder* Communications Toolbox
comm.BinarySymmetricChannel* Communications Toolbox
comm.BlockDeinterleaver* Communications Toolbox
comm.BlockInterleaver* Communications Toolbox
comm.BPSKDemodulator* Communications Toolbox
comm.BPSKModulator* Communications Toolbox
comm.CarrierSynchronizer* Communications Toolbox
comm.CCDF* Communications Toolbox
comm.CoarseFrequencyCompensator* Communications Toolbox
comm.ConstellationDiagram* Communications Toolbox
comm.ConvolutionalDeinterleaver* Communications Toolbox
comm.ConvolutionalEncoder* Communications Toolbox
comm.ConvolutionalInterleaver* Communications Toolbox
comm.CPFSKDemodulator* Communications Toolbox
comm.CPFSKModulator* Communications Toolbox
comm.CPMCarrierPhaseSynchronizer* Communications Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-11

Name Product
comm.CPMDemodulator* Communications Toolbox
comm.CPMModulator* Communications Toolbox
comm.CRCDetector* Communications Toolbox
comm.CRCGenerator* Communications Toolbox
comm.DBPSKDemodulator* Communications Toolbox
comm.DBPSKModulator* Communications Toolbox
comm.Descrambler* Communications Toolbox
comm.DifferentialDecoder* Communications Toolbox
comm.DifferentialEncoder* Communications Toolbox
comm.DiscreteTimeVCO* Communications Toolbox
comm.DPSKDemodulator* Communications Toolbox
comm.DPSKModulator* Communications Toolbox
comm.DQPSKDemodulator* Communications Toolbox
comm.DQPSKModulator* Communications Toolbox
comm.ErrorRate* Communications Toolbox
comm.EVM* Communications Toolbox
comm.EyeDiagram* Communications Toolbox
comm.FMBroadcastDemodulator* Communications Toolbox
comm.FMBroadcastModulator* Communications Toolbox
comm.FMDemodulator* Communications Toolbox
comm.FMModulator* Communications Toolbox
comm.FSKDemodulator* Communications Toolbox
comm.FSKModulator* Communications Toolbox
comm.GeneralQAMDemodulator* Communications Toolbox
comm.GeneralQAMModulator* Communications Toolbox
comm.GeneralQAMTCMDemodulator* Communications Toolbox
comm.GeneralQAMTCMModulator* Communications Toolbox
comm.GMSKDemodulator* Communications Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-12

Name Product
comm.GMSKModulator* Communications Toolbox
comm.GMSKTimingSynchronizer* Communications Toolbox
comm.GoldSequence* Communications Toolbox
comm.HadamardCode* Communications Toolbox
comm.HDLCRCDetector* Communications Toolbox
comm.HDLCRCGenerator* Communications Toolbox
comm.HDLRSDecoder* Communications Toolbox
comm.HDLRSEncoder* Communications Toolbox
comm.HelicalDeinterleaver* Communications Toolbox
comm.HelicalInterleaver* Communications Toolbox
comm.IntegrateAndDumpFilter* Communications Toolbox
comm.IQImbalanceCompensator* Communications Toolbox
comm.KasamiSequence* Communications Toolbox
comm.LDPCDecoder* Communications Toolbox
comm.LDPCEncoder* Communications Toolbox
comm.MatrixDeinterleaver* Communications Toolbox
comm.MatrixHelicalScanDeinterleaver* Communications Toolbox
comm.MatrixHelicalScanInterLeaver* Communications Toolbox
comm.MatrixInterleaver* Communications Toolbox
comm.MemorylessNonlinearity* Communications Toolbox
comm.MER* Communications Toolbox
comm.MIMOChannel* Communications Toolbox
comm.MLSEEqualizer* Communications Toolbox
comm.MSKDemodulator* Communications Toolbox
comm.MSKModulator* Communications Toolbox
comm.MSKTimingSynchronizer* Communications Toolbox
comm.MultiplexedDeinterleaver* Communications Toolbox
comm.MultiplexedInterleaver* Communications Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-13

Name Product
comm.OFDMDemodulator* Communications Toolbox
comm.OFDMModulator* Communications Toolbox
comm.OSTBCCombiner* Communications Toolbox
comm.OSTBCEncoder* Communications Toolbox
comm.OQPSKDemodulator* Communications Toolbox
comm.OQPSKModulator* Communications Toolbox
comm.PAMDemodulator* Communications Toolbox
comm.PAMModulator* Communications Toolbox
comm.PhaseFrequencyOffset* Communications Toolbox
comm.PhaseNoise* Communications Toolbox
comm.PNSequence* Communications Toolbox
comm.PreambleDetector* Communications Toolbox
comm.PSKCoarseFrequencyEstimator* Communications Toolbox
comm.PSKDemodulator* Communications Toolbox
comm.PSKModulator* Communications Toolbox
comm.PSKTCMDemodulator* Communications Toolbox
comm.PSKTCMModulator* Communications Toolbox
comm.QAMCoarseFrequencyEstimator* Communications Toolbox
comm.QPSKDemodulator* Communications Toolbox
comm.QPSKModulator* Communications Toolbox
comm.RaisedCosineReceiveFilter* Communications Toolbox
comm.RaisedCosineTransmitFilter* Communications Toolbox
comm.RayleighChannel* Communications Toolbox
comm.RBDSWaveformGenerator* Communications Toolbox
comm.RectangularQAMDemodulator* Communications Toolbox
comm.RectangularModulator* Communications Toolbox
comm.RectangularQAMTCMDemodulator* Communications Toolbox
comm.RectangularQAMTCMModulator* Communications Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-14

Name Product
comm.RicianChannel* Communications Toolbox
comm.RSDecoder* Communications Toolbox
comm.RSEncoder* Communications Toolbox
comm.Scrambler* Communications Toolbox
comm.SphereDecoder* Communications Toolbox
comm.SymbolSynchronizer* Communications Toolbox
comm.ThermalNoise* Communications Toolbox
comm.TurboDecoder* Communications Toolbox
comm.TurboEncoder* Communications Toolbox
comm.ViterbiDecoder* Communications Toolbox
comm.WalshCode* Communications Toolbox
compact of quaternion Sensor Fusion and Tracking Toolbox
compact of quaternion Robotics System Toolbox
compan MATLAB
compatibleTrackBranches* Sensor Fusion and Tracking Toolbox
complex MATLAB
complex Fixed-Point Designer
compressor* Audio System Toolbox
computer* MATLAB
cond MATLAB
conj MATLAB
conj Fixed-Point Designer
conj of quaternion Robotics System Toolbox
conj of quaternion Sensor Fusion and Tracking Toolbox
conndef* Image Processing Toolbox
constacc Automated Driving System Toolbox
constacc Sensor Fusion and Tracking Toolbox
constaccjac Automated Driving System Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-15

Name Product
constaccjac Sensor Fusion and Tracking Toolbox
constturn Automated Driving System Toolbox
constturn Sensor Fusion and Tracking Toolbox
constturnjac Automated Driving System Toolbox
constturnjac Sensor Fusion and Tracking Toolbox
constvel Automated Driving System Toolbox
constvel Sensor Fusion and Tracking Toolbox
constveljac Automated Driving System Toolbox
constveljac Sensor Fusion and Tracking Toolbox
constvelmsc Sensor Fusion and Tracking Toolbox
constvelmscjac Sensor Fusion and Tracking Toolbox
contains* MATLAB
continue MATLAB
control Robotics System Toolbox
conv* MATLAB
conv* Fixed-Point Designer
conv2 MATLAB
convenc Communications Toolbox
convergent Fixed-Point Designer
convertCharsToStrings* MATLAB
convertStringsToChars MATLAB
convmtx Signal Processing Toolbox
convn MATLAB
cordicabs* Fixed-Point Designer
cordicangle* Fixed-Point Designer
cordicatan2* Fixed-Point Designer
cordiccart2pol* Fixed-Point Designer
cordiccexp* Fixed-Point Designer

3 Functions, Classes, and System Objects Supported for Code Generation

3-16

Name Product
cordiccos* Fixed-Point Designer
cordicpol2cart* Fixed-Point Designer
cordicrotate* Fixed-Point Designer
cordicsin* Fixed-Point Designer
cordicsincos* Fixed-Point Designer
cordicsqrt* Fixed-Point Designer
cornerPoints* Computer Vision System Toolbox
correct of AlphaBetaFilter Phased Array System Toolbox
corrcoef* MATLAB
correct of MARGGPSFuser Sensor Fusion and Tracking Toolbox
correct of NHConstrainedIMUGPSFuser Sensor Fusion and Tracking Toolbox
correct of trackingCKF Sensor Fusion and Tracking Toolbox
corrmtx Signal Processing Toolbox
cos MATLAB
cos Fixed-Point Designer
cosd MATLAB
cosh MATLAB
cot MATLAB
cotd* MATLAB
coth MATLAB
count* MATLAB
cov* MATLAB
coxphfit* Statistics and Machine Learning

Toolbox
cplxpair MATLAB
cross* MATLAB
crossoverFilter* Audio System Toolbox
csc MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-17

Name Product
cscd* MATLAB
csch MATLAB
ctmeas Automated Driving System Toolbox
ctmeas Sensor Fusion and Tracking Toolbox
ctmeasjac Automated Driving System Toolbox
ctmeasjac Sensor Fusion and Tracking Toolbox
ctranspose MATLAB
ctranspose Fixed-Point Designer
ctranspose, ' of quaternion Robotics System Toolbox
ctranspose, ' of quaternion Sensor Fusion and Tracking Toolbox
cummin MATLAB
cummax MATLAB
cumprod* MATLAB
cumsum* MATLAB
cumtrapz MATLAB
cvmeas Automated Driving System Toolbox
cvmeas Sensor Fusion and Tracking Toolbox
cvmeasjac Automated Driving System Toolbox
cvmeasjac Sensor Fusion and Tracking Toolbox
cvmeasmsc Sensor Fusion and Tracking Toolbox
cvmeasmscjac Sensor Fusion and Tracking Toolbox
DAGNetwork Deep Learning Toolbox
db2pow Signal Processing Toolbox
dct* Signal Processing Toolbox
ddencmp* Wavelet Toolbox
de2bi Communications Toolbox
deal MATLAB
deblank* MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-18

Name Product
dec2bin* MATLAB
dec2hex* MATLAB
dechirp* Phased Array System Toolbox
deconv* MATLAB
deg2rad MATLAB
del2 MATLAB
delayseq* Phased Array System Toolbox
demosaic* Image Processing Toolbox
depressionang* Phased Array System Toolbox
derivative Robotics System Toolbox
designMultirateFIR* DSP System Toolbox
designParamEQ Audio System Toolbox
designShelvingEQ Audio System Toolbox
designVarSlopeFilter Audio System Toolbox
det* MATLAB
detcoef Wavelet Toolbox
detcoef2 Wavelet Toolbox
detectBRISKFeatures* Computer Vision System Toolbox
detectCheckerboardPoints* Computer Vision System Toolbox
detectFASTFeatures* Computer Vision System Toolbox
detectHarrisFeatures* Computer Vision System Toolbox
detectMinEigenFeatures* Computer Vision System Toolbox
detectMSERFeatures* Computer Vision System Toolbox
detectSURFFeatures* Computer Vision System Toolbox
detrend* MATLAB
diag* MATLAB
diag* Fixed-Point Designer
diagbfweights* Phased Array System Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-19

Name Product
diff* MATLAB
disparity* Computer Vision System Toolbox
dist of quaternion Robotics System Toolbox
distance of AlphaBetaFilter Phased Array System Toolbox
dist of quaternion Sensor Fusion and Tracking Toolbox
distance of trackingCKF Sensor Fusion and Tracking Toolbox
divide* Fixed-Point Designer
dop2speed* Phased Array System Toolbox
dopsteeringvec* Phased Array System Toolbox
doppler* Communications Toolbox
dot* MATLAB
double MATLAB
double* Fixed-Point Designer
downsample Signal Processing Toolbox
dpskdemod Communications Toolbox
dpskmod Communications Toolbox
dpss* Signal Processing Toolbox
dsigmf Fuzzy Logic Toolbox™
dsp.AdaptiveLatticeFilter* DSP System Toolbox
dsp.AffineProjectionFilter* DSP System Toolbox
dsp.AllpassFilter* DSP System Toolbox
dsp.AllpoleFilter* DSP System Toolbox
dsp.AnalyticSignal* DSP System Toolbox
dsp.ArrayPlot* DSP System Toolbox
dsp.ArrayVectorAdder* DSP System Toolbox
dsp.ArrayVectorDivider* DSP System Toolbox
dsp.ArrayVectorMultiplier* DSP System Toolbox
dsp.ArrayVectorSubtractor* DSP System Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-20

Name Product
dsp.AsyncBuffer*
dsp.AudioFileReader* DSP System Toolbox
dsp.AudioFileWriter* DSP System Toolbox
dsp.Autocorrelator* DSP System Toolbox
dsp.BinaryFileReader* DSP System Toolbox
dsp.BinaryFileWriter* DSP System Toolbox
dsp.BiquadFilter* DSP System Toolbox
dsp.BlockLMSFilter* DSP System Toolbox
dsp.BurgAREstimator* DSP System Toolbox
dsp.BurgSpectrumEstimator* DSP System Toolbox
dsp.Channelizer* DSP System Toolbox
dsp.ChannelSynthesizer* DSP System Toolbox
dsp.CICCompensationDecimator* DSP System Toolbox
dsp.CICCompensationInterpolator* DSP System Toolbox
dsp.CICDecimator* DSP System Toolbox
dsp.CICInterpolator* DSP System Toolbox
dsp.ColoredNoise* DSP System Toolbox
dsp.ComplexBandpassDecimator* DSP System Toolbox
dsp.Convolver* DSP System Toolbox
dsp.Counter* DSP System Toolbox
dsp.Crosscorrelator* DSP System Toolbox
dsp.CrossSpectrumEstimator* DSP System Toolbox
dsp.CumulativeProduct * DSP System Toolbox
dsp.CumulativeSum* DSP System Toolbox
dsp.DCBlocker* DSP System Toolbox
dsp.DCT* DSP System Toolbox
dsp.Delay* DSP System Toolbox
dsp.DelayLine* DSP System Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-21

Name Product
dsp.Differentiator* DSP System Toolbox
dsp.DigitalDownConverter* DSP System Toolbox
dsp.DigitalUpConverter* DSP System Toolbox
dsp.FarrowRateConverter* DSP System Toolbox
dsp.FastTransversalFilter* DSP System Toolbox
dsp.FFT* DSP System Toolbox
dsp.FilterCascade* DSP System Toolbox
dsp.FilteredXLMSFilter* DSP System Toolbox
dsp.FIRDecimator* DSP System Toolbox
dsp.FIRFilter* DSP System Toolbox
dsp.FIRHalfbandDecimator* DSP System Toolbox
dsp.FIRHalfbandInterpolator* DSP System Toolbox
dsp.FIRInterpolator* DSP System Toolbox
dsp.FIRRateConverter* DSP System Toolbox
dsp.FrequencyDomainAdaptiveFilter* DSP System Toolbox
dsp.FrequencyDomainFIRFilter* DSP System Toolbox
dsp.HampelFilter*
dsp.HighpassFilter* DSP System Toolbox
dsp.Histogram* DSP System Toolbox
dsp.IDCT* DSP System Toolbox
dsp.IFFT* DSP System Toolbox
dsp.IIRFilter* DSP System Toolbox
dsp.IIRHalfbandDecimator* DSP System Toolbox
dsp.IIRHalfbandInterpolator* DSP System Toolbox
dsp.Interpolator* DSP System Toolbox
dsp.KalmanFilter* DSP System Toolbox
dsp.LDLFactor* DSP System Toolbox
dsp.LevinsonSolver* DSP System Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-22

Name Product
dsp.LMSFilter* DSP System Toolbox
dsp.LowerTriangularSolver* DSP System Toolbox
dsp.LowpassFilter* DSP System Toolbox
dsp.LUFactor* DSP System Toolbox
dsp.Maximum* DSP System Toolbox
dsp.Mean* DSP System Toolbox
dsp.Median* DSP System Toolbox
dsp.MedianFilter* DSP System Toolbox
dsp.MovingAverage* DSP System Toolbox
dsp.MovingMaximum* DSP System Toolbox
dsp.MovingMinimum* DSP System Toolbox
dsp.MovingRMS* DSP System Toolbox
dsp.MovingStandardDeviation* DSP System Toolbox
dsp.MovingVariance* DSP System Toolbox
dsp.Minimum* DSP System Toolbox
dsp.NCO* DSP System Toolbox
dsp.Normalizer* DSP System Toolbox
dsp.PeakFinder* DSP System Toolbox
dsp.PeakToPeak* DSP System Toolbox
dsp.PeakToRMS* DSP System Toolbox
dsp.PhaseExtractor* DSP System Toolbox
dsp.PhaseUnwrapper* DSP System Toolbox
dsp.RMS* DSP System Toolbox
dsp.RLSFilter* DSP System Toolbox
dsp.SampleRateConverter* DSP System Toolbox
dsp.ScalarQuantizerDecoder* DSP System Toolbox
dsp.ScalarQuantizerEncoder* DSP System Toolbox
dsp.SignalSource* DSP System Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-23

Name Product
dsp.SineWave* DSP System Toolbox
dsp.SpectrumAnalyzer* DSP System Toolbox
dsp.SpectrumEstimator* DSP System Toolbox
dsp.StandardDeviation* DSP System Toolbox
dsp.StateLevels* DSP System Toolbox
dsp.SubbandAnalysisFilter* DSP System Toolbox
dsp.SubbandSynthesisFilter* DSP System Toolbox
dsp.TimeScope* DSP System Toolbox
dsp.TransferFunctionEstimator* DSP System Toolbox
dsp.UDPReceiver* DSP System Toolbox
dsp.UDPSender* DSP System Toolbox
dsp.UpperTriangularSolver* DSP System Toolbox
dsp.VariableBandwidthFIRFilter* DSP System Toolbox
dsp.VariableBandwidthIIRFilter* DSP System Toolbox
dsp.VariableFractionDelay* DSP System Toolbox
dsp.VariableIntegerDelay* DSP System Toolbox
dsp.Variance* DSP System Toolbox
dsp.VectorQuantizerDecoder* DSP System Toolbox
dsp.VectorQuantizerEncoder* DSP System Toolbox
dsp.Window* DSP System Toolbox
dsp.ZeroCrossingDetector* DSP System Toolbox
dsp.ZoomFFT* DSP System Toolbox
dvbs2ldpc* Communications Toolbox
dvbsapskdemod Communications Toolbox
dvbsapskmod Communications Toolbox
dwt Wavelet Toolbox
dwt2 Wavelet Toolbox
dyadup* Wavelet Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-24

Name Product
ecompass Sensor Fusion and Tracking Toolbox
edge* Image Processing Toolbox
effearthradius* Phased Array System Toolbox
eig* MATLAB
ellip* Signal Processing Toolbox
ellipap* Signal Processing Toolbox
ellipke MATLAB
ellipord* Signal Processing Toolbox
emd Signal Processing Toolbox
emd Wavelet Toolbox
emissionsInBody Sensor Fusion and Tracking Toolbox
end MATLAB
end Fixed-Point Designer
endsWith* MATLAB
enumeration MATLAB
envelope* Signal Processing Toolbox
environment Robotics System Toolbox
epipolarLine Computer Vision System Toolbox
eps MATLAB
eps* Fixed-Point Designer
eq* MATLAB
eq* Fixed-Point Designer
erase* MATLAB
eraseBetween* MATLAB
erf MATLAB
erfc MATLAB
erfcinv MATLAB
erfcx MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-25

Name Product
erfinv MATLAB
error* MATLAB
espritdoa* Phased Array System Toolbox
estimateEssentialMatrix* Computer Vision System Toolbox
estimateFundamentalMatrix* Computer Vision System Toolbox
estimateGeometricTransform* Computer Vision System Toolbox
estimateUncalibratedRectification Computer Vision System Toolbox
estimateWorldCameraPose* Computer Vision System Toolbox
eul2quat Robotics System Toolbox
eul2rotm Robotics System Toolbox
eul2tform Robotics System Toolbox
euler of quaternion Robotics System Toolbox
euler of quaternion Sensor Fusion and Tracking Toolbox
eulerd of quaternion Robotics System Toolbox
eulerd of quaternion Sensor Fusion and Tracking Toolbox
evalfis* Fuzzy Logic Toolbox
evalfisOptions* Fuzzy Logic Toolbox
evcdf Statistics and Machine Learning

Toolbox
evinv Statistics and Machine Learning

Toolbox
evpdf Statistics and Machine Learning

Toolbox
evrnd* Statistics and Machine Learning

Toolbox
evstat Statistics and Machine Learning

Toolbox
ExhaustiveSearcher* Statistics and Machine Learning

Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-26

Name Product
exp MATLAB
exp of quaternion Robotics System Toolbox
exp of quaternion Sensor Fusion and Tracking Toolbox
expander* Audio System Toolbox
expcdf Statistics and Machine Learning

Toolbox
expint MATLAB
expinv Statistics and Machine Learning

Toolbox
expm* MATLAB
expm1 MATLAB
exppdf Statistics and Machine Learning

Toolbox
exprnd* Statistics and Machine Learning

Toolbox
expstat Statistics and Machine Learning

Toolbox
extendedKalmanFilter* Control System Toolbox™
extendedKalmanFilter* System Identification Toolbox™
extractAfter* MATLAB
extractBefore* MATLAB
extractFeatures Computer Vision System Toolbox
extractHOGFeatures* Computer Vision System Toolbox
extractLBPFeatures* Computer Vision System Toolbox
extrinsics* Computer Vision System Toolbox
extrinsicsToCameraPose Computer Vision System Toolbox
eye* MATLAB
factor* MATLAB
factorial MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-27

Name Product
false* MATLAB
fcdf Statistics and Machine Learning

Toolbox
fclose MATLAB
feof MATLAB
fft* MATLAB
fft2* MATLAB
fftn* MATLAB
fftshift MATLAB
fftw* MATLAB
fi* Fixed-Point Designer
fieldnames* MATLAB
filloutliers* MATLAB
filter* MATLAB
filter* Fixed-Point Designer
filter2 MATLAB
filtfilt* Signal Processing Toolbox
fimath* Fixed-Point Designer
find* MATLAB
finddelay Signal Processing Toolbox
findpeaks Signal Processing Toolbox
finv Statistics and Machine Learning

Toolbox
fir1* Signal Processing Toolbox
fir2* Signal Processing Toolbox
firceqrip* DSP System Toolbox
fircls* Signal Processing Toolbox
fircls1* Signal Processing Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-28

Name Product
fireqint* DSP System Toolbox
firgr* DSP System Toolbox
firhalfband* DSP System Toolbox
firlpnorm* DSP System Toolbox
firls* Signal Processing Toolbox
firminphase* DSP System Toolbox
firnyquist* DSP System Toolbox
firpr2chfb* DSP System Toolbox
firpm* Signal Processing Toolbox
firpmord* Signal Processing Toolbox
fitgeotrans* Image Processing Toolbox
fix MATLAB
fix Fixed-Point Designer
fixed.Quantizer Fixed-Point Designer
fixedwing Robotics System Toolbox
flattopwin Signal Processing Toolbox
flintmax MATLAB
flip* MATLAB
flip* Fixed-Point Designer
flipdim* MATLAB
fliplr* MATLAB
fliplr Fixed-Point Designer
flipud* MATLAB
flipud Fixed-Point Designer
floor MATLAB
floor Fixed-Point Designer
fminbnd* MATLAB
fminbnd* Optimization Toolbox™

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-29

Name Product
fminsearch* MATLAB
fminsearch* Optimization Toolbox
fogpl* Phased Array System Toolbox
fopen* MATLAB
for MATLAB
for Fixed-Point Designer
fpdf Statistics and Machine Learning

Toolbox
fprintf* MATLAB
fread* MATLAB
freqspace MATLAB
freqz* Signal Processing Toolbox
frewind MATLAB
frnd* Statistics and Machine Learning

Toolbox
fseek* MATLAB
fspecial* Image Processing Toolbox
fspl* Phased Array System Toolbox
fstat Statistics and Machine Learning

Toolbox
ftell* MATLAB
full MATLAB
func2str* MATLAB
fusecovint Sensor Fusion and Tracking Toolbox
fusecovunion Sensor Fusion and Tracking Toolbox
fusegps of MARGGPSFuser
fusegps of NHConstrainedIMUGPSFuser Sensor Fusion and Tracking Toolbox
fusemag of MARGGPSFuser Sensor Fusion and Tracking Toolbox
fusexcov Sensor Fusion and Tracking Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-30

Name Product
fwrite* MATLAB
fzero* MATLAB
fzero* Optimization Toolbox
gain2aperture* Phased Array System Toolbox
gamcdf Statistics and Machine Learning

Toolbox
gaminv Statistics and Machine Learning

Toolbox
gamma MATLAB
gammainc* MATLAB
gammaincinv* MATLAB
gammaln MATLAB
gampdf Statistics and Machine Learning

Toolbox
gamrnd* Statistics and Machine Learning

Toolbox
gamstat Statistics and Machine Learning

Toolbox
gaspl* Phased Array System Toolbox
gauss2mf Fuzzy Logic Toolbox
gaussmf Fuzzy Logic Toolbox
gausswin* Signal Processing Toolbox
gbellmf Fuzzy Logic Toolbox
gccphat* Phased Array System Toolbox
gcd MATLAB
ge MATLAB
ge* Fixed-Point Designer
GeneralizedLinearModel* and
CompactGeneralizedLinearModel*

Statistics and Machine Learning
Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-31

Name Product
generateCheckerboardPoints* Computer Vision System Toolbox
genqamdemod Communications Toolbox
geocdf Statistics and Machine Learning

Toolbox
geoinv Statistics and Machine Learning

Toolbox
geomean* Statistics and Machine Learning

Toolbox
geopdf Statistics and Machine Learning

Toolbox
geornd* Statistics and Machine Learning

Toolbox
geostat Statistics and Machine Learning

Toolbox
get* Fixed-Point Designer
getFISCodeGenerationData* Fuzzy Logic Toolbox
getlsb Fixed-Point Designer
getMonopulseEstimator Phased Array System Toolbox
getmsb Fixed-Point Designer
getNumInputs* MATLAB
getNumOutputs* MATLAB
getPathFilters 5G Toolbox™
getrangefromclass* Image Processing Toolbox
getTrackPositions Automated Driving System Toolbox
getTrackPositions Sensor Fusion and Tracking Toolbox
getTrackVelocities Automated Driving System Toolbox
getTrackVelocities Sensor Fusion and Tracking Toolbox
gevcdf Statistics and Machine Learning

Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-32

Name Product
gevinv Statistics and Machine Learning

Toolbox
gevpdf Statistics and Machine Learning

Toolbox
gevrnd* Statistics and Machine Learning

Toolbox
gevstat Statistics and Machine Learning

Toolbox
glmval* Statistics and Machine Learning

Toolbox
global2localcoord* Phased Array System Toolbox
googlenet* Deep Learning Toolbox
gpcdf Statistics and Machine Learning

Toolbox
gpinv Statistics and Machine Learning

Toolbox
gppdf Statistics and Machine Learning

Toolbox
gprnd* Statistics and Machine Learning

Toolbox
gpsSensor* Sensor Fusion and Tracking Toolbox
gpstat Statistics and Machine Learning

Toolbox
gradient MATLAB
graphicEQ* Audio System Toolbox
gray2bin Communications Toolbox
grayconnected* Image Processing Toolbox
grazingang* Phased Array System Toolbox
grp2idx* Statistics and Machine Learning

Toolbox
gt MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-33

Name Product
gt* Fixed-Point Designer
gyroparams Sensor Fusion and Tracking Toolbox
hadamard* MATLAB
hamming Signal Processing Toolbox
hankel MATLAB
hann Signal Processing Toolbox
harmmean* Statistics and Machine Learning

Toolbox
hex2dec* MATLAB
hex2num* MATLAB
hilb MATLAB
hilbert Signal Processing Toolbox
hist* MATLAB
histc* MATLAB
histcounts* MATLAB
histeq* Image Processing Toolbox
hit of trackHistoryLogic and trackscoreLogic Sensor Fusion and Tracking Toolbox
hom2cart Robotics System Toolbox
horizonrange* Phased Array System Toolbox
horzcat Fixed-Point Designer
hough* Image Processing Toolbox
houghlines* Image Processing Toolbox
houghpeaks* Image Processing Toolbox
hygecdf Statistics and Machine Learning

Toolbox
hygeinv Statistics and Machine Learning

Toolbox
hygepdf Statistics and Machine Learning

Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-34

Name Product
hygernd* Statistics and Machine Learning

Toolbox
hygestat Statistics and Machine Learning

Toolbox
hypot MATLAB
icdf* Statistics and Machine Learning

Toolbox
idct* Signal Processing Toolbox
if, elseif, else MATLAB
idivide* MATLAB
idwt Wavelet Toolbox
idwt2* Wavelet Toolbox
ifft* MATLAB
ifft2* MATLAB
ifftn* MATLAB
ifftshift MATLAB
ifir* DSP System Toolbox
iircomb* DSP System Toolbox
iirgrpdelay* DSP System Toolbox
iirlpnorm* DSP System Toolbox
iirlpnormc* DSP System Toolbox
iirnotch* DSP System Toolbox
iirpeak* DSP System Toolbox
im2double MATLAB
im2int16* Image Processing Toolbox
im2single* Image Processing Toolbox
im2uint8* Image Processing Toolbox
im2uint16* Image Processing Toolbox
imabsdiff* Image Processing Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-35

Name Product
imadjust* Image Processing Toolbox
imag MATLAB
imag Fixed-Point Designer
imaq.VideoDevice* Image Acquisition Toolbox™
imbinarize* Image Processing Toolbox
imbothat* Image Processing Toolbox
imboxfilt* Image Processing Toolbox
imclearborder* Image Processing Toolbox
imclose* Image Processing Toolbox
imcomplement* Image Processing Toolbox
imcrop* Image Processing Toolbox
imdilate* Image Processing Toolbox
imerode* Image Processing Toolbox
imextendedmax* Image Processing Toolbox
imextendedmin* Image Processing Toolbox
imfill* Image Processing Toolbox
imfilter* Image Processing Toolbox
imfindcircles* Image Processing Toolbox
imgaborfilt* Image Processing Toolbox
imgaussfilt* Image Processing Toolbox
imgradient3* Image Processing Toolbox
imgradientxyz* Image Processing Toolbox
imhist* Image Processing Toolbox
imhmax* Image Processing Toolbox
imhmin* Image Processing Toolbox
imlincomb* Image Processing Toolbox
immse* Image Processing Toolbox
imodwpt Wavelet Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-36

Name Product
imodwt Wavelet Toolbox
imopen* Image Processing Toolbox
imoverlay* Image Processing Toolbox
impyramid* Image Processing Toolbox
imquantize* Image Processing Toolbox
imread* Image Processing Toolbox
imreconstruct* Image Processing Toolbox
imref2d* Image Processing Toolbox
imref3d* Image Processing Toolbox
imregionalmax* Image Processing Toolbox
imregionalmin* Image Processing Toolbox
imresize* Image Processing Toolbox
imrotate* Image Processing Toolbox
imtophat* Image Processing Toolbox
imtranslate* Image Processing Toolbox
imufilter* Sensor Fusion and Tracking Toolbox
imuSensor* Sensor Fusion and Tracking Toolbox
imwarp* Image Processing Toolbox
ind2sub* MATLAB
inf* MATLAB
info 5G Toolbox
init of trackHistoryLogic and trackscoreLogic Sensor Fusion and Tracking Toolbox
initapekf Sensor Fusion and Tracking Toolbox
initcackf Sensor Fusion and Tracking Toolbox
initcaekf Automated Driving System Toolbox
initcaekf Sensor Fusion and Tracking Toolbox
initcakf Automated Driving System Toolbox
initcakf Sensor Fusion and Tracking Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-37

Name Product
initcapf Sensor Fusion and Tracking Toolbox
initcaukf Automated Driving System Toolbox
initcaukf Sensor Fusion and Tracking Toolbox
initctckf Sensor Fusion and Tracking Toolbox
initctekf Automated Driving System Toolbox
initctekf Sensor Fusion and Tracking Toolbox
initctpf Sensor Fusion and Tracking Toolbox
initctukf Automated Driving System Toolbox
initctukf Sensor Fusion and Tracking Toolbox
initcvckf Sensor Fusion and Tracking Toolbox
initcvekf Automated Driving System Toolbox
initcvekf Sensor Fusion and Tracking Toolbox
initcvkf Automated Driving System Toolbox
initcvkf Sensor Fusion and Tracking Toolbox
initcvmscekf Sensor Fusion and Tracking Toolbox
initcvpf Sensor Fusion and Tracking Toolbox
initcvukf Automated Driving System Toolbox
initcvukf Sensor Fusion and Tracking Toolbox
initekfimm Sensor Fusion and Tracking Toolbox
initrpekf Sensor Fusion and Tracking Toolbox
inpolygon* MATLAB
insertAfter* MATLAB
insertBefore* MATLAB
insertMarker* Computer Vision System Toolbox
insertObjectAnnotation* Computer Vision System Toolbox
insertShape* Computer Vision System Toolbox
insertText* Computer Vision System Toolbox
insfilter Sensor Fusion and Tracking Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-38

Name Product
insSensor* Sensor Fusion and Tracking Toolbox
int2str* MATLAB
int8, int16, int32, int64 MATLAB
int8, int16, int32, int64 Fixed-Point Designer
integralBoxFilter* Image Processing Toolbox
integralImage Computer Vision System Toolbox
integralImage Image Processing Toolbox
integratedLoudness Audio System Toolbox
interp1* MATLAB
interp1q* MATLAB
interp2* MATLAB
interp3* MATLAB
interpn* MATLAB
interpolateHRTF Audio System Toolbox
intersect* MATLAB
intfilt* Signal Processing Toolbox
intlut* Image Processing Toolbox
intmax MATLAB
intmin MATLAB
inv* MATLAB
invhilb MATLAB
ipermute* MATLAB
ipermute Fixed-Point Designer
iptcheckconn* Image Processing Toolbox
iptcheckmap* Image Processing Toolbox
iqcoef2imbal Communications Toolbox
iqimbal Communications Toolbox
iqimbal2coef Communications Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-39

Name Product
iqr* Statistics and Machine Learning

Toolbox
irSensor Sensor Fusion and Tracking Toolbox
irSignature Sensor Fusion and Tracking Toolbox
isa MATLAB
isbanded* MATLAB
iscell MATLAB
iscellstr MATLAB
ischar MATLAB
iscolumn MATLAB
iscolumn Fixed-Point Designer
isdeployed* MATLAB Compiler
isdiag* MATLAB
isDone* MATLAB
isempty MATLAB
isempty Fixed-Point Designer
isenum MATLAB
isEpipoleInImage Computer Vision System Toolbox
isequal MATLAB
isequal Fixed-Point Designer
isequaln MATLAB
isfi* Fixed-Point Designer
isfield* MATLAB
isfimath Fixed-Point Designer
isfimathlocal Fixed-Point Designer
isfinite MATLAB
isfinite Fixed-Point Designer
isfloat MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-40

Name Product
ishermitian* MATLAB
isinf MATLAB
isinf Fixed-Point Designer
isinteger MATLAB
isletter* MATLAB
isLocked* MATLAB
islogical MATLAB
ismac* MATLAB
ismatrix MATLAB
ismcc* MATLAB Compiler
ismember* MATLAB
ismethod MATLAB
isnan MATLAB
isnan Fixed-Point Designer
isnumeric MATLAB
isnumeric Fixed-Point Designer
isnumerictype Fixed-Point Designer
isobject MATLAB
isoutlier* MATLAB
ispc* MATLAB
isprime* MATLAB
isreal MATLAB
isreal Fixed-Point Designer
isrow MATLAB
isrow Fixed-Point Designer
isscalar MATLAB
isscalar Fixed-Point Designer
issigned Fixed-Point Designer

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-41

Name Product
issorted* MATLAB
issortedrows* MATLAB
isspace* MATLAB
issparse MATLAB
isstring MATLAB
isstrprop* MATLAB
isstruct MATLAB
issymmetric* MATLAB
istrellis Communications Toolbox
istril* MATLAB
istriu* MATLAB
isunix* MATLAB
isvector MATLAB
isvector Fixed-Point Designer
kaiser Signal Processing Toolbox
kaiserord Signal Processing Toolbox
KDTreeSearcher* Statistics and Machine Learning

Toolbox
kinematicTrajectory* Sensor Fusion and Tracking Toolbox
kron* MATLAB
kmeans* Statistics and Machine Learning

Toolbox
knnsearch* and knnsearch* of ExhaustiveSearcher Statistics and Machine Learning

Toolbox
kurtosis* Statistics and Machine Learning

Toolbox
lab2rgb* Image Processing Toolbox
label2idx* Image Processing Toolbox
label2rgb* Image Processing Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-42

Name Product
lateralControllerStanley Automated Driving System Toolbox
lcm MATLAB
lcmvweights* Phased Array System Toolbox
ldivide MATLAB
ldivide, .\ of quaternion Robotics System Toolbox
ldivide, .\ of quaternion Sensor Fusion and Tracking Toolbox
le MATLAB
le* Fixed-Point Designer
length MATLAB
length Fixed-Point Designer
levinson* Signal Processing Toolbox
lidarScan Robotics System Toolbox
likelihood of AlphaBetaFilter Phased Array System Toolbox
likelihood of trackingCKF Sensor Fusion and Tracking Toolbox
limiter* Audio System Toolbox
LinearModel* and CompactLinearModel* Statistics and Machine Learning

Toolbox
lineToBorderPoints Computer Vision System Toolbox
linsolve* MATLAB
linspace MATLAB
load* MATLAB
loadCompactModel Statistics and Machine Learning

Toolbox
local2globalcoord* Phased Array System Toolbox
log* MATLAB
log of quaternion Robotics System Toolbox
log of quaternion Sensor Fusion and Tracking Toolbox
log2 MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-43

Name Product
log10 MATLAB
log1p MATLAB
logical MATLAB
logical Fixed-Point Designer
logncdf Statistics and Machine Learning

Toolbox
logninv Statistics and Machine Learning

Toolbox
lognpdf Statistics and Machine Learning

Toolbox
lognrnd* Statistics and Machine Learning

Toolbox
lognstat Statistics and Machine Learning

Toolbox
logspace MATLAB
lookup of irSignature Sensor Fusion and Tracking Toolbox
lookup of rcsSignature Sensor Fusion and Tracking Toolbox
lookup of tsSignature Sensor Fusion and Tracking Toolbox
loudnessMeter* Audio System Toolbox
lower* MATLAB
lowerbound Fixed-Point Designer
lsb* Fixed-Point Designer
lscov* MATLAB
lsqnonneg* MATLAB
lsqnonneg* Optimization Toolbox
lt MATLAB
lt* Fixed-Point Designer
lteZadoffChuSeq Communications Toolbox
lu* MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-44

Name Product
mad* Statistics and Machine Learning

Toolbox
magic* MATLAB
magparams Sensor Fusion and Tracking Toolbox
MARGGPSFuser Sensor Fusion and Tracking Toolbox
matchFeatures* Computer Vision System Toolbox
matchScans Robotics System Toolbox
matchScansGrid Robotics System Toolbox
max* MATLAB
max Fixed-Point Designer
maxflat* Signal Processing Toolbox
maxk* MATLAB
mdltest* Phased Array System Toolbox
mean* MATLAB
mean Fixed-Point Designer
mean2* Image Processing Toolbox
meanrot of quaternion Robotics System Toolbox
meanrot of quaternion Sensor Fusion and Tracking Toolbox
medfilt2* Image Processing Toolbox
median* MATLAB
median Fixed-Point Designer
mergeScores of trackscoreLogic Sensor Fusion and Tracking Toolbox
meshgrid MATLAB
mfilename MATLAB
mil188qamdemod Communications Toolbox
mil188qammod Communications Toolbox
min* MATLAB
min Fixed-Point Designer

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-45

Name Product
mink* MATLAB
minus MATLAB
minus* Fixed-Point Designer
minus, - of quaternion Robotics System Toolbox
minus, - of quaternion Sensor Fusion and Tracking Toolbox
miss of trackHistoryLogic and trackscoreLogic Sensor Fusion and Tracking Toolbox
mkpp* MATLAB
mldivide* MATLAB
mnpdf Statistics and Machine Learning

Toolbox
mod* MATLAB
mode* MATLAB
modwpt Wavelet Toolbox
modwptdetails Wavelet Toolbox
modwt Wavelet Toolbox
modwtmra Wavelet Toolbox
moment* Statistics and Machine Learning

Toolbox
monostaticRadarSensor* Sensor Fusion and Tracking Toolbox
movmad* MATLAB
movmax* MATLAB
movmean* MATLAB
movmedian* MATLAB
movmin* MATLAB
movprod* MATLAB
movstd* MATLAB
movsum* MATLAB
movvar* MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-46

Name Product
mpower* MATLAB
mpower* Fixed-Point Designer
mpcqpsolver* Model Predictive Control Toolbox™
mpy* Fixed-Point Designer
mrdivide* MATLAB
mrdivide Fixed-Point Designer
MSERRegions* Computer Vision System Toolbox
mtimes* MATLAB
mtimes* Fixed-Point Designer
mtimes, * of quaternion Robotics System Toolbox
mtimes, * of quaternion Sensor Fusion and Tracking Toolbox
multibandParametricEQ* Audio System Toolbox
multiObjectTracker* Automated Driving System Toolbox
multirotor Robotics System Toolbox
multithresh* Image Processing Toolbox
musicdoa* Phased Array System Toolbox
mustBeFinite MATLAB
mustBeGreaterThan MATLAB
mustBeGreaterThanOrEqual MATLAB
mustBeInteger MATLAB
mustBeLessThan MATLAB
mustBeLessThanOrEqual MATLAB
mustBeMember MATLAB
mustBeNegative MATLAB
mustBeNonempty MATLAB
mustBeNonNan MATLAB
mustBeNonnegative MATLAB
mustBeNonpositive MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-47

Name Product
mustBeNonsparse MATLAB
mustBeNonzero MATLAB
mustBeNumeric MATLAB
mustBeNumericOrLogical MATLAB
mustBePositive MATLAB
mustBeReal MATLAB
mvdrweights* Phased Array System Toolbox
NaN or nan* MATLAB
nancov* Statistics and Machine Learning

Toolbox
nanmax* Statistics and Machine Learning

Toolbox
nanmean* Statistics and Machine Learning

Toolbox
nanmedian* Statistics and Machine Learning

Toolbox
nanmin* Statistics and Machine Learning

Toolbox
nanstd* Statistics and Machine Learning

Toolbox
nansum* Statistics and Machine Learning

Toolbox
nanvar* Statistics and Machine Learning

Toolbox
nargin* MATLAB
narginchk MATLAB
nargout* MATLAB
nargoutchk MATLAB
nbincdf Statistics and Machine Learning

Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-48

Name Product
nbininv Statistics and Machine Learning

Toolbox
nbinpdf Statistics and Machine Learning

Toolbox
nbinrnd* Statistics and Machine Learning

Toolbox
nbinstat Statistics and Machine Learning

Toolbox
ncfcdf Statistics and Machine Learning

Toolbox
ncfinv Statistics and Machine Learning

Toolbox
ncfpdf Statistics and Machine Learning

Toolbox
ncfrnd* Statistics and Machine Learning

Toolbox
ncfstat Statistics and Machine Learning

Toolbox
nchoosek* MATLAB
nctcdf Statistics and Machine Learning

Toolbox
nctinv Statistics and Machine Learning

Toolbox
nctpdf Statistics and Machine Learning

Toolbox
nctrnd* Statistics and Machine Learning

Toolbox
nctstat Statistics and Machine Learning

Toolbox
ncx2cdf Statistics and Machine Learning

Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-49

Name Product
ncx2rnd* Statistics and Machine Learning

Toolbox
ncx2stat Statistics and Machine Learning

Toolbox
ndgrid MATLAB
ndims MATLAB
ndims Fixed-Point Designer
ne* MATLAB
ne* Fixed-Point Designer
nearest Fixed-Point Designer
nextpow2 MATLAB
NHConstrainedIMUGPSFuser Sensor Fusion and Tracking Toolbox
nnz MATLAB
noiseGate* Audio System Toolbox
noisepow* Phased Array System Toolbox
nonzeros MATLAB
norm* MATLAB
norm of quaternion Robotics System Toolbox
norm of quaternion Sensor Fusion and Tracking Toolbox
normalize of quaternion Robotics System Toolbox
normalize of quaternion Sensor Fusion and Tracking Toolbox
normcdf Statistics and Machine Learning

Toolbox
normest* MATLAB
norminv Statistics and Machine Learning

Toolbox
normpdf Statistics and Machine Learning

Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-50

Name Product
normrnd* Statistics and Machine Learning

Toolbox
normstat Statistics and Machine Learning

Toolbox
not MATLAB
npwgnthresh* Phased Array System Toolbox
nrBCH 5G Toolbox
nrBCHDecode 5G Toolbox
nrCDLChannel* 5G Toolbox
nrCodeBlockDesegmentLDPC 5G Toolbox
nrCodeBlockSegmentLDPC 5G Toolbox
nrCRCDecode 5G Toolbox
nrCRCEncode 5G Toolbox
nrDCIDecode 5G Toolbox
nrDCIEncode 5G Toolbox
nrDLSCHInfo 5G Toolbox
nrEqualizeMMSE 5G Toolbox
nrExtractResources 5G Toolbox
nrLayerDemap 5G Toolbox
nrLayerMap 5G Toolbox
nrLDPCDecode 5G Toolbox
nrLDPCEncode 5G Toolbox
nrPBCH 5G Toolbox
nrPBCHDecode 5G Toolbox
nrPBCHDMRS 5G Toolbox
nrPBCHDMRSIndices 5G Toolbox
nrPBCHIndices 5G Toolbox
nrPBCHPRBS 5G Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-51

Name Product
nrPBCHPRBS 5G Toolbox
nrPDCCHDecode 5G Toolbox
nrPDCCHPRBS 5G Toolbox
nrPDSCH 5G Toolbox
nrPDSCHDecode 5G Toolbox
nrPDSCHPRBS 5G Toolbox
nrPerfectChannelEstimate 5G Toolbox
nrPerfectTimingEstimate 5G Toolbox
nrPolarDecode 5G Toolbox
nrPolarEncode 5G Toolbox
nrPRBS 5G Toolbox
nrPSS 5G Toolbox
nrPSSIndices 5G Toolbox
nrRateMatchLDPC 5G Toolbox
nrRateMatchPolar 5G Toolbox
nrRateRecoverLDPC 5G Toolbox
nrRateRecoverPolar 5G Toolbox
nrSSS 5G Toolbox
nrSSSIndices 5G Toolbox
nrSymbolDemodulate 5G Toolbox
nrSymbolModulate 5G Toolbox
nrTDLChannel* 5G Toolbox
nthroot MATLAB
null* MATLAB
num2hex MATLAB
num2str* MATLAB
numberofelements* Fixed-Point Designer
numel MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-52

Name Product
numel Fixed-Point Designer
numerictype* Fixed-Point Designer
nuttallwin* Signal Processing Toolbox
nzmax MATLAB
objectDetection Automated Driving System Toolbox
objectDetection Sensor Fusion and Tracking Toolbox
ocr* Computer Vision System Toolbox
ocrText* Computer Vision System Toolbox
oct2dec Communications Toolbox
octaveFilter* Audio System Toolbox
ode23* MATLAB
ode45 * MATLAB
odeget * MATLAB
odeset * MATLAB
offsetstrel* Image Processing Toolbox
ones* MATLAB
ones of quaternion Robotics System Toolbox
ones of quaternion Sensor Fusion and Tracking Toolbox
opticalFlowFarneback* Computer Vision System Toolbox
opticalFlowHS* Computer Vision System Toolbox
opticalFlowLK* Computer Vision System Toolbox
opticalFlowLKDoG* Computer Vision System Toolbox
optimget* MATLAB
optimget* Optimization Toolbox
optimset* MATLAB
optimset* Optimization Toolbox
ordfilt2* Image Processing Toolbox
or MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-53

Name Product
orth* MATLAB
otsuthresh* Image Processing Toolbox
output of trackHistoryLogic and trackscoreLogic Sensor Fusion and Tracking Toolbox
padarray* Image Processing Toolbox
pambgfun* Phased Array System Toolbox
parfor* MATLAB
particleFilter* Control System Toolbox
particleFilter* System Identification Toolbox
parts of quaternion Robotics System Toolbox
parts of quaternion Sensor Fusion and Tracking Toolbox
parzenwin* Signal Processing Toolbox
pascal MATLAB
pca* Statistics and Machine Learning

Toolbox
pchip* MATLAB
pdf* Statistics and Machine Learning

Toolbox
pdist* Statistics and Machine Learning

Toolbox
pdist2* Statistics and Machine Learning

Toolbox
peak2peak Signal Processing Toolbox
peak2rms Signal Processing Toolbox
pearsrnd* Statistics and Machine Learning

Toolbox
permute* MATLAB
permute* Fixed-Point Designer
phased.ADPCACanceller* Phased Array System Toolbox
phased.AngleDopplerResponse* Phased Array System Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-54

Name Product
phased.ArrayGain* Phased Array System Toolbox
phased.ArrayResponse* Phased Array System Toolbox
phased.BackscatterRadarTarget* Phased Array System Toolbox
phased.BackScatterSonarTarget* Phased Array System Toolbox
phased.BarrageJammer* Phased Array System Toolbox
phased.BeamscanEstimator* Phased Array System Toolbox
phased.BeamscanEstimator2D* Phased Array System Toolbox
phased.BeamspaceESPRITEstimator* Phased Array System Toolbox
phased.CFARDetector* Phased Array System Toolbox
phased.CFARDetector2D* Phased Array System Toolbox
phased.Collector* Phased Array System Toolbox
phased.ConformalArray* Phased Array System Toolbox
phased.ConstantGammaClutter* Phased Array System Toolbox
phased.CosineAntennaElement* Phased Array System Toolbox
phased.CrossedDipoleAntennaElement* Phased Array System Toolbox
phased.CustomAntennaElement* Phased Array System Toolbox
phased.CustomMicrophoneElement* Phased Array System Toolbox
phased.DopplerEstimator Phased Array System Toolbox
phased.DPCACanceller* Phased Array System Toolbox
phased.ElementDelay* Phased Array System Toolbox
phased.ESPRITEstimator* Phased Array System Toolbox
phased.FMCWWaveform* Phased Array System Toolbox
phased.FreeSpace* Phased Array System Toolbox
phased.FrostBeamformer* Phased Array System Toolbox
phased.GSCBeamformer* Phased Array System Toolbox
phased.GCCEstimator* Phased Array System Toolbox
phased.HeterogeneousConformalArray* Phased Array System Toolbox
phased.HeterogeneousULA* Phased Array System Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-55

Name Product
phased.HeterogeneousURA* Phased Array System Toolbox
phased.IsoSpeedUnderWaterPaths* Phased Array System Toolbox
phased.IsotropicAntennaElement* Phased Array System Toolbox
phased.IsotropicHydrophone* Phased Array System Toolbox
phased.IsotropicProjector* Phased Array System Toolbox
phased.LCMVBeamformer* Phased Array System Toolbox
phased.LOSChannel* Phased Array System Toolbox
phased.LinearFMWaveform* Phased Array System Toolbox
phased.MatchedFilter* Phased Array System Toolbox
phased.MFSKWaveform* Phased Array System Toolbox
phased.MonopulseEstimator* Phased Array System Toolbox
phased.MonopulseFeed* Phased Array System Toolbox
phased.MUSICEstimator* Phased Array System Toolbox
phased.MUSICEstimator2D* Phased Array System Toolbox
phased.MVDRBeamformer* Phased Array System Toolbox
phased.MVDREstimator* Phased Array System Toolbox
phased.MVDREstimator2D* Phased Array System Toolbox
phased.MultipathChannel* Phased Array System Toolbox
phased.OmnidirectionalMicrophoneElement* Phased Array System Toolbox
phased.PartitionedArray* Phased Array System Toolbox
phased.PhaseCodedWaveform* Phased Array System Toolbox
phased.PhaseShiftBeamformer* Phased Array System Toolbox
phased.Platform* Phased Array System Toolbox
phased.PulseCompressionLibrary* Phased Array System Toolbox
phased.RadarTarget* Phased Array System Toolbox
phased.Radiator* Phased Array System Toolbox
phased.RangeAngleResponse* Phased Array System Toolbox
phased.RangeDopplerResponse* Phased Array System Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-56

Name Product
phased.RangeEstimator* Phased Array System Toolbox
phased.RangeResponse* Phased Array System Toolbox
phased.RectangularWaveform* Phased Array System Toolbox
phased.ReceiverPreamp* Phased Array System Toolbox
phased.ReplicatedSubarray* Phased Array System Toolbox
phased.RootMUSICEstimator* Phased Array System Toolbox
phased.RootWSFEstimator Phased Array System Toolbox
phased.ScatteringMIMOChannel* Phased Array System Toolbox
phased.ShortDipoleAntennaElement* Phased Array System Toolbox
phased.STAPSMIBeamformer* Phased Array System Toolbox
phased.SteeringVector* Phased Array System Toolbox
phased.SteppedFMWaveform* Phased Array System Toolbox
phased.StretchProcessor* Phased Array System Toolbox
phased.SubbandMVDRBeamformer* Phased Array System Toolbox
phased.SubbandPhaseShiftBeamformer* Phased Array System Toolbox
phased.SumDifferenceMonopulseTracker* Phased Array System Toolbox
phased.SumDifferenceMonopulseTracker2D* Phased Array System Toolbox
phased.TimeDelayBeamformer* Phased Array System Toolbox
phased.TimeDelayLCMVBeamformer* Phased Array System Toolbox
phased.TimeVaryingGain* Phased Array System Toolbox
phased.Transmitter* Phased Array System Toolbox
phased.TwoRayChannel* Phased Array System Toolbox
phased.UCA* Phased Array System Toolbox
phased.ULA* Phased Array System Toolbox
phased.UnderwaterRadiatedNoise* Phased Array System Toolbox
phased.URA* Phased Array System Toolbox
phased.WidebandBackscatterRadarTarget* Phased Array System Toolbox
phased.WidebandCollector* Phased Array System Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-57

Name Product
phased.WidebandFreeSpace Phased Array System Toolbox
phased.WidebandLOSChannel* Phased Array System Toolbox
phased.WidebandRadiator* Phased Array System Toolbox
phased.WidebandTwoRayChannel* Phased Array System Toolbox
phitheta2azel* Phased Array System Toolbox
phitheta2azelpat* Phased Array System Toolbox
phitheta2uv* Phased Array System Toolbox
phitheta2uvpat* Phased Array System Toolbox
physconst* Phased Array System Toolbox
pi MATLAB
pilotcalib* Phased Array System Toolbox
pimf Fuzzy Logic Toolbox
pinv* MATLAB
pitch Audio System Toolbox
planerot* MATLAB
plus MATLAB
plus* Fixed-Point Designer
poisscdf Statistics and Machine Learning

Toolbox
poissinv Statistics and Machine Learning

Toolbox
poisspdf Statistics and Machine Learning

Toolbox
poissrnd* Statistics and Machine Learning

Toolbox
poisstat Statistics and Machine Learning

Toolbox
pol2cart MATLAB
pol2circpol* Phased Array System Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-58

Name Product
polellip* Phased Array System Toolbox
polloss* Phased Array System Toolbox
polratio* Phased Array System Toolbox
polsignature* Phased Array System Toolbox
poly* MATLAB
polyarea MATLAB
poly2trellis Communications Toolbox
polyder* MATLAB
polyeig* MATLAB
polyfit* MATLAB
polyint MATLAB
polyval MATLAB
polyvalm MATLAB
pose of MARGGPSFuser Sensor Fusion and Tracking Toolbox
pose of NHConstrainedIMUGPSFuser Sensor Fusion and Tracking Toolbox
pow2 Fixed-Point Designer
pow2db Signal Processing Toolbox
power* MATLAB
power* Fixed-Point Designer
power, .^ of quaternion Robotics System Toolbox
power, .^ of quaternion Sensor Fusion and Tracking Toolbox
ppval* MATLAB
prctile* Statistics and Machine Learning

Toolbox
predict* Deep Learning Toolbox
predict of AlphaBetaFilter Phased Array System Toolbox
predict of MARGGPSFuser Sensor Fusion and Tracking Toolbox
predict of NHConstrainedIMUGPSFuser Sensor Fusion and Tracking Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-59

Name Product
predict of trackingCKF Sensor Fusion and Tracking Toolbox
predict* method of ClassificationDiscriminant and
CompactClassificationDiscriminant

Statistics and Machine Learning
Toolbox

predict* of ClassificationECOC and
CompactClassificationECOC

Statistics and Machine Learning
Toolbox

predict* of ClassificationEnsemble,
ClassificationBaggedEnsemble, and
CompactClassificationEnsemble

Statistics and Machine Learning
Toolbox

predict* of ClassificationKNN Statistics and Machine Learning
Toolbox

predict* of ClassificationLinear Statistics and Machine Learning
Toolbox

predict* of ClassificationSVM and Compact‐
ClassificationSVM

Statistics and Machine Learning
Toolbox

predict* of ClassificationTree and
CompactClassificationTree

Statistics and Machine Learning
Toolbox

predict* of RegressionSVM and
CompactRegressionSVM

Statistics and Machine Learning
Toolbox

predict* of GeneralizedLinearModel and
CompactGeneralizedLinearModel

Statistics and Machine Learning
Toolbox

predict* of LinearModel and CompactLinearModel Statistics and Machine Learning
Toolbox

predict* of RegressionEnsemble,
RegressionBaggedEnsemble and
CompactRegressionEnsemble

Statistics and Machine Learning
Toolbox

predict* of RegressionGP and CompactRegressionGP Statistics and Machine Learning
Toolbox

predict* of RegressionLinear Statistics and Machine Learning
Toolbox

predict* of RegressionSVM and
CompactRegressionSVM

Statistics and Machine Learning
Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-60

Name Product
predict* of RegressionTree and
CompactRegressionTree

Statistics and Machine Learning
Toolbox

primes* MATLAB
prod* MATLAB
prod of quaternion Robotics System Toolbox
prod of quaternion Sensor Fusion and Tracking Toolbox
projective2d* Image Processing Toolbox
pruneTrackBranches* Sensor Fusion and Tracking Toolbox
psi MATLAB
psigmf Fuzzy Logic Toolbox
psnr* Image Processing Toolbox
pulsint* Phased Array System Toolbox
qamdemod Communications Toolbox
qammod Communications Toolbox
qmf Wavelet Toolbox
qr* MATLAB
qr Fixed-Point Designer
quad2d* MATLAB
quadgk MATLAB
quantile* Statistics and Machine Learning

Toolbox
quantize Fixed-Point Designer
quat2axang Robotics System Toolbox
quat2eul Robotics System Toolbox
quat2rotm Robotics System Toolbox
quat2tform Robotics System Toolbox
quatconj* Aerospace Toolbox
quatdivide* Aerospace Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-61

Name Product
quaternion Robotics System Toolbox
quaternion Sensor Fusion and Tracking Toolbox
quatinv* Aerospace Toolbox
quatmod* Aerospace Toolbox
quatmultiply* Aerospace Toolbox
quatnorm* Aerospace Toolbox
quatnormalize* Aerospace Toolbox
rad2deg MATLAB
radarChannel Sensor Fusion and Tracking Toolbox
radarEmission Sensor Fusion and Tracking Toolbox
radarEmitter* Sensor Fusion and Tracking Toolbox
radareqpow* Phased Array System Toolbox
radareqrng* Phased Array System Toolbox
radareqsnr* Phased Array System Toolbox
radarSensor* Sensor Fusion and Tracking Toolbox
radarvcd* Phased Array System Toolbox
radialspeed* Phased Array System Toolbox
rainpl* Phased Array System Toolbox
rand* MATLAB
randg Statistics and Machine Learning

Toolbox
randi* MATLAB
randn* MATLAB
random* Statistics and Machine Learning

Toolbox
random* of GeneralizedLinearModel and
CompactGeneralizedLinearModel

Statistics and Machine Learning
Toolbox

random* of LinearModel and CompactLinearModel Statistics and Machine Learning
Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-62

Name Product
randperm MATLAB
randsample* Statistics and Machine Learning

Toolbox
range Fixed-Point Designer
range2beat* Phased Array System Toolbox
range2bw* Phased Array System Toolbox
range2time* Phased Array System Toolbox
range2tl* Phased Array System Toolbox
rangeangle* Phased Array System Toolbox
rangesearch* and rangesearch* of
ExhaustiveSearcher

Statistics and Machine Learning
Toolbox

rank* MATLAB
raylcdf Statistics and Machine Learning

Toolbox
raylinv Statistics and Machine Learning

Toolbox
raylpdf Statistics and Machine Learning

Toolbox
raylrnd* Statistics and Machine Learning

Toolbox
raylstat Statistics and Machine Learning

Toolbox
rcond* MATLAB
rcosdesign* Signal Processing Toolbox
rcsSignature Sensor Fusion and Tracking Toolbox
rdcoupling* Phased Array System Toolbox
rdivide MATLAB
rdivide Fixed-Point Designer
rdivide, ./ of quaternion Robotics System Toolbox
rdivide, ./ of quaternion Sensor Fusion and Tracking Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-63

Name Product
real MATLAB
real Fixed-Point Designer
reallog MATLAB
realmax MATLAB
realmax Fixed-Point Designer
realmin MATLAB
realmin Fixed-Point Designer
realpow MATLAB
realsqrt MATLAB
reconstructScene* Computer Vision System Toolbox
rectifyStereoImages* Computer Vision System Toolbox
rectint MATLAB
rectwin* Signal Processing Toolbox
recursiveAR* System Identification Toolbox
recursiveARMA* System Identification Toolbox
recursiveARMAX* System Identification Toolbox
recursiveARX* System Identification Toolbox
recursiveBJ* System Identification Toolbox
recursiveLS* System Identification Toolbox
recursiveOE* System Identification Toolbox
regionprops* Image Processing Toolbox
RegressionEnsemble*, RegressionBaggedEnsemble*
and CompactRegressionEnsemble*

Statistics and Machine Learning
Toolbox

RegressionGP* and CompactRegressionGP* Statistics and Machine Learning
Toolbox

RegressionLinear* Statistics and Machine Learning
Toolbox

RegressionSVM* and CompactRegressionSVM* Statistics and Machine Learning
Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-64

Name Product
RegressionTree* and CompactRegressionTree* Statistics and Machine Learning

Toolbox
reinterpretcast Fixed-Point Designer
relativeCameraPose* Computer Vision System Toolbox
release* MATLAB
rem* MATLAB
removefimath Fixed-Point Designer
repelem* MATLAB
replace* MATLAB
replaceBetween* MATLAB
repmat* MATLAB
repmat* Fixed-Point Designer
resample* Signal Processing Toolbox
rescale Fixed-Point Designer
rescale MATLAB
reset* MATLAB
reset of trackHistoryLogic and trackscoreLogic Sensor Fusion and Tracking Toolbox
reset of MARGGPSFuser Sensor Fusion and Tracking Toolbox
reset of NHConstrainedIMUGPSFuser Sensor Fusion and Tracking Toolbox
reshape* MATLAB
reshape Fixed-Point Designer
residual of trackingCKF Sensor Fusion and Tracking Toolbox
resnet50* Deep Learning Toolbox
resnet101* Deep Learning Toolbox
return MATLAB
reverberator* Audio System Toolbox
reverse* MATLAB
rfEmitter* Sensor Fusion and Tracking Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-65

Name Product
rfSensor* Sensor Fusion and Tracking Toolbox
rgb2gray MATLAB
rgb2lab* Image Processing Toolbox
rgb2ycbcr* Image Processing Toolbox
rms Signal Processing Toolbox
rng* MATLAB
robotics.AimingConstraint Robotics System Toolbox
robotics.BinaryOccupancyGrid Robotics System Toolbox
robotics.Cartesianbounds Robotics System Toolbox
robotics.GeneralizedInverseKinematics* Robotics System Toolbox
robotics.InverseKinematics* Robotics System Toolbox
robotics.Joint Robotics System Toolbox
robotics.JointPositionBounds Robotics System Toolbox
robotics.OccupancyGrid Robotics System Toolbox
robotics.OdometryMotionModel Robotics System Toolbox
robotics.OrientationTarget Robotics System Toolbox
robotics.ParticleFilter* Robotics System Toolbox
robotics.PoseTarget Robotics System Toolbox
robotics.PositionTarget Robotics System Toolbox
robotics.PRM* Robotics System Toolbox
robotics.PurePursuit Robotics System Toolbox
robotics.RigidBody Robotics System Toolbox
robotics.RigidBodyTree* Robotics System Toolbox
robotics.VectorFieldHistogram Robotics System Toolbox
rocpfa* Phased Array System Toolbox
rocsnr* Phased Array System Toolbox
rootmusicdoa* Phased Array System Toolbox
roots* MATLAB

3 Functions, Classes, and System Objects Supported for Code Generation

3-66

Name Product
rosser MATLAB
rot90* MATLAB
rot90* Fixed-Point Designer
rotateframe of quaternion Robotics System Toolbox
rotateframe of quaternion Sensor Fusion and Tracking Toolbox
rotatepoint of quaternion Robotics System Toolbox
rotatepoint of quaternion Sensor Fusion and Tracking Toolbox
rotationMatrixToVector Computer Vision System Toolbox
rotationVectorToMatrix Computer Vision System Toolbox
rotm2axang Robotics System Toolbox
rotm2eul Robotics System Toolbox
rotm2quat Robotics System Toolbox
rotm2tform Robotics System Toolbox
rotmatof quaternion Robotics System Toolbox
rotmat of quaternion Sensor Fusion and Tracking Toolbox
rotvec of quaternion Robotics System Toolbox
rotvec of quaternion Sensor Fusion and Tracking Toolbox
rotvecd of quaternion Robotics System Toolbox
rotvecd of quaternion Sensor Fusion and Tracking Toolbox
rotx* Phased Array System Toolbox
roty* Phased Array System Toolbox
rotz* Phased Array System Toolbox
round* MATLAB
round Fixed-Point Designer
rsf2csf* MATLAB
rsgenpoly Communications Toolbox
rsgenpolycoeffs Communications Toolbox
schur* MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-67

Name Product
sec MATLAB
secd* MATLAB
sech MATLAB
selectStrongestBbox* Computer Vision System Toolbox
sensorcov* Phased Array System Toolbox
sensorsig* Phased Array System Toolbox
SeriesNetwork* Deep Learning Toolbox
setdiff* MATLAB
setfimath Fixed-Point Designer
setxor* MATLAB
sfi* Fixed-Point Designer
sgolay Signal Processing Toolbox
sgolayfilt Signal Processing Toolbox
shiftdim* MATLAB
shiftdim* Fixed-Point Designer
shnidman* Phased Array System Toolbox
sigmf Fuzzy Logic Toolbox
sign MATLAB
sign Fixed-Point Designer
sin MATLAB
sin Fixed-Point Designer
sinc Signal Processing Toolbox
sind MATLAB
single MATLAB
single* Fixed-Point Designer
sinh MATLAB
size MATLAB
size Fixed-Point Designer

3 Functions, Classes, and System Objects Supported for Code Generation

3-68

Name Product
skewness* Statistics and Machine Learning

Toolbox
slerp of quaternion Robotics System Toolbox
slerp of quaternion Sensor Fusion and Tracking Toolbox
smf Fuzzy Logic Toolbox
sonarEmission Sensor Fusion and Tracking Toolbox
sonarEmitter* Sensor Fusion and Tracking Toolbox
sonareqsl* Phased Array System Toolbox
sonareqsnr* Phased Array System Toolbox
sonareqtl* Phased Array System Toolbox
sonarSensor* Sensor Fusion and Tracking Toolbox
sort* MATLAB
sort* Fixed-Point Designer
sortrows* MATLAB
sosfilt Signal Processing Toolbox
scatteringchanmtx* Phased Array System Toolbox
spalloc MATLAB
sparse* MATLAB
spdiags MATLAB
speed2dop* Phased Array System Toolbox
speye MATLAB
spfun MATLAB
sph2cart MATLAB
sph2cartvec* Phased Array System Toolbox
spline* MATLAB
splMeter* Audio System Toolbox
spones MATLAB
sprintf* MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-69

Name Product
spsmooth* Phased Array System Toolbox
squareform* Statistics and Machine Learning

Toolbox
squeeze* MATLAB
squeeze Fixed-Point Designer
squeezenet* Deep Learning Toolbox
sqrt* MATLAB
sqrt* Fixed-Point Designer
sqrtm MATLAB
startsWith* MATLAB
state Robotics System Toolbox
stateinfo of MARGGPSFuser Sensor Fusion and Tracking Toolbox
stateinfo of NHConstrainedIMUGPSFuser Sensor Fusion and Tracking Toolbox
std* MATLAB
steervec* Phased Array System Toolbox
step* MATLAB
stereoAnaglyph Computer Vision System Toolbox
stereoParameters* Computer Vision System Toolbox
stokes* Phased Array System Toolbox
storedInteger Fixed-Point Designer
storedIntegerToDouble Fixed-Point Designer
str2double* MATLAB
str2func* MATLAB
strcmp* MATLAB
strcmpi* MATLAB
strel* Image Processing Toolbox
stretchfreq2rng* Phased Array System Toolbox
stretchlim* Image Processing Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-70

Name Product
strfind* MATLAB
string* MATLAB
strip* MATLAB
strjoin* MATLAB
strjust* MATLAB
strlength MATLAB
strncmp* MATLAB
strncmpi* MATLAB
strrep* MATLAB
strtok* MATLAB
strtrim* MATLAB
struct* MATLAB
struct2cell* MATLAB
structfun* MATLAB
sub* Fixed-Point Designer
sub2ind* MATLAB
subsasgn Fixed-Point Designer
subspace* MATLAB
subsref Fixed-Point Designer
sum* MATLAB
sum* Fixed-Point Designer
superpixels* Image Processing Toolbox
surfacegamma* Phased Array System Toolbox
surfclutterrcs* Phased Array System Toolbox
SURFPoints* Computer Vision System Toolbox
svd* MATLAB
swapbytes* MATLAB
switch, case, otherwise* MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-71

Name Product
switchimm Sensor Fusion and Tracking Toolbox
sync of trackscoreLogic Sensor Fusion and Tracking Toolbox
systemp* Phased Array System Toolbox
tan MATLAB
tand* MATLAB
tanh MATLAB
taylortaperc* Phased Array System Toolbox
taylorwin* Signal Processing Toolbox
tcdf Statistics and Machine Learning

Toolbox
tf2ca* DSP System Toolbox
tf2cl* DSP System Toolbox
tform2axang Robotics System Toolbox
tform2eul Robotics System Toolbox
tform2quat Robotics System Toolbox
tform2rotm Robotics System Toolbox
tform2trvec Robotics System Toolbox
thselect Wavelet Toolbox
time2range* Phased Array System Toolbox
times* MATLAB
times* Fixed-Point Designer
times, .* of quaternion Robotics System Toolbox
times, .* of quaternion Sensor Fusion and Tracking Toolbox
tinv Statistics and Machine Learning

Toolbox
tl2range* Phased Array System Toolbox
toeplitz MATLAB
tpcdec* Communications Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-72

Name Product
tpcenc* Communications Toolbox
tpdf Statistics and Machine Learning

Toolbox
trace* MATLAB
trackAssignmentMetrics* Sensor Fusion and Tracking Toolbox
trackerGNN* Sensor Fusion and Tracking Toolbox
trackErrorMetrics* Sensor Fusion and Tracking Toolbox
trackerTOMHT* Sensor Fusion and Tracking Toolbox
trackHistoryLogic Sensor Fusion and Tracking Toolbox
trackingABF Sensor Fusion and Tracking Toolbox
trackingCKF Sensor Fusion and Tracking Toolbox
trackingEKF Automated Driving System Toolbox
trackingEKF Sensor Fusion and Tracking Toolbox
trackingGSF Sensor Fusion and Tracking Toolbox
trackingIMM Sensor Fusion and Tracking Toolbox
trackingKF* Automated Driving System Toolbox
trackingKF* Sensor Fusion and Tracking Toolbox
trackingPF Sensor Fusion and Tracking Toolbox
trackingUKF Automated Driving System Toolbox
trackingUKF Sensor Fusion and Tracking Toolbox
trackScoreLogic Sensor Fusion and Tracking Toolbox
transformScan Robotics System Toolbox
transpose MATLAB
transpose Fixed-Point Designer
transpose, .' of quaternion Robotics System Toolbox
transpose, .' of quaternion Sensor Fusion and Tracking Toolbox
trapmf Fuzzy Logic Toolbox
trapz* MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-73

Name Product
triang* Signal Processing Toolbox
triangulate* Computer Vision System Toolbox
triangulateLOS Sensor Fusion and Tracking Toolbox
tril* MATLAB
tril* Fixed-Point Designer
trimf Fuzzy Logic Toolbox
triu* MATLAB
triu* Fixed-Point Designer
trnd* Statistics and Machine Learning

Toolbox
true* MATLAB
trvec2tform Robotics System Toolbox
tsSignature Sensor Fusion and Tracking Toolbox
tstat Statistics and Machine Learning

Toolbox
tukeywin* Signal Processing Toolbox
typecast* MATLAB
uavWaypointFollower Robotics System Toolbox
ufi* Fixed-Point Designer
uint8, uint16, uint32, uint64 MATLAB
uint8, uint16, uint32, uint64 Fixed-Point Designer
uminus MATLAB
uminus Fixed-Point Designer
uminus, - of quaternion Robotics System Toolbox
uminus, - of quaternion Sensor Fusion and Tracking Toolbox
underwaterChannel Sensor Fusion and Tracking Toolbox
undistortImage* Computer Vision System Toolbox
unidcdf Statistics and Machine Learning

Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-74

Name Product
unidinv Statistics and Machine Learning

Toolbox
unidpdf Statistics and Machine Learning

Toolbox
unidrnd* Statistics and Machine Learning

Toolbox
unidstat Statistics and Machine Learning

Toolbox
unifcdf Statistics and Machine Learning

Toolbox
unifinv Statistics and Machine Learning

Toolbox
unifpdf Statistics and Machine Learning

Toolbox
unifrnd* Statistics and Machine Learning

Toolbox
unifstat Statistics and Machine Learning

Toolbox
unigrid* Phased Array System Toolbox
union* MATLAB
unique* MATLAB
unmkpp* MATLAB
unscentedKalmanFilter* Control System Toolbox
unscentedKalmanFilter* System Identification Toolbox
unwrap* MATLAB
update* of CompactClassificationSVM Statistics and Machine Learning

Toolbox
update* of CompactRegressionSVM Statistics and Machine Learning

Toolbox
upfirdn* Signal Processing Toolbox
uplus MATLAB

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-75

Name Product
uplus Fixed-Point Designer
upper* MATLAB
upperbound Fixed-Point Designer
upsample* Signal Processing Toolbox
uv2azel* Phased Array System Toolbox
uv2azelpat* Phased Array System Toolbox
uv2phitheta* Phased Array System Toolbox
uv2phithetapat* Phased Array System Toolbox
val2ind* Phased Array System Toolbox
validateattributes* MATLAB
validatestring* MATLAB
vander MATLAB
var* MATLAB
vecnorm* MATLAB
vertcat Fixed-Point Designer
vgg16* Deep Learning Toolbox
vgg19* Deep Learning Toolbox
vision.AlphaBlender* Computer Vision System Toolbox
vision.Autocorrelator* Computer Vision System Toolbox
vision.BlobAnalysis* Computer Vision System Toolbox
vision.CascadeObjectDetector* Computer Vision System Toolbox
vision.ChromaResampler* Computer Vision System Toolbox
vision.Convolver* Computer Vision System Toolbox
vision.Crosscorrelator* Computer Vision System Toolbox
vision.DemosaicInterpolator* Computer Vision System Toolbox
vision.DCT* Computer Vision System Toolbox
vision.Deinterlacer* Computer Vision System Toolbox
vision.DeployableVideoPlayer * Computer Vision System Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-76

Name Product
vision.FFT* Computer Vision System Toolbox
vision.ForegroundDetector* Computer Vision System Toolbox
vision.GammaCorrector* Computer Vision System Toolbox
vision.HistogramBasedTracker* Computer Vision System Toolbox
vision.IDCT* Computer Vision System Toolbox
vision.IFFT* Computer Vision System Toolbox
vision.KalmanFilter* Computer Vision System Toolbox
vision.LocalMaximaFinder* Computer Vision System Toolbox
vision.Maximum* Computer Vision System Toolbox
vision.Median* Computer Vision System Toolbox
vision.Mean* Computer Vision System Toolbox
vision.Minimum* Computer Vision System Toolbox
vision.PeopleDetector* Computer Vision System Toolbox
vision.PointTracker* Computer Vision System Toolbox
vision.StandardDeviation* Computer Vision System Toolbox
vision.TemplateMatcher* Computer Vision System Toolbox
vision.Variance* Computer Vision System Toolbox
vision.VideoFileReader* Computer Vision System Toolbox
vision.VideoFileWriter* Computer Vision System Toolbox
vitdec Communications Toolbox
voiceActivityDetector* Audio System Toolbox
waterfill* Phased Array System Toolbox
watershed* Image Processing Toolbox
wavedec* Wavelet Toolbox
wavedec2* Wavelet Toolbox
waverec* Wavelet Toolbox
waverec2* Wavelet Toolbox
wavetableSynthesizer* Audio System Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-77

Name Product
waypointTrajectory* Sensor Fusion and Tracking Toolbox
wblcdf Statistics and Machine Learning

Toolbox
wblinv Statistics and Machine Learning

Toolbox
wblpdf Statistics and Machine Learning

Toolbox
wblrnd* Statistics and Machine Learning

Toolbox
wblstat Statistics and Machine Learning

Toolbox
wden* Wavelet Toolbox
wdencmp* Wavelet Toolbox
weightingFilter* Audio System Toolbox
wextend* Wavelet Toolbox
wgn* Communications Toolbox
while MATLAB
wilkinson* MATLAB
wlanBCCDecode* WLAN Toolbox™
wlanBCCEncode* WLAN Toolbox
wlanBCCDeinterleave* WLAN Toolbox
wlanBCCInterleave* WLAN Toolbox
wlanCoarseCFOEstimate* WLAN Toolbox
wlanConstellationDemap* WLAN Toolbox
wlanConstellationMap* WLAN Toolbox
wlanDMGConfig* WLAN Toolbox
wlanDMGDataBitRecover* WLAN Toolbox
wlanDMGHeaderBitRecover* WLAN Toolbox
wlanFieldIndices* WLAN Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-78

Name Product
wlanFineCFOEstimate* WLAN Toolbox
wlanFormatDetect* WLAN Toolbox
wlanGolaySequence* WLAN Toolbox
wlanHEDataBitRecover* WLAN Toolbox
wlanHEMUConfig* WLAN Toolbox
wlanHESUConfig* WLAN Toolbox
wlanHTConfig* WLAN Toolbox
wlanHTData* WLAN Toolbox
wlanHTDataRecover* WLAN Toolbox
wlanHTLTFChannelEstimate* WLAN Toolbox
wlanHTLTFDemodulate* WLAN Toolbox
wlanHTLTF* WLAN Toolbox
wlanHTSIG* WLAN Toolbox
wlanHTSIGRecover* WLAN Toolbox
wlanHTSTF* WLAN Toolbox
wlanLLTF* WLAN Toolbox
wlanLLTFChannelEstimate* WLAN Toolbox
wlanLLTFDemodulate* WLAN Toolbox
wlanLSIG* WLAN Toolbox
wlanLSIGRecover* WLAN Toolbox
wlanLSTF* WLAN Toolbox
wlanMACFrame* WLAN Toolbox
wlanMACFrameConfig* WLAN Toolbox
wlanMACManagementConfig* WLAN Toolbox
wlanMSDULengths* WLAN Toolbox
wlanNonHTConfig* WLAN Toolbox
wlanNonHTData* WLAN Toolbox
wlanNonHTDataRecover* WLAN Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-79

Name Product
wlanPacketDetect* WLAN Toolbox
wlanRecoveryConfig* WLAN Toolbox
wlanS1GConfig* WLAN Toolbox
wlanScramble* WLAN Toolbox
wlanSegmentDeparseBits* WLAN Toolbox
wlanSegmentDeparseSymbols* WLAN Toolbox
wlanSegmentParseBits* WLAN Toolbox
wlanSegmentParseSymbols* WLAN Toolbox
wlanStreamDeparse* WLAN Toolbox
wlanStreamParse* WLAN Toolbox
wlanSymbolTimingEstimate* WLAN Toolbox
wlanTGacChannel* WLAN Toolbox
wlanTGahChannel* WLAN Toolbox
wlanTGaxChannel* WLAN Toolbox
wlanTGnChannel* WLAN Toolbox
wlanVHTConfig* WLAN Toolbox
wlanVHTData* WLAN Toolbox
wlanVHTDataRecover* WLAN Toolbox
wlanVHTLTF* WLAN Toolbox
wlanVHTLTFChannelEstimate* WLAN Toolbox
wlanVHTLTFDemodulate* WLAN Toolbox
wlanVHTSIGA* WLAN Toolbox
wlanVHTSIGARecover* WLAN Toolbox
wlanVHTSIGBRecover* WLAN Toolbox
wlanVHTSIGB* WLAN Toolbox
wlanVHTSTF* WLAN Toolbox
wlanWaveformGenerator* WLAN Toolbox
wnoisest Wavelet Toolbox

3 Functions, Classes, and System Objects Supported for Code Generation

3-80

Name Product
wthcoef Wavelet Toolbox
wthcoef2 Wavelet Toolbox
wthresh Wavelet Toolbox
xcorr* Signal Processing Toolbox
xcorr2 Signal Processing Toolbox
xcov Signal Processing Toolbox
xor MATLAB
ycbcr2rgb* Image Processing Toolbox
yulewalk* Signal Processing Toolbox
zeros* MATLAB
zeros of quaternion Robotics System Toolbox
zeros of quaternion Sensor Fusion and Tracking Toolbox
zmf Fuzzy Logic Toolbox
zp2tf MATLAB
zscore* Statistics and Machine Learning

Toolbox

 Functions and Objects Supported for C/C++ Code Generation — Alphabetical List

3-81

Functions and Objects Supported for C/C++ Code
Generation — Category List

You can generate efficient C/C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
functions, classes, and System objects are listed by MATLAB category or toolbox category
in the following tables.

For an alphabetical list of supported functions, classes, and System objects, see
“Functions and Objects Supported for C/C++ Code Generation — Alphabetical List” on
page 3-2.

Note For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB” (Fixed-Point Designer).

In this section...
“ 5G Toolbox ” on page 3-84
“Aerospace Toolbox” on page 3-86
“Arithmetic Operations in MATLAB” on page 3-86
“Audio System Toolbox” on page 3-87
“Automated Driving System Toolbox” on page 3-89
“Bit-Wise Operations MATLAB” on page 3-90
“Casting in MATLAB” on page 3-90
“Characters and Strings in MATLAB” on page 3-91
“Communications Toolbox” on page 3-92
“Complex Numbers in MATLAB” on page 3-99
“Computer Vision System Toolbox” on page 3-99
“Control Flow in MATLAB” on page 3-103
“Control System Toolbox” on page 3-103
“Data and File Management in MATLAB” on page 3-104
“Data Type Conversion in MATLAB” on page 3-104
“Data Types in MATLAB” on page 3-105

3 Functions, Classes, and System Objects Supported for Code Generation

3-82

In this section...
“ Deep Learning Toolbox ” on page 3-106
“Descriptive Statistics in MATLAB” on page 3-106
“Desktop Environment in MATLAB” on page 3-107
“Discrete Math in MATLAB” on page 3-107
“DSP System Toolbox” on page 3-108
“Error Handling in MATLAB” on page 3-114
“Exponents in MATLAB” on page 3-114
“Filtering and Convolution in MATLAB” on page 3-114
“Fixed-Point Designer” on page 3-115
“ Fuzzy Logic Toolbox ” on page 3-121
“Histograms in MATLAB” on page 3-121
“Image Acquisition Toolbox” on page 3-122
“Image Processing in MATLAB” on page 3-122
“Image Processing Toolbox” on page 3-122
“Input and Output Arguments in MATLAB” on page 3-126
“Interpolation and Computational Geometry in MATLAB” on page 3-126
“Linear Algebra in MATLAB” on page 3-127
“Logical and Bit-Wise Operations in MATLAB” on page 3-128
“MATLAB Compiler” on page 3-128
“Matrices and Arrays in MATLAB” on page 3-129
“ Model Predictive Control Toolbox ” on page 3-132
“Numerical Integration and Differentiation in MATLAB” on page 3-133
“Optimization Functions in MATLAB” on page 3-133
“Optimization Toolbox” on page 3-134
“Phased Array System Toolbox” on page 3-134
“Polynomials in MATLAB” on page 3-141
“Preprocessing Data in MATLAB” on page 3-142
“Programming Utilities in MATLAB” on page 3-142
“Property Validation in MATLAB ” on page 3-142

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-83

In this section...
“Relational Operators in MATLAB” on page 3-143
“Robotics System Toolbox” on page 3-143
“Rounding and Remainder Functions in MATLAB” on page 3-147
“ Sensor Fusion and Tracking Toolbox ” on page 3-147
“Set Operations in MATLAB” on page 3-153
“Signal Processing in MATLAB” on page 3-153
“Signal Processing Toolbox” on page 3-154
“Special Values in MATLAB” on page 3-157
“Specialized Math in MATLAB” on page 3-157
“Statistics and Machine Learning Toolbox” on page 3-158
“System Identification Toolbox” on page 3-165
“System object Methods” on page 3-166
“Trigonometry in MATLAB” on page 3-166
“Wavelet Toolbox” on page 3-168
“WLAN Toolbox” on page 3-169

5G Toolbox
C and C++ code generation for the following functions requires the 5G Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

getPathFilters
info
nrBCH
nrBCHDecode
nrCDLChannel*
nrCodeBlockDesegmentLDPC
nrCodeBlockSegmentLDPC

3 Functions, Classes, and System Objects Supported for Code Generation

3-84

nrCRCDecode
nrCRCEncode
nrDCIDecode
nrDCIEncode
nrDLSCHInfo
nrEqualizeMMSE
nrExtractResources
nrLayerDemap
nrLayerMap
nrLDPCDecode
nrLDPCEncode
nrPBCH
nrPBCHDecode
nrPBCHDMRS
nrPBCHDMRSIndices
nrPBCHIndices
nrPBCHPRBS
nrPDCCH
nrPDCCHDecode
nrPDCCHPRBS
nrPDSCH
nrPDSCHDecode
nrPDSCHPRBS
nrPerfectChannelEstimate
nrPerfectTimingEstimate
nrPolarDecode
nrPolarEncode
nrPRBS
nrPSS

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-85

nrPSSIndices
nrRateMatchLDPC
nrRateMatchPolar
nrRateRecoverLDPC
nrRateRecoverPolar
nrSSS
nrSSSIndices
nrSymbolDemodulate
nrSymbolModulate
nrTDLChannel*

Aerospace Toolbox
C and C++ code generation for the following Aerospace Toolbox quaternion functions
requires the Aerospace Blockset™ software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

quatconj*
quatdivide*
quatinv*
quatmod*
quatmultiply*
quatnorm*
quatnormalize*

Arithmetic Operations in MATLAB
See “Array vs. Matrix Operations” (MATLAB) for detailed descriptions of the following
operator equivalent functions.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

3 Functions, Classes, and System Objects Supported for Code Generation

3-86

ctranspose
idivide*
isa
ldivide
minus
mldivide*
mpower*
mrdivide*
mtimes*
plus
power*
rdivide
times*
transpose
uminus
uplus

Audio System Toolbox
C and C++ code generation for the following functions and System objects requires the
Audio System Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Name
Audio I/O and Waveform Generation
audioDeviceReader*
audioDeviceWriter*
audioPlayerRecorder*
wavetableSynthesizer*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-87

Name
audioOscillator*
Audio Processing Algorithm Design
designVarSlopeFilter
designParamEQ
designShelvingEQ
integratedLoudness
crossoverFilter*
compressor*
expander*
graphicEQ*
noiseGate*
limiter*
multibandParametricEQ*
octaveFilter*
weightingFilter*
reverberator*
Feature Extraction and Deep Learning
cepstralFeatureExtractor*
loudnessMeter*
pitch
voiceActivityDetector*
Measurement and Spatial Audio
interpolateHRTF
splMeter*
Audio Plugins
audioPluginInterface
audioPluginParameter
audioPlugin

3 Functions, Classes, and System Objects Supported for Code Generation

3-88

Name
audioPluginSource

Automated Driving System Toolbox
C and C++ code generation for the following functions and classes requires the
Automated Driving System Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

cameas
cameasjac
constacc
constaccjac
constturn
constturnjac
constvel
constveljac
ctmeas
ctmeasjac
cvmeas
cvmeasjac
getTrackPositions
getTrackVelocities
initcaekf
initcakf
initcaukf
initctekf
initctukf
initcvekf

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-89

initcvkf
initcvukf
lateralControllerStanley
multiObjectTracker*
objectDetection
trackingEKF
trackingKF*
trackingUKF

Bit-Wise Operations MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

flintmax
swapbytes*

Casting in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

cast*
char*
class
double
int8, int16, int32, int64
logical
single
typecast*
uint8, uint16, uint32, uint64

3 Functions, Classes, and System Objects Supported for Code Generation

3-90

Characters and Strings in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

blanks
char*
contains*
convertCharsToStrings*
count*
convertStringsToChars
endsWith*
erase*
eraseBetween*
extractAfter*
extractBefore*
insertAfter*
insertBefore*
iscellstr
ischar
isletter*
isspace*
isstring
isstrprop*
lower*
replace*
replaceBetween*
reverse*
sprintf*
startsWith*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-91

strcmp*
strcmpi*
strfind*
strip*
strjoin*
string*
strjust*
strlength
strncmp*
strncmpi*
strrep*
strtok*
strtrim*
upper*

Communications Toolbox
C and C++ code generation for the following functions and System objects requires the
Communications Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Input and Output
comm.BasebandFileReader*
comm.BasebandFileWriter*
comm.BarkerCode*
comm.GoldSequence*
comm.HadamardCode*
comm.KasamiSequence*
comm.RBDSWaveformGenerator*

3 Functions, Classes, and System Objects Supported for Code Generation

3-92

comm.WalshCode*
comm.PNSequence*
lteZadoffChuSeq
wgn*
Signal and Delay Management
bi2de
de2bi
Display and Visual Analysis
comm.ConstellationDiagram*
comm.EyeDiagram*
dsp.ArrayPlot*
dsp.SpectrumAnalyzer*
dsp.TimeScope*
Source Coding
comm.DifferentialDecoder*
comm.DifferentialEncoder*
Cyclic Redundancy Check Coding
comm.CRCDetector*
comm.CRCGenerator*
comm.HDLCRCDetector*
comm.HDLCRCGenerator*
BCH Codes
bchgenpoly*
comm.BCHDecoder*
comm.BCHEncoder*
Reed-Solomon Codes
comm.RSDecoder*
comm.RSEncoder*
comm.HDLRSDecoder*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-93

comm.HDLRSEncoder*
rsgenpoly*
rsgenpolycoeffs*
LDPC Codes
comm.LDPCDecoder*
comm.LDPCEncoder*
dvbs2ldpc*
Turbo Product Codes
tpcdec*
tpcenc*
Convolutional Coding
comm.APPDecoder*
comm.ConvolutionalEncoder*
comm.TurboDecoder*
comm.TurboEncoder*
comm.ViterbiDecoder*
convenc
istrellis
oct2dec
poly2trellis
vitdec
Signal Operations
bin2gray
comm.Descrambler*
comm.Scrambler*
gray2bin
Interleaving
comm.AlgebraicDeinterleaver*
comm.AlgebraicInterleaver*

3 Functions, Classes, and System Objects Supported for Code Generation

3-94

comm.BlockDeinterleaver*
comm.BlockInterleaver*
comm.ConvolutionalDeinterleaver*
comm.ConvolutionalInterleaver*
comm.HelicalDeinterleaver*
comm.HelicalInterleaver*
comm.MatrixDeinterleaver*
comm.MatrixInterleaver*
comm.MatrixHelicalScanDeinterleaver*
comm.MatrixHelicalScanInterleaver*
comm.MultiplexedDeinterleaver*
comm.MultiplexedInterleaver*
Frequency Modulation
comm.FSKDemodulator*
comm.FSKModulator*
Phase Modulation
comm.BPSKDemodulator*
comm.BPSKModulator*
comm.DBPSKDemodulator*
comm.DBPSKModulator*
comm.DPSKDemodulator*
comm.DPSKModulator*
comm.DQPSKDemodulator*
comm.DQPSKModulator*
comm.OQPSKDemodulator*
comm.OQPSKModulator*
comm.PSKDemodulator*
comm.PSKModulator*
comm.QPSKDemodulator*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-95

comm.QPSKModulator*
dpskdemod
dpskmod
Amplitude Modulation
comm.GeneralQAMDemodulator*
comm.GeneralQAMModulator*
comm.PAMDemodulator*
comm.PAMModulator*
comm.RectangularQAMDemodulator*
comm.RectangularQAMModulator*
genqamdemod
qammod
qamdemod
Amplitude and Phase Modulation
apskdemod
apskmod
dvbsapskdemod
dvbsapskmod
mil188qamdemod
mil188qammod
Continuous Phase Modulation
comm.CPFSKDemodulator*
comm.CPFSKModulator*
comm.CPMDemodulator*
comm.CPMModulator*
comm.GMSKDemodulator*
comm.GMSKModulator*
comm.MSKDemodulator*
comm.MSKModulator*

3 Functions, Classes, and System Objects Supported for Code Generation

3-96

Trellis Coded Modulation
comm.GeneralQAMTCMDemodulator*
comm.GeneralQAMTCMModulator*
comm.PSKTCMDemodulator*
comm.PSKTCMModulator*
comm.RectangularQAMTCMDemodulator*
comm.RectangularQAMTCMModulator*
Orthogonal Frequency-Division Modulation
comm.OFDMDemodulator*
comm.OFDMModulator*
Analog Baseband Modulation
comm.FMBroadcastDemodulator*
comm.FMBroadcastModulator*
comm.FMDemodulator*
comm.FMModulator*
Filtering
comm.IntegrateAndDumpFilter*
comm.RaisedCosineReceiveFilter*
comm.RaisedCosineTransmitFilter*
Carrier Phase Synchronization
comm.CarrierSynchronizer*
comm.CPMCarrierPhaseSynchronizer*
comm.CoarseFrequencyCompensator*
Timing Phase Synchronization
comm.SymbolSynchronizer*
comm.PreambleDetector*
comm.GMSKTimingSynchronizer*
comm.MSKTimingSynchronizer*
Synchronization Utilities

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-97

comm.DiscreteTimeVCO*
Equalization
comm.MLSEEqualizer*
MIMO
comm.MIMOChannel*
comm.OSTBCCombiner*
comm.OSTBCEncoder*
comm.SphereDecoder*
Channel Modeling and RF Impairments
awgn*
bsc*
comm.AGC*
comm.AWGNChannel*
comm.BinarySymmetricChannel*
comm.IQImbalanceCompensator*
comm.MemorylessNonlinearity*
comm.MIMOChannel*
comm.PhaseFrequencyOffset*
comm.PhaseNoise*
comm.RayleighChannel*
comm.RicianChannel*
comm.ThermalNoise*
comm.PSKCoarseFrequencyEstimator*
comm.QAMCoarseFrequencyEstimator*
doppler*
iqcoef2imbal
iqimbal
iqimbal2coef
Measurements and Analysis

3 Functions, Classes, and System Objects Supported for Code Generation

3-98

comm.ACPR*
comm.CCDF*
comm.ErrorRate*
comm.EVM*
comm.MER*

Complex Numbers in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

complex
conj
cplxpair
imag
isnumeric
isreal
isscalar
real
unwrap*

Computer Vision System Toolbox
C and C++ code generation for the following functions and System objects requires the
Computer Vision System Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Name
Feature Detection, Extraction, and Matching
BRISKPoints*
cornerPoints*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-99

Name
detectBRISKFeatures*
detectFASTFeatures*
detectHarrisFeatures*
detectMinEigenFeatures*
detectMSERFeatures*
detectSURFFeatures*
extractFeatures
extractHOGFeatures*
extractLBPFeatures*
matchFeatures*
MSERRegions*
SURFPoints*
Image Registration and Geometric Transformations
estimateGeometricTransform*
Object Detection and Recognition
ocr*
ocrText*
vision.PeopleDetector*
vision.CascadeObjectDetector*
Tracking and Motion Estimation
assignDetectionsToTracks
opticalFlowFarneback*
opticalFlowHS*
opticalFlowLKDoG*
opticalFlowLK*
vision.ForegroundDetector*
vision.HistogramBasedTracker*
vision.KalmanFilter*

3 Functions, Classes, and System Objects Supported for Code Generation

3-100

Name
vision.PointTracker*
vision.TemplateMatcher*
Camera Calibration and Stereo Vision
bboxOverlapRatio*
bbox2points
disparity*
cameraPoseToExtrinsics
cameraMatrix*
cameraPose*
cameraParameters*
detectCheckerboardPoints*
epipolarLine
estimateEssentialMatrix*
estimateFundamentalMatrix*
estimateUncalibratedRectification
estimateWorldCameraPose*
extrinsics*
extrinsicsToCameraPose
generateCheckerboardPoints*
isEpipoleInImage
lineToBorderPoints
reconstructScene*
rectifyStereoImages*
relativeCameraPose*
rotationMatrixToVector
rotationVectorToMatrix
selectStrongestBbox*
stereoAnaglyph

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-101

Name
stereoParameters*
triangulate*
undistortImage*
Statistics
vision.Autocorrelator*
vision.BlobAnalysis*
vision.Crosscorrelator*
vision.LocalMaximaFinder*
vision.Maximum*
vision.Mean*
vision.Median*
vision.Minimum*
vision.StandardDeviation*
vision.Variance*
Filters, Transforms, and Enhancements
integralImage
vision.Convolver*
vision.DCT*
vision.Deinterlacer*
vision.FFT*
vision.IDCT*
vision.IFFT*
Video Loading, Saving, and Streaming
vision.DeployableVideoPlayer*
vision.VideoFileReader*
vision.VideoFileWriter*
Color Space Formatting and Conversions
vision.ChromaResampler*

3 Functions, Classes, and System Objects Supported for Code Generation

3-102

Name
vision.DemosaicInterpolator*
vision.GammaCorrector*
Graphics
insertMarker*
insertShape*
insertObjectAnnotation*
insertText*
vision.AlphaBlender*

Control Flow in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

break
continue
end
for
if, elseif, else
parfor*
return
switch, case, otherwise*
while

Control System Toolbox
C and C++ code generation for the following functions requires the Control System
Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-103

extendedKalmanFilter*
particleFilter*
unscentedKalmanFilter*

Data and File Management in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

computer*
fclose
feof
fopen*
fprintf*
fread*
frewind
fseek*
ftell*
fwrite*
load*

Data Type Conversion in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

bin2dec*
dec2bin*
dec2hex*
hex2dec*
hex2num*
int2str*

3 Functions, Classes, and System Objects Supported for Code Generation

3-104

num2hex
str2double*

Data Types in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

cell*
deal
enumeration
fieldnames*
func2str*
iscell
isenum
isfield*
ismethod
isobject
isstruct
narginchk
nargoutchk
num2str*
str2func*
struct*
struct2cell*
structfun*
validateattributes*
validatestring*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-105

Deep Learning Toolbox
C and C++ code generation for the following functions requires the Deep Learning
Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

activations*
alexnet*
googlenet*
predict*
resnet50*
resnet101*
squeezenet*
vgg16*
vgg19*
DAGNetwork*
SeriesNetwork*

You can use genFunction in the Deep Learning Toolbox to generate a standalone
MATLAB function for a trained neural network. You can generate C/C++ code from this
standalone MATLAB function. To generate Simulink blocks, use the genSim function. See
“Deploy Trained Neural Network Functions” (Deep Learning Toolbox).

Descriptive Statistics in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

corrcoef*
cummin
cummax
max*

3 Functions, Classes, and System Objects Supported for Code Generation

3-106

maxk*
min*
mink*
mean*
median*
mode*
movmad*
movmax*
movmean*
movmedian*
movmin*
movprod*
movstd*
movsum*
movvar*
std*
var*

Desktop Environment in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

ismac*
ispc*
isunix*

Discrete Math in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-107

factor*
gcd
isprime*
lcm
nchoosek*
primes*

DSP System Toolbox
C code generation for the following functions and System objects requires the DSP
System Toolbox license. Many DSP System Toolbox functions require constant inputs for
code generation. See “Define Constant Input Parameters Using the App” on page 17-32
and “Specify Constant Inputs at the Command Line” on page 20-56.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Name
Estimation
dsp.BurgAREstimator*
dsp.BurgSpectrumEstimator*
dsp.CrossSpectrumEstimator*
dsp.LevinsonSolver*
dsp.SpectrumEstimator*
dsp.TransferFunctionEstimator*
Filters
ca2tf*
cl2tf*
dsp.AdaptiveLatticeFilter*
dsp.AffineProjectionFilter*
dsp.AllpassFilter*
dsp.AllpoleFilter*

3 Functions, Classes, and System Objects Supported for Code Generation

3-108

Name
dsp.BiquadFilter*
dsp.BlockLMSFilter*
dsp.Channelizer*
dsp.ChannelSynthesizer*
dsp.CICCompensationDecimator*
dsp.CICCompensationInterpolator*
dsp.CICDecimator*
dsp.CICInterpolator*
dsp.ComplexBandpassDecimator*
dsp.Differentiator*
dsp.FarrowRateConverter*
dsp.FastTransversalFilter*
dsp.FilterCascade*
dsp.FilteredXLMSFilter*
dsp.FIRDecimator*
dsp.FIRFilter*
dsp.FIRHalfbandDecimator*
dsp.FIRHalfbandInterpolator*
dsp.FIRInterpolator*
dsp.FIRRateConverter*
dsp.FrequencyDomainAdaptiveFilter*
dsp.FrequencyDomainFIRFilter*
dsp.HampelFilter*
dsp.HighpassFilter*
dsp.IIRFilter*
dsp.IIRHalfbandDecimator*
dsp.IIRHalfbandInterpolator*
dsp.KalmanFilter*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-109

Name
dsp.LMSFilter*
dsp.LowpassFilter*
dsp.MedianFilter*
dsp.RLSFilter*
dsp.SampleRateConverter*
dsp.SubbandAnalysisFilter*
dsp.SubbandSynthesisFilter*
dsp.VariableBandwidthFIRFilter*
dsp.VariableBandwidthIIRFilter*
firceqrip*
fireqint*
firgr*
firhalfband*
firlpnorm*
firminphase*
firnyquist*
firpr2chfb*
ifir*
iircomb*
iirgrpdelay*
iirlpnorm*
iirlpnormc*
iirnotch*
iirpeak*
tf2ca*
tf2cl*
Filter Design
designMultirateFIR*

3 Functions, Classes, and System Objects Supported for Code Generation

3-110

Name
Math Operations
dsp.ArrayVectorAdder*
dsp.ArrayVectorDivider*
dsp.ArrayVectorMultiplier*
dsp.ArrayVectorSubtractor*
dsp.CumulativeProduct*
dsp.CumulativeSum*
dsp.LDLFactor*
dsp.LevinsonSolver*
dsp.LowerTriangularSolver*
dsp.LUFactor*
dsp.Normalizer*
dsp.UpperTriangularSolver*
Quantizers
dsp.ScalarQuantizerDecoder*
dsp.ScalarQuantizerEncoder*
dsp.VectorQuantizerDecoder*
dsp.VectorQuantizerEncoder*
Scopes
dsp.ArrayPlot*
dsp.SpectrumAnalyzer*
dsp.TimeScope*
Signal Management
dsp.AsyncBuffer*
dsp.Counter*
dsp.DelayLine*
Signal Operations
dsp.Convolver*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-111

Name
dsp.DCBlocker*
dsp.Delay*
dsp.DigitalDownConverter*
dsp.DigitalUpConverter*
dsp.Interpolator*
dsp.NCO*
dsp.PeakFinder*
dsp.PhaseExtractor*
dsp.PhaseUnwrapper*
dsp.VariableFractionalDelay*
dsp.VariableIntegerDelay*
dsp.Window*
dsp.ZeroCrossingDetector*
Sinks
audioDeviceWriter*
dsp.AudioFileWriter*
dsp.BinaryFileWriter*
dsp.UDPSender*
Sources
dsp.AudioFileReader*
dsp.BinaryFileReader*
dsp.ColoredNoise*
dsp.SignalSource*
dsp.SineWave*
dsp.UDPReceiver*
Statistics
dsp.Autocorrelator*
dsp.Crosscorrelator*

3 Functions, Classes, and System Objects Supported for Code Generation

3-112

Name
dsp.Histogram*
dsp.Maximum*
dsp.Mean*
dsp.Median*
dsp.MedianFilter*
dsp.Minimum*
dsp.MovingAverage*
dsp.MovingMaximum*
dsp.MovingMinimum*
dsp.MovingRMS*
dsp.MovingStandardDeviation*
dsp.MovingVariance*
dsp.PeakToPeak*
dsp.PeakToRMS*
dsp.RMS*
dsp.StandardDeviation*
dsp.StateLevels*
dsp.Variance*
Transforms
dsp.AnalyticSignal*
dsp.DCT*
dsp.FFT*
dsp.IDCT*
dsp.IFFT*
dsp.ZoomFFT*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-113

Error Handling in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

assert*
error*

Exponents in MATLAB
exp
expm*
expm1
factorial
log*
log2
log10
log1p
nextpow2
nthroot
reallog
realpow
realsqrt
sqrt*

Filtering and Convolution in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

conv*
conv2

3 Functions, Classes, and System Objects Supported for Code Generation

3-114

convn
deconv*
detrend*
filter*
filter2

Fixed-Point Designer
The following general limitations apply to the use of Fixed-Point Designer functions in
generated code, with fiaccel:

• fipref and quantizer objects are not supported.
• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given fi variable after that

variable has been created.
• The boolean value of the DataTypeMode and DataType properties are not

supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum

property must be set to true.
• You can use parallel for (parfor) loops in code compiled with fiaccel, but those

loops are treated like regular for loops.
• When you compile code containing fi objects with nontrivial slope and bias scaling,

you may see different results in generated code than you achieve by running the same
code in MATLAB.

• The general limitations of C/C++ code generated from MATLAB apply. For more
information, see “MATLAB Language Features Supported for C/C++ Code Generation”
on page 2-23.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

abs
accumneg
accumpos

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-115

add*
all
any
atan2
bitand*
bitandreduce
bitcmp
bitconcat
bitget
bitor*
bitorreduce
bitreplicate
bitrol
bitror
bitset
bitshift
bitsliceget
bitsll*
bitsra*
bitsrl*
bitxor*
bitxorreduce
ceil
complex
conj
conv*
convergent
cordicabs*
cordicangle*

3 Functions, Classes, and System Objects Supported for Code Generation

3-116

cordicatan2*
cordiccart2pol*
cordiccexp*
cordiccos*
cordicpol2cart*
cordicrotate*
cordicsin*
cordicsincos*
cordicsqrt*
cos
ctranspose
diag*
divide*
double*
end
eps*
eq*
fi*
filter*
fimath*
fix
fixed.Quantizer
flip*
fliplr
flipud
floor
for
ge*
get*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-117

getlsb
getmsb
gt*
horzcat
imag
int8, int16, int32, int64
ipermute
iscolumn
isempty
isequal
isfi*
isfimath
isfimathlocal
isfinite
isinf
isnan
isnumeric
isnumerictype
isreal
isrow
isscalar
issigned
isvector
le*
length
logical
lowerbound
lsb*
lt*

3 Functions, Classes, and System Objects Supported for Code Generation

3-118

max
mean
median
min
minus*
mpower*
mpy*
mrdivide
mtimes*
ndims
ne*
nearest
numberofelements*
numel
numerictype*
permute*
plus*
pow2
power*
qr
quantize
range
rdivide
real
realmax
realmin
reinterpretcast
removefimath
repmat*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-119

rescale
reshape
rot90*
round
setfimath
sfi*
shiftdim*
sign
sin
single*
size
sort*
sqrt*
squeeze
storedInteger
storedIntegerToDouble
sub*
subsasgn
subsref
sum*
times*
transpose
tril*
triu*
ufi*
uint8, uint16, uint32, uint64
uminus
uplus
upperbound

3 Functions, Classes, and System Objects Supported for Code Generation

3-120

vertcat

Fuzzy Logic Toolbox
C and C++ code generation for the following functions requires the Fuzzy Logic Toolbox
software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

dsigmf
evalfis*
evalfisOptions*
gauss2mf
gaussmf
gbellmf
getFISCodeGenerationData*
pimf
psigmf
sigmf
smf
trapmf
trimf
zmf

Histograms in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

hist*
histc*
histcounts*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-121

Image Acquisition Toolbox
If you install Image Acquisition Toolbox software, you can generate C and C++ code for
the VideoDevice System object. See imaq.VideoDevice and “Code Generation with
VideoDevice System Object” (Image Acquisition Toolbox).

Image Processing in MATLAB
im2double
rgb2gray

Image Processing Toolbox
The following table lists the Image Processing Toolbox functions that have been enabled
for code generation. You must have the MATLAB Coder and Image Processing Toolbox
software installed to generate C code from MATLAB for these functions.

Image Processing Toolbox provides three types of code generation support:

• Functions that generate C code.
• Functions that generate C code that depends on a platform-specific shared library

(.dll, .so, or .dylib). Use of a shared library preserves performance optimizations
in these functions, but this limits the target platforms for which you can generate
code. For more information, see “Code Generation for Image Processing” (Image
Processing Toolbox).

• Functions that generate C code or C code that depends on a shared library, depending
on which target platform you specify in MATLAB Coder. If you specify the generic
MATLAB Host Computer target platform, these functions generate C code that
depends on a shared library. If you specify any other target platform, these functions
generate C code.

In generated code, each supported toolbox function has the same name, arguments, and
functionality as its Image Processing Toolbox counterpart. However, some functions have
limitations. The following table includes information about code generation limitations
that might exist for each function. In the following table, all the functions generate C
code. The table identifies those functions that generate C code that depends on a shared
library, and those functions that can do both, depending on which target platform you
choose.

3 Functions, Classes, and System Objects Supported for Code Generation

3-122

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

adaptthresh*
affine2d*
boundarymask*
bwareaopen*
bwboundaries*
bwconncomp*
bwdist*
bweuler*
bwlabel*
bwlookup*
bwmorph*
bwpack*
bwperim*
bwselect*
bwtraceboundary*
bwunpack*
conndef*
demosaic*
edge*
fitgeotrans*
fspecial*
getrangefromclass*
grayconnected*
histeq*
hough*
houghlines*
houghpeaks*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-123

im2int16*
im2uint8*
im2uint16*
im2single*
im2double*
imabsdiff*
imadjust*
imbinarize*
imbothat*
imboxfilt*
imclearborder*
imclose*
imcomplement*
imcrop*
imdilate*
imerode*
imextendedmax*
imextendedmin*
imfill*
imfilter*
imfindcircles*
imgaborfilt*
imgaussfilt*
imgradient3*
imgradientxyz*
imhist*
imhmax*
imhmin*
imlincomb*

3 Functions, Classes, and System Objects Supported for Code Generation

3-124

immse*
imopen*
imoverlay*
impyramid*
imquantize*
imread*
imreconstruct*
imref2d*
imref3d*
imregionalmax*
imregionalmin*
imresize*
imrotate*
imtophat*
imtranslate*
imwarp*
integralBoxFilter*
integralImage
intlut*
iptcheckconn*
iptcheckmap*
lab2rgb*
label2idx*
label2rgb*
mean2*
medfilt2*
multithresh*
offsetstrel*
ordfilt2*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-125

otsuthresh*
padarray*
projective2d*
psnr*
regionprops*
rgb2gray*
rgb2lab*
rgb2ycbcr*
strel*
stretchlim*
superpixels*
watershed*
ycbcr2rgb*

Input and Output Arguments in MATLAB
nargin*
nargout*

Interpolation and Computational Geometry in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

cart2pol
cart2sph
inpolygon*
interp1*
interp1q*
interp2*
interp3*

3 Functions, Classes, and System Objects Supported for Code Generation

3-126

interpn*
meshgrid
mkpp*
pchip*
pol2cart
polyarea
ppval*
rectint
sph2cart
spline*
unmkpp*

Linear Algebra in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

bandwidth*
cholupdate*
isbanded*
isdiag*
ishermitian*
istril*
istriu*
issymmetric*
linsolve*
lscov*
lsqnonneg*
null*
orth*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-127

rsf2csf*
schur*
sqrtm

Logical and Bit-Wise Operations in MATLAB
Function Remarks and Limitations
and —
bitand —
bitcmp —
bitget —
bitor —
bitset —
bitshift —
bitxor —
not —
or —
xor —

MATLAB Compiler
C and C++ code generation for the following functions requires the MATLAB Compiler
software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

isdeployed*
ismcc*

3 Functions, Classes, and System Objects Supported for Code Generation

3-128

Matrices and Arrays in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

abs
all*
angle
any*
blkdiag
bsxfun*
cat*
circshift
colon*
compan
cond
cov*
cross*
cumprod*
cumsum*
det*
diag*
diff*
dot*
eig*
eye*
false*
find*
flip*
flipdim*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-129

fliplr*
flipud*
full
hadamard*
hankel
hilb
ind2sub*
inv*
invhilb
ipermute*
iscolumn
isempty
isequal
isequaln
isfinite
isfloat
isinf
isinteger
islogical
ismatrix
isnan
isrow
issorted*
issortedrows*
issparse
isvector
kron*
length
linspace

3 Functions, Classes, and System Objects Supported for Code Generation

3-130

logspace
lu*
magic*
ndgrid
ndims
nnz
nonzeros
norm*
normest*
numel
nzmax
ones*
pascal
permute*
pinv*
planerot*
prod*
qr*
rand*
randi*
randn*
randperm
rank*
rcond*
repelem*
repmat*
reshape*
rng*
rosser

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-131

rot90*
shiftdim*
sign
size
sort*
sortrows*
spalloc
sparse*
spdiags
speye
spfun
spones
squeeze*
sub2ind*
subspace*
sum*
toeplitz
trace*
tril*
triu*
true*
vander
vecnorm*
wilkinson*
zeros*

Model Predictive Control Toolbox
C and C++ code generation for the following function requires the Model Predictive
Control Toolbox.

3 Functions, Classes, and System Objects Supported for Code Generation

3-132

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

mpcqpsolver*

Numerical Integration and Differentiation in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

cumtrapz
del2
diff
gradient
ode23*
ode45*
odeget*
odeset*
quad2d*
quadgk
trapz*

Optimization Functions in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

fminbnd*
fminsearch*
fzero*
lsqnonneg*
optimget*
optimset*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-133

Optimization Toolbox
C and C++ code generation for the following functions and System objects requires the
Optimization Toolbox.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

fminbnd*
fminsearch*
fzero*
lsqnonneg*
optimget*
optimset*

Phased Array System Toolbox
C and C++ code generation for the following functions and System objects requires the
Phased Array System Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Antenna and Microphone Elements
aperture2gain*
azel2phithetapat*
azel2uvpat*
circpol2pol*
gain2aperture*
phased.CosineAntennaElement*
phased.CrossedDipoleAntennaElement*
phased.CustomAntennaElement*
phased.CustomMicrophoneElement*
phased.IsotropicAntennaElement*

3 Functions, Classes, and System Objects Supported for Code Generation

3-134

phased.IsotropicHydrophone*
phased.IsotropicProjector*
phased.OmnidirectionalMicrophoneElement*
phased.ShortDipoleAntennaElement*
phitheta2azelpat*
phitheta2uvpat*
pol2circpol*
polellip*
polloss*
polratio*
polsignature*
stokes*
uv2azelpat*
uv2phithetapat*
Array Geometries and Analysis
az2broadside*
broadside2az*
pilotcalib*
phased.ArrayGain*
phased.ArrayResponse*
phased.ConformalArray*
phased.ElementDelay*
phased.HeterogeneousConformalArray*
phased.HeterogeneousULA*
phased.HeterogeneousURA*
phased.PartitionedArray*
phased.ReplicatedSubarray*
phased.SteeringVector*
phased.UCA*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-135

phased.ULA*
phased.URA*
taylortaperc*
Signal Radiation and Collection
phased.Collector*
phased.Radiator*
phased.WidebandCollector*
phased.WidebandRadiator*
sensorsig*
Transmitters and Receivers
delayseq*
noisepow*
phased.ReceiverPreamp*
phased.Transmitter*
systemp*
Waveform Design and Analysis
ambgfun*
pambgfun*
phased.FMCWWaveform*
phased.LinearFMWaveform*
phased.MFSKWaveform*
phased.PhaseCodedWaveform*
phased.RectangularWaveform*
phased.SteppedFMWaveform*
range2bw*
range2time*
time2range*
unigrid*
Beamforming

3 Functions, Classes, and System Objects Supported for Code Generation

3-136

cbfweights*
lcmvweights*
mvdrweights*
phased.FrostBeamformer*
phased.GSCBeamformer*
phased.LCMVBeamformer*
phased.MVDRBeamformer*
phased.PhaseShiftBeamformer*
phased.SteeringVector*
phased.SubbandMVDRBeamformer*
phased.SubbandPhaseShiftBeamformer*
phased.TimeDelayBeamformer*
phased.TimeDelayLCMVBeamformer*
sensorcov*
steervec*
Direction of Arrival (DOA) Estimation
aictest*
espritdoa*
gccphat*
getMonopulseEstimator
mdltest*
musicdoa*
phased.BeamscanEstimator*
phased.BeamscanEstimator2D*
phased.BeamspaceESPRITEstimator*
phased.ESPRITEstimator*
phased.GCCEstimator*
phased.MonopulseEstimator*
phased.MonopulseFeed*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-137

phased.MUSICEstimator*
phased.MUSICEstimator2D*
phased.MVDREstimator*
phased.MVDREstimator2D*
phased.RootMUSICEstimator*
phased.RootWSFEstimator*
phased.SumDifferenceMonopulseTracker*
phased.SumDifferenceMonopulseTracker2D*
rootmusicdoa*
spsmooth*
Space-Time Adaptive Processing (STAP)
dopsteeringvec*
phased.ADPCACanceller*
phased.AngleDopplerResponse*
phased.DPCACanceller*
phased.STAPSMIBeamformer*
val2ind*
Detection, Range, and Doppler Estimation
albersheim*
AlphaBetaFilter
beat2range*
bw2range*
clone of AlphaBetaFilter
correct of AlphaBetaFilter
dechirp*
distance of AlphaBetaFilter
likelihood of AlphaBetaFilter
npwgnthresh*
phased.CFARDetector*

3 Functions, Classes, and System Objects Supported for Code Generation

3-138

phased.CFARDetector2D*
phased.DopplerEstimator*
phased.MatchedFilter*
phased.PulseCompressionLibrary*
phased.RangeAngleResponse*
phased.RangeDopplerResponse*
phased.RangeEstimator*
phased.RangeResponse*
phased.StretchProcessor*
phased.TimeVaryingGain*
predict of AlphaBetaFilter
pulsint*
radareqpow*
radareqrng*
radareqsnr*
radarvcd*
range2beat*
range2tl*
rdcoupling*
rocpfa*
rocsnr*
shnidman*
sonareqsl*
sonareqsnr*
sonareqtl*
stretchfreq2rng*
tl2range*
Targets, Interference, and Signal Propagation
billingsleyicm*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-139

depressionang*
diagbfweights*
effearthradius*
fspl*
fogpl*
gaspl*
grazingang*
horizonrange*
phased.BackscatterRadarTarget*
phased.BackScatterSonarTarget*
phased.BarrageJammer*
phased.ConstantGammaClutter*
phased.FreeSpace*
phased.IsoSpeedUnderWaterPaths*
phased.LOSChannel*
phased.MultipathChannel*
phased.RadarTarget*
phased.ScatteringMIMOChannel*
phased.TwoRayChannel*
phased.UnderwaterRadiatedNoise*
phased.WidebandFreeSpace*
phased.WidebandBackscatterRadarTarget*
phased.WidebandLOSChannel*
phased.WidebandTwoRayChannel*
physconst*
scatteringchanmtx*
surfacegamma*
surfclutterrcs*
rainpl*

3 Functions, Classes, and System Objects Supported for Code Generation

3-140

waterfill*
Motion Modeling and Coordinate Systems
azel2phitheta*
azel2uv*
azelaxes*
cart2sphvec*
dop2speed*
global2localcoord*
local2globalcoord*
phased.Platform*
phitheta2azel*
phitheta2uv*
radialspeed*
rangeangle*
rotx*
roty*
rotz*
speed2dop*
sph2cartvec*
uv2azel*
uv2phitheta*

Polynomials in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

poly*
polyder*
polyeig*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-141

polyfit*
polyint
polyval
polyvalm
roots*

Preprocessing Data in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

filloutliers*
isoutlier*
rescale

Programming Utilities in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

mfilename
builtin

Property Validation in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

mustBeFinite
mustBeGreaterThan
mustBeGreaterThanOrEqual
mustBeInteger
mustBeLessThan

3 Functions, Classes, and System Objects Supported for Code Generation

3-142

mustBeLessThanOrEqual
mustBeMember
mustBeNegative
mustBeNonempty
mustBeNonNan
mustBeNonnegative
mustBeNonpositive
mustBeNonsparse
mustBeNonzero
mustBeNumeric
mustBeNumericOrLogical
mustBePositive
mustBeReal

Relational Operators in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

eq*
ge
gt
le
lt
ne*

Robotics System Toolbox
C/C++ code generation for the following functions requires the Robotics System Toolbox
software.

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-143

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Algorithm Design
robotics.AimingConstraint
robotics.BinaryOccupancyGrid
robotics.CartesianBounds
robotics.GeneralizedInverseKinematics*
robotics.InverseKinematics*
robotics.Joint
robotics.JointPositionBounds
lidarScan
matchScans
matchScansGrid
robotics.OccupancyGrid
robotics.OdometryMotionModel
robotics.OrientationTarget
robotics.ParticleFilter*
robotics.PoseTarget
robotics.PositionTarget
robotics.PRM
robotics.PurePursuit
robotics.RigidBody
robotics.RigidBodyTree*
transformScan
robotics.VectorFieldHistogram
Coordinate System Transformations
angdiff
axang2quat
axang2rotm

3 Functions, Classes, and System Objects Supported for Code Generation

3-144

axang2tform
cart2hom
classUnderlying of quaternion
compact of quaternion
conj of quaternion
ctranspose, ' of quaternion
dist of quaternion
eul2quat
eul2rotm
eul2tform
euler of quaternion
eulerd of quaternion
exp of quaternion
hom2cart
ldivide, .\ of quaternion
log of quaternion
meanrot of quaternion
minus, - of quaternion
mtimes, * of quaternion
norm of quaternion
normalize of quaternion
ones of quaternion
parts of quaternion
power, .^ of quaternion
prod of quaternion
quat2axang
quat2eul
quat2rotm
quat2tform

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-145

quaternion
rdivide, ./ of quaternion
rotateframe of quaternion
rotatepoint of quaternion
rotm2axang
rotm2eul
rotm2quat
rotm2tform
rotmat of quaternion
rotvec of quaternion
rotvecd of quaternion
slerp of quaternion
times, .* of quaternion
tform2axang
tform2eul
tform2quat
tform2rotm
tform2trvec
transpose, .' of quaternion
trvec2tform
uminus, - of quaternion
zeros of quaternion
UAV Algorithms
control
derivative
derivative
fixedwing
multirotor
state

3 Functions, Classes, and System Objects Supported for Code Generation

3-146

uavWaypointFollower

Rounding and Remainder Functions in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

ceil
fix
floor
mod*
rem*
round*

Sensor Fusion and Tracking Toolbox
C and C++ code generation for the following functions requires the Sensor Fusion and
Tracking Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

accelparams
ahrsfilter*
assignauction
assignjv
assignkbest
assignkbestsd
assignmunkres
assignsd
assignTOMHT
cameas
cameasjac

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-147

checkConfirmation of trackscoreLogic
checkDeletion of trackscoreLogic
classUnderlying of quaternion
clone of trackingCKF
clone of trackscoreLogic
clusterTrackBranches*
compact of quaternion
compatibleTrackBranches*
conj of quaternion
constacc
constaccjac
constturn
constturnjac
constvel
constveljac
constvelmsc
constvelmscjac
correct of MARGGPSFuser
correct of NHConstrainedIMUGPSFuser
correct of trackingCKF
ctmeas
ctmeasjac
ctranspose, ' of quaternion
cvmeas
cvmeasjac
cvmeasmsc
cvmeasmscjac
dist of quaternion
distance of trackingCKF

3 Functions, Classes, and System Objects Supported for Code Generation

3-148

ecompass
emissionsInBody
euler of quaternion
eulerd of quaternion
exp of quaternion
fusecovint
fusecovunion
fusegps of MARGGPSFuser
fusegps of NHConstrainedIMUGPSFuser
fusemag of MARGGPSFuser
fusexcov
getTrackPositions
getTrackVelocities
gpsSensor*
gyroparams
hit of trackHistoryLogic and trackscoreLogic
imufilter*
imuSensor*
init of trackHistoryLogic and trackscoreLogic
initapekf
initcackf
initcaekf
initcakf
initcapf
initcaukf
initctckf
initctekf
initctpf
initctukf

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-149

initcvckf
initcvekf
initcvkf
initcvmscekf
initcvpf
initcvukf
initekfimm
initrpekf
insfilter
insSensor*
irSensor
irSignature
kinematicTrajectory*
ldivide, .\ of quaternion
likelihood of trackingCKF
log of quaternion
lookup of irSignature
lookup of rcsSignature
lookup of tsSignature
magparams
MARGGPSFuser
meanrot of quaternion
mergeScores of trackscoreLogic
minus, - of quaternion
miss of trackHistoryLogic and trackscoreLogic
monostaticRadarSensor*
mtimes, * of quaternion
NHConstrainedIMUGPSFuser
norm of quaternion

3 Functions, Classes, and System Objects Supported for Code Generation

3-150

normalize of quaternion
objectDetection
ones of quaternion
output of trackHistoryLogic and trackscoreLogic
parts of quaternion
pose of MARGGPSFuser
pose of NHConstrainedIMUGPSFuser
power, .^ of quaternion
predict of MARGGPSFuser
predict of NHConstrainedIMUGPSFuser
predict of trackingCKF
prod of quaternion
pruneTrackBranches*
quaternion
radarChannel
radarEmission
radarEmitter*
radarSensor*
rcsSignature
rdivide, ./ of quaternion
reset of trackHistoryLogic and trackscoreLogic
reset of MARGGPSFuser
reset of NHConstrainedIMUGPSFuser
residual of trackingCKF
rfEmitter*
rfSensor*
rotateframe of quaternion
rotatepoint of quaternion
rotmat of quaternion

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-151

rotvec of quaternion
rotvecd of quaternion
slerp of quaternion
sonarEmission
sonarEmitter*
sonarSensor*
stateinfo of MARGGPSFuser
stateinfo of NHConstrainedIMUGPSFuser
switchimm
sync of trackscoreLogic
times, .* of quaternion
trackAssignmentMetrics*
trackerGNN*
trackErrorMetrics*
trackerTOMHT*
trackHistoryLogic
trackingABF
trackingCKF
trackingEKF
trackingGSF
trackingIMM
trackingKF*
trackingPF
trackingUKF
trackScoreLogic
transpose, .' of quaternion
triangulateLOS
tsSignature
uminus, - of quaternion

3 Functions, Classes, and System Objects Supported for Code Generation

3-152

underwaterChannel
waypointTrajectory*
zeros of quaternion

Set Operations in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

intersect*
ismember*
setdiff*
setxor*
union*
unique*

Signal Processing in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

chol*
conv
fft*
fft2*
fftn*
fftshift
fftw*
filter
freqspace
ifft*
ifft2*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-153

ifftn*
ifftshift
svd*
zp2tf

Signal Processing Toolbox
C and C++ code generation for the following functions requires the Signal Processing
Toolbox software. These functions do not support variable-size inputs, you must define the
size and type of the function inputs. For more information, see “Specifying Inputs in Code
Generation from MATLAB” (Signal Processing Toolbox).

Note Many Signal Processing Toolbox functions require constant inputs in generated
code. To specify a constant input for codegen, use coder.Constant.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

alignsignals
barthannwin*
bartlett*
besselap*
bitrevorder
blackman
blackmanharris*
bohmanwin*
buttap*
butter*
buttord*
cconv
cfirpm*

3 Functions, Classes, and System Objects Supported for Code Generation

3-154

cheb1ap*
cheb2ap*
cheb1ord*
cheb2ord*
chebwin*
cheby1*
cheby2*
convmtx
corrmtx
db2pow
dct*
downsample
dpss*
ellip*
ellipap*
ellipord*
emd
envelope*
filtfilt*
finddelay
findpeaks
fir1*
fir2*
fircls*
fircls1*
firls*
firpm*
firpmord*
flattopwin

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-155

freqz*
gausswin*
hamming
hann
hilbert
idct*
intfilt*
kaiser
kaiserord
levinson*
maxflat*
nuttallwin*
parzenwin*
peak2peak
peak2rms
pow2db
rcosdesign*
rectwin*
resample*
rms
sgolay
sgolayfilt
sinc
sosfilt
taylorwin*
triang*
tukeywin*
upfirdn*
upsample*

3 Functions, Classes, and System Objects Supported for Code Generation

3-156

xcorr*
xcorr2
xcov
yulewalk*
zp2tf*

Special Values in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

eps
inf*
intmax
intmin
NaN or nan*
pi
realmax
realmin

Specialized Math in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

airy*
besseli*
besselj*
beta
betainc*
betaincinv*
betaln

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-157

ellipke
erf
erfc
erfcinv
erfcx
erfinv
expint
gamma
gammainc*
gammaincinv*
gammaln
psi

Statistics and Machine Learning Toolbox
C and C++ code generation for the following functions requires the Statistics and
Machine Learning Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Descriptive Statistics and Visualization
geomean*
grp2idx*
harmmean*
iqr*
kurtosis*
mad*
moment*
nancov*
nanmax*

3 Functions, Classes, and System Objects Supported for Code Generation

3-158

nanmean*
nanmedian*
nanmin*
nanstd*
nansum*
nanvar*
prctile*
quantile*
skewness*
zscore*
Probability Distributions
betacdf
betafit
betainv
betalike
betapdf
betarnd*
betastat
binocdf
binoinv
binopdf
binornd*
binostat
cdf*
chi2cdf
chi2inv
chi2pdf
chi2rnd*
chi2stat

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-159

evcdf
evinv
evpdf
evrnd*
evstat
expcdf
expinv
exppdf
exprnd*
expstat
fcdf
finv
fpdf
frnd*
fstat
gamcdf
gaminv
gampdf
gamrnd*
gamstat
geocdf
geoinv
geopdf
geornd*
geostat
gevcdf
gevinv
gevpdf
gevrnd*

3 Functions, Classes, and System Objects Supported for Code Generation

3-160

gevstat
gpcdf
gpinv
gppdf
gprnd*
gpstat
hygecdf
hygeinv
hygepdf
hygernd*
hygestat
icdf*
logncdf
logninv
lognpdf
lognrnd*
lognstat
mnpdf
nbincdf
nbininv
nbinpdf
nbinrnd*
nbinstat
ncfcdf
ncfinv
ncfpdf
ncfrnd*
ncfstat
nctcdf

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-161

nctinv
nctpdf
nctrnd*
nctstat
ncx2cdf
ncx2rnd*
ncx2stat
normcdf
norminv
normpdf
normrnd*
normstat
pdf*
pearsrnd*
poisscdf
poissinv
poisspdf
poissrnd*
poisstat
randg
random*
randsample*
raylcdf
raylinv
raylpdf
raylrnd*
raylstat
tcdf
tinv

3 Functions, Classes, and System Objects Supported for Code Generation

3-162

tpdf
trnd*
tstat
unidcdf
unidinv
unidpdf
unidrnd*
unidstat
unifcdf
unifinv
unifpdf
unifrnd*
unifstat
wblcdf
wblinv
wblpdf
wblrnd*
wblstat
Cluster Analysis
kmeans*
knnsearch* and knnsearch* of ExhaustiveSearcher and KDTreeSearcher
pdist*
pdist2*
rangesearch* and rangesearch* of ExhaustiveSearcher and KDTreeSearcher
squareform*
ExhaustiveSearcher*
KDTreeSearcher*
Regression
glmval*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-163

loadCompactModel
predict* of GeneralizedLinearModel and CompactGeneralizedLinearModel
predict* of LinearModel and CompactLinearModel
predict* of RegressionEnsemble, RegressionBaggedEnsemble, and
CompactRegressionEnsemble
predict* of RegressionGP and CompactRegressionGP
predict* of RegressionLinear
predict* of RegressionSVM and CompactRegressionSVM
predict* of RegressionTree and CompactRegressionTree
random* of GeneralizedLinearModel and CompactGeneralizedLinearModel
random* of LinearModel and CompactLinearModel
update* of CompactRegressionSVM
GeneralizedLinearModel* and CompactGeneralizedLinearModel*
LinearModel* and CompactLinearModel*
RegressionEnsemble*, RegressionBaggedEnsemble*, and CompactRegressionEnsemble*
RegressionGP* and CompactRegressionGP*
RegressionLinear*
RegressionSVM* and CompactRegressionSVM*
RegressionTree* and CompactRegressionTree*
Classification
loadCompactModel
predict* of ClassificationECOC and CompactClassificationECOC
predict* of ClassificationEnsemble, ClassificationBaggedEnsemble, and
CompactClassificationEnsemble
predict* of ClassificationDiscriminant and CompactClassificationDiscriminant
predict* of ClassificationKNN
predict* of ClassificationLinear
predict* of ClassificationSVM and CompactClassificationSVM
predict* of ClassificationTree and CompactClassificationTree

3 Functions, Classes, and System Objects Supported for Code Generation

3-164

update* of CompactClassificationSVM
ClassificationECOC* and CompactClassificationECOC*
ClassificationEnsemble*, ClassificationBaggedEnsemble*, and
CompactClassificationEnsemble*
ClassificationDiscriminant* and CompactClassificationDiscriminant*
ClassificationKNN*
ClassificationLinear*
ClassificationSVM* and CompactClassificationSVM*
ClassificationTree* and CompactClassificationTree*
Dimensionality Reduction
pca*
Industrial Statistics
coxphfit*

System Identification Toolbox
C and C++ code generation for the following functions and System objects requires the
System Identification Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

extendedKalmanFilter*
particleFilter*
recursiveAR*
recursiveARMA*
recursiveARMAX*
recursiveARX*
recursiveBJ*
recursiveLS*
recursiveOE*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-165

unscentedKalmanFilter*

System object Methods
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

getNumInputs*
getNumOutputs*
isDone*
isLocked*
release*
reset*
step*

Trigonometry in MATLAB
An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

acos*
acosd
acosh*
acot
acotd
acoth
acsc
acscd
acsch
asec
asecd
asech

3 Functions, Classes, and System Objects Supported for Code Generation

3-166

asin*
asind
asinh
atan
atan2
atan2d
atand
atanh*
cos
cosd
cosh
cot
cotd*
coth
csc
cscd*
csch
deg2rad
hypot
rad2deg
sec
secd*
sech
sin
sind
sinh
tan
tand*
tanh

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-167

Wavelet Toolbox
C and C++ code generation for the following functions requires the Wavelet Toolbox
software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Time-Frequency Transforms
emd
Signal Analysis
appcoef*
detcoef
dwt
dyadup*
idwt
imodwpt
imodwt
modwpt
modwptdetails
modwt
modwtmra
wavedec*
waverec*
wextend*
Image Analysis
appcoef2*
detcoef2
dwt2
idwt2*
wavedec2*

3 Functions, Classes, and System Objects Supported for Code Generation

3-168

waverec2*
Denoising
ddencmp*
thselect
wden*
wdencmp*
wnoisest
wthcoef
wthcoef2
wthresh
Orthogonal and Biorthogonal Filter Banks
qmf

WLAN Toolbox
C and C++ code generation for the following functions and System objects requires the
WLAN Toolbox software.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

MAC Modeling
wlanMACFrame*
wlanMACFrameConfig*
wlanMACManagementConfig*
wlanMSDULengths*
PHY Modeling
wlanHTConfig*
wlanNonHTConfig*
wlanRecoveryConfig*
wlanS1GConfig*

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-169

wlanVHTConfig*
Signal Transmission
wlanBCCEncode*
wlanBCCInterleave*
wlanConstellationMap*
wlanDMGConfig*
wlanHEMUConfig*
wlanHESUConfig*
wlanHTData*
wlanHTLTF*
wlanHTSIG*
wlanHTSTF*
wlanLLTF*
wlanLSIG*
wlanLSTF*
wlanNonHTData*
wlanScramble*
wlanSegmentDeparseSymbols*
wlanSegmentParseBits*
wlanStreamParse*
wlanVHTData*
wlanVHTLTF*
wlanVHTSIGA*
wlanVHTSIGB*
wlanVHTSTF*
wlanWaveformGenerator*
Signal Reception
wlanBCCDecode*
wlanBCCDeinterleave*

3 Functions, Classes, and System Objects Supported for Code Generation

3-170

wlanCoarseCFOEstimate*
wlanConstellationDemap*
wlanDMGDataBitRecover*
wlanDMGHeaderBitRecover*
wlanFormatDetect*
wlanFieldIndices*
wlanFineCFOEstimate*
wlanGolaySequence*
wlanHEDataBitRecover*
wlanHTDataRecover*
wlanHTLTFChannelEstimate*
wlanHTLTFDemodulate*
wlanHTSIGRecover*
wlanLLTFChannelEstimate*
wlanLLTFDemodulate*
wlanLSIGRecover*
wlanNonHTDataRecover*
wlanPacketDetect*
wlanScramble*
wlanSegmentDeparseBits*
wlanSegmentParseSymbols*
wlanStreamDeparse*
wlanSymbolTimingEstimate*
wlanVHTDataRecover*
wlanVHTLTFChannelEstimate*
wlanVHTLTFDemodulate*
wlanVHTSIGARecover*
wlanVHTSIGBRecover*
Propagation Channel

 Functions and Objects Supported for C/C++ Code Generation — Category List

3-171

wlanTGacChannel*
wlanTGahChannel*
wlanTGaxChannel*
wlanTGnChannel*

Note WLAN Toolbox functionality with the MATLAB Function block is not supported.

3 Functions, Classes, and System Objects Supported for Code Generation

3-172

Defining MATLAB Variables for C/C+
+ Code Generation

• “Variables Definition for Code Generation” on page 4-2
• “Best Practices for Defining Variables for C/C++ Code Generation” on page 4-3
• “Eliminate Redundant Copies of Variables in Generated Code” on page 4-7
• “Reassignment of Variable Properties” on page 4-9
• “Reuse the Same Variable with Different Properties” on page 4-10
• “Avoid Overflows in for-Loops” on page 4-13
• “Supported Variable Types” on page 4-15

4

Variables Definition for Code Generation
In the MATLAB language, variables can change their properties dynamically at run time
so you can use the same variable to hold a value of any class, size, or complexity. For
example, the following code works in MATLAB:

function x = foo(c) %#codegen
if(c>0)
 x = 0;
else
 x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable properties
at compile time. Therefore, for C/C++ code generation, you must explicitly define the
class, size, and complexity of variables in MATLAB source code before using them. For
example, rewrite the above source code with a definition for x:

function x = foo(c) %#codegen
x = zeros(1,3);
if(c>0)
 x = 0;
else
 x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++ Code
Generation” on page 4-3.

4 Defining MATLAB Variables for C/C++ Code Generation

4-2

Best Practices for Defining Variables for C/C++ Code
Generation

In this section...
“Define Variables By Assignment Before Using Them” on page 4-3
“Use Caution When Reassigning Variables” on page 4-5
“Use Type Cast Operators in Variable Definitions” on page 4-5
“Define Matrices Before Assigning Indexed Variables” on page 4-6

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define the class,
size, and complexity of variables before using them in operations or returning them as
outputs. Define variables by assignment, but note that the assignment copies not only the
value, but also the size, class, and complexity represented by that value to the new
variable. For example:

Assignment: Defines:
a = 14.7; a as a real double scalar.
b = a; b with properties of a (real double scalar).
c = zeros(5,2); c as a real 5-by-2 array of doubles.
d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.
y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required execution paths
during C/C++ code generation.

The data that you assign to a variable can be a scalar, matrix, or structure. If your
variable is a structure, define the properties of each field explicitly.

Initializing the new variable to the value of the assigned data sometimes results in
redundant copies in the generated code. To avoid redundant copies, you can define
variables without initializing their values by using the coder.nullcopy construct as
described in “Eliminate Redundant Copies of Variables in Generated Code” on page 4-
7.

 Best Practices for Defining Variables for C/C++ Code Generation

4-3

When you define variables, they are local by default; they do not persist between function
calls. To make variables persistent, see persistent.

Example 4.1. Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0
 x = 11;
end
% Later in your code ...
if c > 0
 use(x);
end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code works in
MATLAB, but generates a compilation error during code generation because it detects
that x is undefined on some execution paths (when c <= 0).

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0
 x = 11;
end
% Later in your code ...
if c > 0
 use(x);
end
...

Example 4.2. Defining Fields in a Structure

Consider the following MATLAB code:

...
if c > 0
 s.a = 11;
 disp(s);
else
 s.a = 12;
 s.b = 12;

4 Defining MATLAB Variables for C/C++ Code Generation

4-4

end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else clause uses
fields a and b. This code works in MATLAB, but generates a compilation error during C/C
++ code generation because it detects a structure type mismatch. To prevent this error,
do not add fields to a structure after you perform certain operations on the structure. For
more information, see “Structure Definition for Code Generation” on page 7-2.

To make this code suitable for C/C++ code generation, define all fields of s before using
it.

...
% Define all fields in structure s
s = struct(‘a’,0, ‘b’, 0);
if c > 0
 s.a = 11;
 disp(s);
else
 s.a = 12;
 s.b = 12;
end
% Use s
use(s);
...

Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++ code
generation; that is, each variable must have a specific class, size and complexity.
Generally, if you reassign variable properties after the initial assignment, you get a
compilation error during code generation, but there are exceptions, as described in
“Reassignment of Variable Properties” on page 4-9.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types, you can use
type cast operators in variable definitions. For example, the following code defines
variable y as an integer:

 Best Practices for Defining Variables for C/C++ Code Generation

4-5

...
x = 15; % x is of type double by default.
y = uint8(x); % y has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by writing into
an element beyond its current size. Such indexing operations produce run-time errors.
You must define the matrix first before assigning values to its elements.

For example, the following initial assignment is not allowed for code generation:

g(3,2) = 14.6; % Not allowed for creating g
 % OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with MATLAB in
Matrix Indexing Operations for Code Generation” on page 6-32.

4 Defining MATLAB Variables for C/C++ Code Generation

4-6

Eliminate Redundant Copies of Variables in Generated
Code

In this section...
“When Redundant Copies Occur” on page 4-7
“How to Eliminate Redundant Copies by Defining Uninitialized Variables” on page 4-7
“Defining Uninitialized Variables” on page 4-8

When Redundant Copies Occur
During C/C++ code generation, the code generator checks for statements that attempt to
access uninitialized memory. If it detects execution paths where a variable is used but is
potentially not defined, it generates a compile-time error. To prevent these errors, define
variables by assignment before using them in operations or returning them as function
outputs.

Note, however, that variable assignments not only copy the properties of the assigned
data to the new variable, but also initialize the new variable to the assigned value. This
forced initialization sometimes results in redundant copies in C/C++ code. To eliminate
redundant copies, define uninitialized variables by using the coder.nullcopy function,
as described in “How to Eliminate Redundant Copies by Defining Uninitialized Variables”
on page 4-7.

How to Eliminate Redundant Copies by Defining Uninitialized
Variables
1 Define the variable with coder.nullcopy.
2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its elements
before passing the array as an input to a function or operator — even if the function
or operator does not read from the uninitialized portion of the array.

 Eliminate Redundant Copies of Variables in Generated Code

4-7

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing uninitialized
data may lead to segmentation violations or nondeterministic program behavior
(different runs of the same program may yield inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only defines X to
be a 1-by-5 vector of real doubles, but also initializes each element of X to zero.

function X = withoutNullcopy %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N
 if mod(i,2) == 0
 X(i) = i;
 elseif mod(i,2) == 1
 X(i) = 0;
 end
end

This forced initialization creates an extra copy in the generated code. To eliminate this
overhead, use coder.nullcopy in the definition of X:

function X = withNullcopy %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N
 if mod(i,2) == 0
 X(i) = i;
 else
 X(i) = 0;
 end
end

4 Defining MATLAB Variables for C/C++ Code Generation

4-8

Reassignment of Variable Properties
For C/C++ code generation, there are certain variables that you can reassign after the
initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but different sizes. If
the size of the initial assignment is not constant, the variable is dynamically sized in
generated code. For more information, see “Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the initial
assignment if each occurrence of the variable can have only one type. In this case, the
variable is renamed in the generated code to create multiple independent variables. For
more information, see “Reuse the Same Variable with Different Properties” on page 4-
10.

 Reassignment of Variable Properties

4-9

Reuse the Same Variable with Different Properties
In this section...
“When You Can Reuse the Same Variable with Different Properties” on page 4-10
“When You Cannot Reuse Variables” on page 4-10
“Limitations of Variable Reuse” on page 4-12

When You Can Reuse the Same Variable with Different
Properties
You can reuse (reassign) an input, output, or local variable with different class, size, or
complexity if the code generator can unambiguously determine the properties of each
occurrence of this variable during C/C++ code generation. If so, MATLAB creates
separate uniquely named local variables in the generated code. You can view these
renamed variables in the code generation report.

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the variable t in an
if statement, where it holds a scalar double, then reuses t outside the if statement to
hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))
 % First, t is used to hold a scalar double value
 t = mean(mean(u)) / numel(u);
 u = u - t;
end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the class, size, and
complexity of an occurrence of a variable unambiguously during code generation. In this
case, variables cannot be renamed and a compilation error occurs.

For example, the following example2 function assigns a fixed-point value to x in the if
statement and reuses x to store a matrix of doubles in the else clause. It then uses x

4 Defining MATLAB Variables for C/C++ Code Generation

4-10

after the if-else statement. This function generates a compilation error because after
the if-else statement, variable x can have different properties depending on which if-
else clause executes.

function y = example2(use_fixpoint, data) %#codegen
 if use_fixpoint
 % x is fixed-point
 x = fi(data, 1, 12, 3);
 else
 % x is a matrix of doubles
 x = data;
 end
 % When x is reused here, it is not possible to determine its
 % class, size, and complexity
 t = sum(sum(x));
 y = t > 0;
end

Example 4.3. Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))
 % First, t is used to hold a scalar double value
 t = mean(mean(u)) / numel(u);
 u = u - t;
end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));
end

2 Generate a MEX function for example1 and produce a code generation report.

codegen -o example1x -report example1.m -args {ones(5,5)}
3 Open the code generation report.

 Reuse the Same Variable with Different Properties

4-11

On the Variables tab, you see two uniquely named local variables t>1 and t>2.

4 In the list of variables, click t>1. The report highlights the instances of the variable t
that are inside of the if statement. These instances of t are scalar double.

5 Click t>2. The code generation report highlights the instances of t that are outside
of the if statement. These instances of t are variable-size column vectors with an
upper bound of 25.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.
• Global variables.
• Variables passed to C code using coder.ref, coder.rref, coder.wref.
• Variables whose size is set using coder.varsize.
• Variables whose names are controlled using coder.cstructname.
• The index variable of a for-loop when it is used inside the loop body.
• The block outputs of a MATLAB Function block in a Simulink model.
• Chart-owned variables of a MATLAB function in a Stateflow® chart.

4 Defining MATLAB Variables for C/C++ Code Generation

4-12

Avoid Overflows in for-Loops
When memory integrity checks are enabled, if the code generator detects that a loop
variable might overflow on the last iteration of the for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the error Workaround
• The loop counter increments by 1
• The end value equals the maximum

value of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1
• The end value equals the minimum value

of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

 Avoid Overflows in for-Loops

4-13

Loop conditions causing the error Workaround
• The loop counter increments or

decrements by 1
• The start value equals the minimum or

maximum value of the integer type
• The end value equals the maximum or

minimum value of the integer type

The loop covers the full range of the integer
type.

Rewrite the loop casting the type of the
loop counter start, step, and end values to a
bigger integer or to double For example,
rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
 % Loop body
end

to

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
 % Loop body
end

• The loop counter increments or
decrements by a value not equal to 1

• On last loop iteration, the loop variable
value is not equal to the end value

Note The software error checking is
conservative. It may incorrectly report a
loop as being potentially infinite.

Rewrite the loop so that the loop variable
on the last loop iteration is equal to the end
value.

4 Defining MATLAB Variables for C/C++ Code Generation

4-14

Supported Variable Types
You can use the following data types for C/C++ code generation from MATLAB:

Type Description
char Character array
complex Complex data. Cast function takes real and imaginary

components
double Double-precision floating point
int8, int16, int32,
int64

Signed integer

logical Boolean true or false
single Single-precision floating point
struct Structure
uint8, uint16,
uint32, uint64

Unsigned integer

Fixed-point See “Fixed-Point Data Types” (Fixed-Point Designer).

 Supported Variable Types

4-15

Defining Data for Code Generation

• “Data Definition for Code Generation” on page 5-2
• “Code Generation for Complex Data” on page 5-4
• “Encoding of Characters in Code Generation” on page 5-9
• “Array Size Restrictions for Code Generation” on page 5-10
• “Code Generation for Constants in Structures and Arrays” on page 5-11
• “Code Generation for Strings” on page 5-13
• “Define String Scalar Inputs” on page 5-15
• “Code Generation for Sparse Matrices” on page 5-18

5

Data Definition for Code Generation
To generate efficient standalone code, you must define the following types and classes of
data differently than you normally would when running your code in MATLAB.

Data What Is Different More Information
Arrays Maximum number of

elements is restricted
“Array Size Restrictions for
Code Generation” on page
5-10

Complex numbers • Complexity of variables
must be set at time of
assignment and before
first use

• Expressions containing a
complex number or
variable evaluate to a
complex result, even if
the result is zero

Note Because MATLAB
does not support complex
integer arithmetic, you
cannot generate code for
functions that use complex
integer arithmetic

“Code Generation for
Complex Data” on page 5-
4

Characters Restricted to 8 bits of
precision

“Encoding of Characters in
Code Generation” on page
5-9

Enumerated data • Supports integer-based
enumerated types only

• Restricted use in switch
statements and for-
loops

“Enumerations”

5 Defining Data for Code Generation

5-2

Data What Is Different More Information
Function handles • Using the same bound

variable to reference
different function
handles can cause a
compile-time error.

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

“Function Handles”

 Data Definition for Code Generation

5-3

Code Generation for Complex Data
In this section...
“Restrictions When Defining Complex Variables” on page 5-4
“Code Generation for Complex Data with Zero-Valued Imaginary Parts” on page 5-4
“Results of Expressions That Have Complex Operands” on page 5-8

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of assignment.
Assign a complex constant to the variable or use the complex function. For example:

x = 5 + 6i; % x is a complex number by assignment.
y = complex(5,6); % y is the complex number 5 + 6i.

After assignment, you cannot change the complexity of a variable. Code generation for
the following function fails because x(k) = 3 + 4i changes the complexity of x.

function x = test1()
x = zeros(3,3); % x is real
for k = 1:numel(x)
 x(k) = 3 + 4i;
end
end

To resolve this issue, assign a complex constant to x.

function x = test1()
x = zeros(3,3)+ 0i; %x is complex
for k = 1:numel(x)
 x(k) = 3 + 4i;
end
end

Code Generation for Complex Data with Zero-Valued
Imaginary Parts
For code generation, complex data that has all zero-valued imaginary parts remains
complex. This data does not become real. This behavior has the following implications:

5 Defining Data for Code Generation

5-4

• In some cases, results from functions that sort complex data by absolute value can
differ from the MATLAB results. See “Functions That Sort Complex Values by Absolute
Value” on page 5-5.

• For functions that require that complex inputs are sorted by absolute value, complex
inputs with zero-valued imaginary parts must be sorted by absolute value. These
functions include ismember, union, intersect, setdiff, and setxor.

Functions That Sort Complex Values by Absolute Value

Functions that sort complex values by absolute value include sort, issorted,
sortrows, median, min, and max. These functions sort complex numbers by absolute
value even when the imaginary parts are zero. In general, sorting the absolute values
produces a different result than sorting the real parts. Therefore, when inputs to these
functions are complex with zero-valued imaginary parts in generated code, but real in
MATLAB, the generated code can produce different results than MATLAB. In the
following examples, the input to sort is real in MATLAB, but complex with zero-valued
imaginary parts in the generated code:

• You Pass Real Inputs to a Function Generated for Complex Inputs

1 Write this function:

function myout = mysort(A)
myout = sort(A);
end

2 Call mysort in MATLAB.

A = -2:2;
mysort(A)

ans =

 -2 -1 0 1 2

3 Generate a MEX function for complex inputs.

A = -2:2;
codegen mysort -args {complex(A)} -report

4 Call the MEX Function with real inputs.

mysort_mex(A)

 Code Generation for Complex Data

5-5

ans =

 0 1 -1 2 -2

You generated the MEX function for complex inputs, therefore, it treats the real
inputs as complex numbers with zero-valued imaginary parts. It sorts the numbers
by the absolute values of the complex numbers. Because the imaginary parts are
zero, the MEX function returns the results to the MATLAB workspace as real
numbers. See “Inputs and Outputs for MEX Functions Generated for Complex
Arguments” on page 5-7.

• Input to sort Is Output from a Function That Returns Complex in Generated
Code

1 Write this function:

function y = myfun(A)
x = eig(A);
y = sort(x,'descend');

The output from eig is the input to sort. In generated code, eig returns a
complex result. Therefore, in the generated code, x is complex.

2 Call myfun in MATLAB.

A = [2 3 5;0 5 5;6 7 4];
myfun(A)

ans =

 12.5777
 2.0000
 -3.5777

The result of eig is real. Therefore, the inputs to sort are real.
3 Generate a MEX function for complex inputs.

codegen myfun -args {complex(A)}
4 Call the MEX function.

myfun_mex(A)

ans =

 12.5777

5 Defining Data for Code Generation

5-6

 -3.5777
 2.0000

In the MEX function, eig returns a complex result. Therefore, the inputs to sort
are complex. The MEX function sorts the inputs in descending order of the
absolute values.

Inputs and Outputs for MEX Functions Generated for Complex Arguments

For MEX functions created by MATLAB Coder :

• Suppose that you generate the MEX function for complex inputs. If you call the MEX
function with real inputs, the MEX function transforms the real inputs to complex
values with zero-valued imaginary parts.

• If the MEX function returns complex values that have all zero-valued imaginary parts,
the MEX function returns the values to the MATLAB workspace as real values. For
example, consider this function:

function y = foo()
 y = 1 + 0i; % y is complex with imaginary part equal to zero
end

If you generate a MEX function for foo and view the code generation report, you see
that y is complex.

codegen foo -report

If you run the MEX function, you see that in the MATLAB workspace, the result of
foo_mex is the real value 1.

z = foo_mex

ans =

 1

 Code Generation for Complex Data

5-7

Results of Expressions That Have Complex Operands
In general, expressions that contain one or more complex operands produce a complex
result in generated code, even if the value of the result is zero. Consider the following line
of code:

z = x + y;

Suppose that at run time, x has the value 2 + 3i and y has the value 2 - 3i. In
MATLAB, this code produces the real result z = 4. During code generation, the types for
x and y are known, but their values are not known. Because either or both operands in
this expression are complex, z is defined as a complex variable requiring storage for a
real and an imaginary part. z equals the complex result 4 + 0i in generated code, not 4,
as in MATLAB code.

Exceptions to this behavior are:

• When the imaginary parts of complex results are zero, MEX functions return the
results to the MATLAB workspace as real values. See “Inputs and Outputs for MEX
Functions Generated for Complex Arguments” on page 5-7.

• When the imaginary part of the argument is zero, complex arguments to extrinsic
functions are real.

function y = foo()
 coder.extrinsic('sqrt')
 x = 1 + 0i; % x is complex
 y = sqrt(x); % x is real, y is real
end

• Functions that take complex arguments but produce real results return real values.

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return complex
values.

z = complex(x,y); % z is a complex number for a real x and y.

5 Defining Data for Code Generation

5-8

Encoding of Characters in Code Generation
MATLAB represents characters in 16-bit Unicode. The code generator represents
characters in an 8-bit codeset that the locale setting determines. Differences in character
encoding between MATLAB and code generation have these consequences:

• Code generation of characters with numeric values greater than 255 produces an
error.

• For some characters in the range 128–255, it might not be possible to represent the
character in the codeset of the locale setting or to convert the character to an
equivalent 16-bit Unicode character. Passing characters in this range between
MATLAB and generated code can result in errors or different answers.

• For code generation, some toolbox functions accept only 7-bit ASCII characters.
• Casting a character that is not in the 7-bit ASCII codeset to a numeric type, such as

double, can produce a different result in the generated code than in MATLAB. As a
best practice, for code generation, avoid performing arithmetic with characters.

See Also

More About
• “Locale Settings for MATLAB Process” (MATLAB)
• “Differences Between Generated Code and MATLAB Code” on page 2-8

 Encoding of Characters in Code Generation

5-9

Array Size Restrictions for Code Generation
For code generation, the maximum number of elements of an array is constrained by the
code generator and the target hardware.

For fixed-size arrays and variable-size arrays that use static memory allocation, the
maximum number of elements is the smaller of:

• intmax('int32').
• The largest integer that fits in the C int data type on the target hardware.

For variable-size arrays that use dynamic memory allocation, the maximum number of
elements is the smaller of:

• intmax('int32').
• The largest power of 2 that fits in the C int data type on the target hardware.

These restrictions apply even on a 64-bit platform.

For a fixed-size array, if the number of elements exceeds the maximum, the code
generator reports an error at compile time. For a variable-size array, at run time, if the
number of elements exceeds the maximum and run-time error checks are enabled, the
generated code reports an error. By default, run-time error checks are enabled for MEX
code and disabled for standalone C/C++ code.

See Also
coder.HardwareImplementation

More About
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 21-

17
• “Control Run-Time Checks” on page 25-17
• “Potential Differences Reporting” on page 2-16

5 Defining Data for Code Generation

5-10

Code Generation for Constants in Structures and Arrays
The code generator does not recognize constant structure fields or array elements in the
following cases:

Fields or elements are assigned inside control constructs

In the following code, the code generator recognizes that the structure fields s.a and
s.b are constants.

function y = mystruct()
s.a = 3;
s.b = 5;
y = zeros(s.a,s.b);

If any structure field is assigned inside a control construct, the code generator does not
recognize the constant fields. This limitation also applies to arrays with constant
elements. Consider the following code:

function y = mystruct(x)
s.a = 3;
if x > 1
 s.b = 4;
else
 s.b = 5;
end
y = zeros(s.a,s.b);

The code generator does not recognize that s.a and s.b are constant. If variable-sizing is
enabled, y is treated as a variable-size array. If variable-sizing is disabled, the code
generator reports an error.

Constants are assigned to array elements using non-scalar indexing

In the following code, the code generator recognizes that a(1) is constant.

function y = myarray()
a = zeros(1,3);
a(1) = 20;
y = coder.const(a(1));

In the following code, because a(1) is assigned using non-scalar indexing, the code
generator does not recognize that a(1) is constant.

 Code Generation for Constants in Structures and Arrays

5-11

function y = myarray()
a = zeros(1,3);
a(1:2) = 20;
y = coder.const(a(1));

A function returns a structure or array that has constant and nonconstant
elements

For an output structure that has both constant and nonconstant fields, the code generator
does not recognize the constant fields. This limitation also applies to arrays that have
constant and nonconstant elements. Consider the following code:

function y = mystruct_out(x)
s = create_structure(x);
y = coder.const(s.a);

function s = create_structure(x)
s.a = 10;
s.b = x;

Because create_structure returns a structure s that has one constant field and one
nonconstant field, the code generator does not recognize that s.a is constant. The
coder.const call fails because s.a is not constant.

5 Defining Data for Code Generation

5-12

Code Generation for Strings
Code generation supports 1-by-1 MATLAB string arrays. Code generation does not
support string arrays that have more than one element.

A 1-by-1 string array, called a string scalar, contains one piece of text, represented as a 1-
by-n character vector. An example of a string scalar is "Hello, world". For more
information about strings, see “Represent Text with Character and String Arrays”
(MATLAB).

Limitations
For string scalars, code generation does not support:

• Global variables
• Indexing with curly braces {}
• Missing values
• Defining input types programmatically (by using preconditioning with assert

statements)
• Their use with coder.varsize

For code generation, limitations that apply to classes apply to strings. See “MATLAB
Classes Definition for Code Generation” on page 10-2.

Differences from MATLAB
Converting a string that contains multiple unary operators to double can produce
different results between MATLAB and the generated code. Consider this function:

function out = foo(op)
out = double(op + 1);
end

For an input value "--", the function converts the string "--1" to double. In MATLAB,
the answer is NaN. In the generated code, the answer is 1.

 Code Generation for Strings

5-13

See Also

More About
• “Define String Scalar Inputs” on page 5-15

5 Defining Data for Code Generation

5-14

Define String Scalar Inputs
You can define string scalar inputs at the command line or in the MATLAB Coder app.
Programmatic specification of string scalar input types by using preconditioning (assert
statements) is not supported.

Define String Scalar Types at the Command Line
To define string scalar inputs at the command line, use one of these procedures:

• “Provide an Example String Scalar Input” on page 5-15
• “Provide a String Scalar Type” on page 5-15
• “Provide a Constant String Scalar Input” on page 5-16
• “Provide a Variable-Size String Scalar Input” on page 5-16

Alternatively, if you have a test file that calls your entry-point function with example
inputs, you can determine the input types by using coder.getArgTypes.

Provide an Example String Scalar Input

To provide an example string scalar to codegen, use the -args option:

codegen myFunction -args {"Hello, world"}

Provide a String Scalar Type

To provide a type for a string scalar to codegen:

1 Define a string scalar. For example:

s = "mystring";

2 Create a type from s.

t = coder.typeof(s);

3 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

 Define String Scalar Inputs

5-15

Provide a Constant String Scalar Input

To specify that a string scalar input is constant, use coder.Constant with the -args
option:

codegen myFunction -args {coder.Constant("Hello, world")}

Provide a Variable-Size String Scalar Input

To specify that a string scalar input has a variable-size:

1 Define a string scalar. For example:

s = "mystring";
2 Create a type from s.

t = coder.typeof(s);
3 Assign the Value property of the type to a type for a variable-size character vector

that has the upper bound that you want. For example, specify that type t is variable-
size with an upper bound of 10.

t.Properties.Value = coder.typeof('a',[1 10], [0 1]);

To specify that t is variable-size with no upper bound:

t.Properties.Value = coder.typeof('a',[1 inf]);
4 Pass the type to codegen by using the -args option.

codegen myFunction -args {t}

Define String Scalar Inputs in the MATLAB Coder App
To define string scalar inputs in the app, use one of these procedures:

• “Automatically Define Input Types by Using the App” on page 17-5
• “Define Input Parameter by Example by Using the App” on page 17-8
• “Define or Edit Input Parameter Type by Using the App” on page 17-20

See Also
coder.Constant | coder.getArgTypes | coder.typeof

5 Defining Data for Code Generation

5-16

More About
• “Code Generation for Strings” on page 5-13
• “Specify Properties of Entry-Point Function Inputs” on page 20-48

 See Also

5-17

Code Generation for Sparse Matrices
Sparse matrices provide efficient storage in memory for arrays with many zero elements.
Sparse matrices can provide improved performance and reduced memory usage for
generated code. Computation time on sparse matrices scales only with the number of
operations on nonzero elements.

Functions for creating and manipulating sparse matrices are listed in “Sparse Matrices”
(MATLAB). To check if a function is supported for code generation, see the function
reference page. Code generation does not support sparse matrix inputs for all functions.

Sparse Data Types in Generated Code
During code generation, the code generator creates a type definition for sparse matrices
called coder_internal_sparse. This definition stores the arrays of row indices,
column indices, and corresponding element values for the sparse matrix. The type
definitions are generated in the file myFunction_types.h. myFunction refers to the
name of your top-level function.

The number of nonzero elements in a sparse matrix can change during computation. For
this reason, sparse matrices in the generated code use variable-size arrays and dynamic
memory allocation. Dynamically allocated variables use the emxArray type, also defined
in myFunction_types.

For example, consider the function myDiag:

function out = myDiag(n,k)
% create diagonal sparse matrix
%#codegen
A = speye(n);
out = A.*k;
end

Generate code for the function by using the codegen command:

codegen -config:lib myDiag -args {3, 5} -launchreport

The sparse type can be found in the file myDiag_types.h.

5 Defining Data for Code Generation

5-18

Input Definition
Suppose that you have a function foo that accepts a sparse matrix as an input. This
function multiplies the sparse matrix by an identity matrix and outputs the product:

function C = foo(ASparseInput)
%#codegen
B = speye(size(ASparseInput'));
C = ASparseInput*B;

Suppose that you want to generate standalone lib, dll, or exe code to use outside of
the MATLAB environment. To generate lib code, enter:

codegen -config:lib foo -args {sparse(5,5)} -launchreport

You can simplify your standalone code by constructing the sparse matrix inside your
entry-point function rather than passing a sparse matrix as an input. When you follow this
guideline, construction of the sparse matrix can be deferred to the code generator. Other
code that uses your generated code can pass input types such as arrays rather than
specialized sparse types.

For example, instead of generating code directly from foo, create a new entry-point
function fooMain to generate code from. Replace the sparse input with the triplet form of
the sparse data.

function [ii,jj,out] = fooMain(i,j,v,m,n)
%#codegen
S = sparse(i,j,v,m,n);
[ii,jj,out] = find(foo(S));

Suppose that you want to generate code for a 5-by-5 sparse matrix S with a variable-size
number of nonzero elements. To generate code, enter:

S = sparse(5,5);
[m,n] = size(S);
[i,j,v] = find(S);
i = coder.typeof(i,[inf 1]);
codegen -config:lib fooMain -args {i,i,i,m,n} -launchreport

You can specify the input for fooMain with integer and variable-size array types. If you
generate code directly from foo, you must construct the input as a
coder_internal_sparse type.

 Code Generation for Sparse Matrices

5-19

If you do choose to pass a sparse matrix as an entry-point function input, you can use
coder.typeof to initialize the input. For example, for the function foo, you can enter:

t = coder.typeof(sparse(5,5));
codegen -config:lib foo -args {t} -launchreport

For sparse matrices, the code generator does not track upper bounds for variable-size
dimensions. All variable-size dimensions are treated as unbounded.

If you generate a MEX function for foo, the input and output data must be converted to
coder_internal_sparse. This conversion can slow performance for repeated MEX
function calls or large inputs and outputs.

You cannot define sparse input types programmatically by using assert statements.

Code Generation Guidelines
Initialize matrices by using sparse constructors to maximize your code efficiency. For
example, to construct a 3-by-3 identity matrix, use speye(3,3) rather than
sparse(eye(3,3)).

Indexed assignment into sparse matrices incurs an overhead compared to indexed
assignment into full matrices. For example:

S = speye(10);
S(7,7) = 42;

As in MATLAB, sparse matrices are stored in compressed sparse column format. When
you insert a new nonzero element into a sparse matrix, all subsequent nonzero elements
must be shifted downward, column by column. These extra manipulations can slow
performance.

Code Generation Limitations
To generate code that uses sparse matrices, dynamic memory allocation must be enabled.
To store the changing number of nonzero elements, and their values, sparse matrices use
variable-size arrays in the generated code. To change dynamic memory allocation
settings, see “Control Memory Allocation for Variable-Size Arrays” on page 6-5.
Because sparse matrices use variable-size arrays for dynamic memory allocation,
limitations on “Variable-Size Data” also apply to sparse matrices.

5 Defining Data for Code Generation

5-20

You cannot assign sparse data to data that is not sparse. The generated code uses distinct
data type representations for sparse and full matrices. To convert to and from sparse
data, use the explicit sparse and full conversion functions.

You cannot define a sparse matrix with competing size specifications. The code generator
fixes the size of the sparse matrix when it produces the corresponding data type definition
in C/C++. As an example, the function foo causes an error in code generation:

function y = foo(n)
%#codegen
if n > 0
 y = sparse(3,2);
else
 y = sparse(4,3);
end

Logical indexing into sparse matrices is not supported for code generation. For example,
this syntax causes an error:

S = magic(3);
S(S > 7) = 42;

For sparse matrices, you cannot delete array elements by assigning empty arrays:

S(:,2) = [];

See Also
codegen | coder.typeof | full | magic | sparse | speye

More About
• “Sparse Matrices” (MATLAB)
• “Code Generation for Variable-Size Arrays” on page 6-2
• “C Code Interface for Arrays” on page 6-16

 See Also

5-21

Code Generation for Variable-Size
Data

• “Code Generation for Variable-Size Arrays” on page 6-2
• “Control Memory Allocation for Variable-Size Arrays” on page 6-5
• “Specify Upper Bounds for Variable-Size Arrays” on page 6-8
• “Define Variable-Size Data for Code Generation” on page 6-10
• “C Code Interface for Arrays” on page 6-16
• “Diagnose and Fix Variable-Size Data Errors” on page 6-22
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation”

on page 6-26
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on page 6-35

6

Code Generation for Variable-Size Arrays
For code generation, an array dimension is fixed-size or variable-size. If the code
generator can determine the size of the dimension and that the size of the dimension does
not change, then the dimension is fixed-size. When all dimensions of an array are fixed-
size, the array is a fixed-size array. In the following example, Z is a fixed-size array.

function Z = myfcn()
Z = zeros(1,4);
end

The size of the first dimension is 1 and the size of the second dimension is 4.

If the code generator cannot determine the size of a dimension or the code generator
determines that the size changes, then the dimension is variable-size. When at least one
of its dimensions is variable-size, an array is a variable-size array.

A variable-size dimension is either bounded or unbounded. A bounded dimension has a
fixed upper size. An unbounded dimension does not have a fixed upper size.

In the following example, the second dimension of Z is bounded, variable-size. It has an
upper bound of 16.

function s = myfcn(n)
if (n > 0)
 Z = zeros(1,4);
else
 Z = zeros(1,16);
end
s = length(Z);

In the following example, if the value of n is unknown at compile time, then the second
dimension of Z is unbounded.

function s = myfcn(n)
Z = rand(1,n);
s = sum(Z);
end

You can define variable-size arrays by:

• Using constructors, such as zeros, with a nonconstant dimension

6 Code Generation for Variable-Size Data

6-2

• Assigning multiple, constant sizes to the same variable before using it
• Declaring all instances of a variable to be variable-size by using coder.varsize

For more information, see “Define Variable-Size Data for Code Generation” on page 6-
10.

You can control whether variable-size arrays are allowed for code generation. See
“Enabling and Disabling Support for Variable-Size Arrays” on page 6-3.

Memory Allocation for Variable-Size Arrays
For fixed-size arrays and variable-size arrays whose size is less than a threshold, the code
generator allocates memory statically on the stack. For unbounded, variable-size arrays
and variable-size arrays whose size is greater than or equal to a threshold, the code
generator allocates memory dynamically on the heap.

You can control whether dynamic memory allocation is allowed or when it is used for code
generation. See “Control Memory Allocation for Variable-Size Arrays” on page 6-5.

The code generator represents dynamically allocated data as a structure type called
emxArray. The code generator generates utility functions that create and interact with
emxArrays. If you use Embedded Coder, you can customize the generated identifiers for
the emxArray types and utility functions. See “Identifier Format Control” (Embedded
Coder).

Enabling and Disabling Support for Variable-Size Arrays
By default, support for variable-size arrays is enabled. To modify this support:

• In a code configuration object, set the EnableVariableSizing parameter to true
or false.

• In the MATLAB Coder app, in the Memory settings, select or clear the Enable
variable-sizing check box.

Variable-Size Arrays in a Code Generation Report
You can tell whether an array is fixed-size or variable-size by looking at the Size column
of the Variables tab in a code generation report.

 Code Generation for Variable-Size Arrays

6-3

A colon (:) indicates that a dimension is variable-size. A question mark (?) indicates that
the size is unbounded. For example, a size of 1-by-:? indicates that the size of the first
dimension is fixed-size 1 and the size of the second dimension is unbounded, variable-size.
Italics indicates that the code generator produced a variable-size array, but the size of the
array does not change during execution.

See Also

More About
• “Control Memory Allocation for Variable-Size Arrays” on page 6-5
• “Specify Upper Bounds for Variable-Size Arrays” on page 6-8
• “Define Variable-Size Data for Code Generation” on page 6-10

6 Code Generation for Variable-Size Data

6-4

Control Memory Allocation for Variable-Size Arrays
Dynamic memory allocation allocates memory on the heap as needed at run time, instead
of allocating memory statically on the stack. Dynamic memory allocation is beneficial
when:

• You do not know the upper bound of an array.
• You do not want to allocate memory on the stack for large arrays.

Dynamic memory allocation and the freeing of this memory can result in slower execution
of the generated code. To control the use of dynamic memory allocation for variable-size
arrays, you can:

• Provide upper bounds for variable-size arrays on page 6-5.
• Disable dynamic memory allocation on page 6-5.
• Configure the code generator to use dynamic memory allocation for arrays bigger than

a threshold on page 6-6.

Provide Upper Bounds for Variable-Size Arrays
For an unbounded variable-size array, the code generator allocates memory dynamically
on the heap. For a variable-size array with upper bound, whose size, in bytes, is less than
the dynamic memory allocation threshold, the code generator allocates memory statically
on the stack. To prevent dynamic memory allocation:

1 Specify upper bounds for a variable-size array. See “Specify Upper Bounds for
Variable-Size Arrays” on page 6-8.

2 Make sure that the size of the array, in bytes, is less than the dynamic memory
allocation threshold. See “Configure Code Generator to Use Dynamic Memory
Allocation for Arrays Bigger Than a Threshold” on page 6-6.

Disable Dynamic Memory Allocation
By default, dynamic memory allocation is enabled. To disable it:

• In a configuration object for code generation, set the DynamicMemoryAllocation
parameter to 'Off'.

• In the MATLAB Coder app, in the Memory settings, set Dynamic memory allocation
to Never.

 Control Memory Allocation for Variable-Size Arrays

6-5

If you disable dynamic memory allocation, you must provide upper bounds for variable-
size arrays.

Configure Code Generator to Use Dynamic Memory Allocation
for Arrays Bigger Than a Threshold
Instead of disabling dynamic memory allocation for all variable-size arrays, you can
specify for which size arrays the code generator uses dynamic memory allocation.

Use the dynamic memory allocation threshold to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static
memory allocation can speed up generated code. However, static memory allocation
can lead to unused storage space. You can decide that the unused storage space is not
a significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use
dynamic memory allocation, you can significantly reduce storage requirements.

The default dynamic memory allocation threshold is 64 kilobytes. To change the
threshold:

• In a configuration object for code generation, set the
DynamicMemoryAllocationThreshold.

• In the MATLAB Coder app, in the Memory settings, set Dynamic memory
allocation threshold.

To instruct the code generator to use dynamic memory allocation for variable-size arrays
whose size is greater than or equal to the threshold:

• In the configuration object, set the DynamicMemoryAllocationThreshold to
'Threshold'.

• In the MATLAB Coder app, in the Memory settings, set Dynamic memory
allocation threshold to For arrays with max size at or above threshold.

6 Code Generation for Variable-Size Data

6-6

See Also

More About
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Configure Build Settings” on page 20-28

 See Also

6-7

Specify Upper Bounds for Variable-Size Arrays
Specify upper bounds for an array when:

• Dynamic memory allocation is disabled.

If dynamic memory allocation is disabled, you must specify upper bounds for all
arrays.

• You do not want the code generator to use dynamic memory allocation for the array.

Specify upper bounds that result in an array size (in bytes) that is less than the
dynamic memory allocation threshold.

Specify Upper Bounds for Variable-Size Inputs
If you generate code by using codegen, to specify upper bounds for variable-size inputs,
use the coder.typeof construct with the -args option. For example:

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real doubles with two
variable dimensions. The upper bound for the first dimension is 3. The upper bound for
the second dimension is 100.

If you generate code by using the MATLAB Coder app, see “Specify Properties of Entry-
Point Function Inputs Using the App” on page 17-4 and “Make Dimensions Variable-
Size When They Meet Size Threshold” on page 17-6.

Specify Upper Bounds for Local Variables
When using static allocation, the code generator uses a sophisticated analysis to calculate
the upper bounds of local data. However, when the analysis fails to detect an upper bound
or calculates an upper bound that is not precise enough for your application, you must
specify upper bounds explicitly for local variables.

Constrain the Value of Variables That Specify the Dimensions of Variable-Size
Arrays

To constrain the value of variables that specify the dimensions of variable-size arrays, use
the assert function with relational operators. For example:

6 Code Generation for Variable-Size Data

6-8

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

This assert statement constrains input n to a maximum size of 5. L is variable-size with
upper bounds of 5 in each dimension. M is variable-size with an upper bound of 10 in the
first dimension and 5 in the second dimension.

Specify the Upper Bounds for All Instances of a Local Variable

To specify the upper bounds for all instances of a local variable in a function, use the
coder.varsize function. For example:

function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y',[1 10]);
if (u > 0)
 Y = [Y Y+u];
else
 Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each instance of
the variable specified in the first argument. In this example, the argument [1 10]
indicates that for every instance of Y:

• The first dimension is fixed at size 1.
• The second dimension can grow to an upper bound of 10.

See Also
coder.typeof | coder.varsize

More About
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Define Variable-Size Data for Code Generation” on page 6-10

 See Also

6-9

Define Variable-Size Data for Code Generation
For code generation, before using variables in operations or returning them as outputs,
you must assign them a specific class, size, and complexity. Generally, after the initial
assignment, you cannot reassign variable properties. Therefore, after assigning a fixed
size to a variable or structure field, attempts to grow the variable or structure field might
cause a compilation error. In these cases, you must explicitly define the data as variable-
size by using one of these methods.

Method See
Assign the data from a variable-size matrix
constructor such as:

• ones
• zeros
• repmat

“Use a Matrix Constructor with
Nonconstant Dimensions” on page 6-10

Assign multiple, constant sizes to the same
variable before using (reading) the variable.

“Assign Multiple Sizes to the Same
Variable” on page 6-11

Define all instances of a variable to be
variable-size.

“Define Variable-Size Data Explicitly by
Using coder.varsize” on page 6-11

Use a Matrix Constructor with Nonconstant Dimensions
You can define a variable-size matrix by using a constructor with nonconstant dimensions.
For example:

function s = var_by_assign(u) %#codegen
y = ones(3,u);
s = numel(y);

If you are not using dynamic memory allocation, you must also add an assert statement
to provide upper bounds for the dimensions. For example:

function s = var_by_assign(u) %#codegen
assert (u < 20);
y = ones(3,u);
s = numel(y);

6 Code Generation for Variable-Size Data

6-10

Assign Multiple Sizes to the Same Variable
Before you use (read) a variable in your code, you can make it variable-size by assigning
multiple, constant sizes to it. When the code generator uses static allocation on the stack,
it infers the upper bounds from the largest size specified for each dimension. When you
assign the same size to a given dimension across all assignments, the code generator
assumes that the dimension is fixed at that size. The assignments can specify different
shapes and sizes.

When the code generator uses dynamic memory allocation, it does not check for upper
bounds. It assumes that the variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different Shapes
function s = var_by_multiassign(u) %#codegen
if (u > 0)
 y = ones(3,4,5);
else
 y = zeros(3,1);
end
s = numel(y);

When the code generator uses static allocation, it infers that y is a matrix with three
dimensions:

• The first dimension is fixed at size 3
• The second dimension is variable-size with an upper bound of 4
• The third dimension is variable-size with an upper bound of 5

When the code generator uses dynamic allocation, it analyzes the dimensions of y
differently:

• The first dimension is fixed at size 3.
• The second and third dimensions are unbounded.

Define Variable-Size Data Explicitly by Using coder.varsize
To explicitly define variable-size data, use the function coder.varsize. Optionally, you
can also specify which dimensions vary along with their upper bounds. For example:

• Define B as a variable-size 2-dimensional array, where each dimension has an upper
bound of 64.

 Define Variable-Size Data for Code Generation

6-11

coder.varsize('B', [64 64]);
• Define B as a variable-size array:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes that all
dimensions of B can vary and that the upper bound is size(B).

Specify Which Dimensions Vary

You can use the function coder.varsize to specify which dimensions vary. For example,
the following statement defines B as an array whose first dimension is fixed at 2, but
whose second dimension can grow to a size of 16:

coder.varsize('B',[2, 16],[0 1])

.

The third argument specifies which dimensions vary. This argument must be a logical
vector or a double vector containing only zeros and ones. Dimensions that correspond to
zeros or false have fixed size. Dimensions that correspond to ones or true vary in size.
coder.varsize usually treats dimensions of size 1 as fixed. See “Define Variable-Size
Matrices with Singleton Dimensions” on page 6-13.

Allow a Variable to Grow After Defining Fixed Dimensions

Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before the first use
(where the statement Y = Y + u reads from Y). However, coder.varsize defines Y as
a variable-size matrix, allowing it to change size based on decision logic in the else
clause:

function Y = var_by_if(u) %#codegen
if (u > 0)
 Y = zeros(2,2);
 coder.varsize('Y');
 if (u < 10)
 Y = Y + u;
 end
else
 Y = zeros(5,5);
end

Without coder.varsize, the code generator infers Y to be a fixed-size, 2-by-2 matrix. It
generates a size mismatch error.

6 Code Generation for Variable-Size Data

6-12

Define Variable-Size Matrices with Singleton Dimensions

A singleton dimension is a dimension for which size(A,dim) = 1. Singleton dimensions
are fixed in size when:

• You specify a dimension with an upper bound of 1 in coder.varsize expressions.

For example, in this function, Y behaves like a vector with one variable-size dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)
 Y = [Y 3];
else
 Y = [Y u];
end

• You initialize variable-size data with singleton dimensions by using matrix constructor
expressions or matrix functions.

For example, in this function, X and Y behave like vectors where only their second
dimensions are variable-size.

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)
 Y = [Y u];
else
 X = [X u];
end

You can override this behavior by using coder.varsize to specify explicitly that
singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)
 Y = [Y Y+u];
else
 Y = [Y Y*u];
end

 Define Variable-Size Data for Code Generation

6-13

In this example, the third argument of coder.varsize is a vector of ones, indicating
that each dimension of Y varies in size.

Define Variable-Size Structure Fields

To define structure fields as variable-size arrays, use a colon (:) as the index expression.
The colon (:) indicates that all elements of the array are variable-size. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
 data(i).color = rand-0.5;
 data(i).values = 1:i;
end

y = 0;
for i = 1:numel(data)
 if data(i).color > 0
 y = y + sum(data(i).values);
 end
end

The expression coder.varsize('data(:).values') defines the field values inside
each element of matrix data to be variable-size.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each element of
matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each element of
matrix data to be variable-size.

See Also
coder.typeof | coder.varsize

6 Code Generation for Variable-Size Data

6-14

More About
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Specify Upper Bounds for Variable-Size Arrays” on page 6-8

 See Also

6-15

C Code Interface for Arrays

In this section...
“C Code Interface for Statically Allocated Arrays” on page 6-16
“C Code Interface for Dynamically Allocated Arrays” on page 6-17
“Utility Functions for Creating emxArray Data Structures” on page 6-19

C Code Interface for Statically Allocated Arrays
For statically allocated arrays, the generated code contains the definition of the array and
the size of the array.

For example, consider the MATLAB function myuniquetol.

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B', [1 100], [0 1]);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

The statement coder.varsize('B', [1 100], [0 1]) specifies that B is a variable-
size array whose first dimension is fixed at 1 and second dimension can vary up to 100
elements. Without this statement, B is a dynamically allocated array.

Generate code for myuniquetol specifying that input A is a variable-size real double
vector whose first dimension is fixed at 1 and second dimension can vary up to 100
elements.

codegen -config:lib -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

6 Code Generation for Variable-Size Data

6-16

extern void myuniquetol(const double A_data[], const int A_size[2], double tol,
 double B_data[], int B_size[2])

The function signature declares the input argument A and the output argument B.
A_size contains the size of A. B_size contains the size of B after the call to
myuniquetol. Use B_size to determine the number of elements of B that you can
access after the call to myuniquetol. B_size[0] contains the size of the first
dimension. B_size[1] contains the size of the second dimension. Therefore, the number
of elements of B is B_size[0]*B_Size[1]. Even though B has 100 elements in the C
code, only B_size[0]*B_Size[1] elements contain valid data.

The following C main function shows how to call myuniquetol.

void main()
{
 double A[100], B[100];
 int A_size[2] = { 1, 100 };
 int B_size[2];
 int i;
 for (i = 0; i < 100; i++) {
 A[i] = (double)1/i;
 }
 myuniquetol(A, A_size, 0.1, B, B_size);
}

C Code Interface for Dynamically Allocated Arrays
In generated code, MATLAB represents dynamically allocated data as a structure type
called emxArray. An embeddable version of the MATLAB mxArray, the emxArray is a
family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypedef>
{
 <baseType> *data;
 int *size;
 int allocatedSize;
 int numDimensions;
 boolean_T canFreeData;
} emxArray_<baseTypedef>;

 C Code Interface for Arrays

6-17

baseTypedef is the predefined type in rtwtypes.h corresponding to baseType. For
example, here is the definition for an emxArray of base type double with unknown
upper bounds:

typedef struct emxArray_real_T
{
 double *data;
 int *size;
 int allocatedSize;
 int numDimensions;
 boolean_T canFreeData;
} emxArray_real_T;

The predefined type corresponding to double is real_T. For more information on the
correspondence between built-in data types and predefined types in rtwtypes.h, see
“Mapping MATLAB Types to Types in Generated Code” on page 26-18.

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

C Code Interface for Structure Fields

Field Description
*data Pointer to data of type <baseType>.
*size Pointer to first element of size vector. Length of

the vector equals the number of dimensions.
allocatedSize Number of elements currently allocated for the

array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that is,
the number of dimensions you can access
without crossing into unallocated or unused
memory.

6 Code Generation for Variable-Size Data

6-18

Field Description
canFreeData Boolean flag indicating how to deallocate

memory:

• true – MATLAB deallocates memory
automatically

• false – Calling program determines when to
deallocate memory

Utility Functions for Creating emxArray Data Structures
When you generate code that uses variable-size data, the code generator exports a set of
utility functions that you can use to create and interact with emxArrays in your
generated code. To call these functions in your main C function, include the generated
header file. For example, when you generate code for function foo, include
foo_emxAPI.h in your main C function. For more information, see the “Write a C Main
Function” section in “Using Dynamic Memory Allocation for an "Atoms" Simulation” on
page 24-51.

Note The code generator exports emxArray utility functions only for variable-size arrays
that are entry-point function arguments or that are used by functions called by
coder.ceval.

Function Arguments Description
emxArray_<baseType>
*emxCreateWrapper_<baseType>
(...)

*data
num_rows
num_cols

Creates a new two-
dimensional emxArray,
but does not allocate it
on the heap. Instead
uses memory provided
by the user and sets
canFreeData to false
so it does not
inadvertently free user
memory, such as the
stack.

 C Code Interface for Arrays

6-19

Function Arguments Description
emxArray_<baseType>
*emxCreateWrapperND_<baseType>
(...)

*data
numDimensions
*size

Same as
emxCreateWrapper_<b
aseType>, except it
creates a new N-
dimensional emxArray.

emxArray_<baseType>
*emxCreate_<baseType> (...)

num_rows
num_cols

Creates a new two-
dimensional emxArray
on the heap, initialized
to zero. All data
elements have the data
type specified by
<baseType>.

emxArray_<baseType>
*emxCreateND_<baseType> (...)

numDimensions
*size

Same as
emxCreate_<baseType
>, except it creates a
new N-dimensional
emxArray on the heap.

void emxInitArray_<baseType>
(...)

**emxArray
numDimensions

Creates a new empty
emxArray on the heap.
All data elements have
the data type specified
by <baseType>.

void emxInitArray_<structType>
(...)

*structure Creates empty
emxArrays in a
structure.

void emxDestroyArray_<baseType>
(...)

*emxArray Frees dynamic memory
allocated by
emxCreate_<baseType
>,
emxCreateND_<baseTy
pe>, and
emxInitArray_baseTy
pe functions.

6 Code Generation for Variable-Size Data

6-20

Function Arguments Description
void emxDestroyArray_<structType>
(...)

*structure Frees dynamic memory
allocated by
emxInitArray_<struc
tType> functions.

By default, when you generate C/C++ source code, static libraries, dynamic libraries, and
executables, MATLAB Coder generates an example C/C++ main function. The example
main function is a template that can help you to incorporate generated C/C++ code into
your application. If you generate code that uses dynamically allocated data, the example
main function includes calls to emxArray utility functions that create emxArrays
required for this data. The example main function also initializes emxArray data to zero
values. For more information, see “Incorporate Generated Code Using an Example Main
Function” on page 24-15.

 C Code Interface for Arrays

6-21

Diagnose and Fix Variable-Size Data Errors
In this section...
“Diagnosing and Fixing Size Mismatch Errors” on page 6-22
“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 6-24

Diagnosing and Fixing Size Mismatch Errors
Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated code.
Consider this example:

function Y = example_mismatch1(n) %#codegen
assert(n < 10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
 A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize('A');
assert(n < 10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
 A = B;

6 Code Generation for Variable-Size Data

6-22

end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n == 3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
 A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n < 10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)
 A = B(1:3, 1:3);
end
Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might silently reshape
the data in generated code to match a coder.varsize specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize('Y', [1 10]);
if u < 0
 Y = [Y u];
end

In this example, coder.varsize defines Y as a column vector of up to 10 elements, so its
first dimension is fixed at size 1. The statement Y = [] designates the first dimension of
Y as 0, creating a mismatch. The right hand side of the assignment is an empty matrix and
the left hand side is a variable-size vector. In this case, MATLAB reshapes the empty
matrix Y = [] in generated code to Y = zeros(1,0) so it matches the
coder.varsize specification.

 Diagnose and Fix Variable-Size Data Errors

6-23

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes. Operands have
different sizes if one has fixed dimensions and the other has variable dimensions. For
example:

function z = mismatch_operands(n) %#codegen
assert(n >= 3 && n < 10);
x = ones(n,n);
y = magic(3);
z = x + y;

When you compile this function, you get an error because y has fixed dimensions (3 x 3),
but x has variable dimensions. Fix this problem by using explicit indexing to make x the
same size as y:

function z = mismatch_operands_fix(n) %#codegen
assert(n >= 3 && n < 10);
x = ones(n,n);
y = magic(3);
z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper Bounds
Check your code for these issues:

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with nonconstant
dimensions. For example:

function y = dims_vary(u) %#codegen
if (u > 0)
 y = ones(3,u);
else
 y = zeros(3,1);
end

However, compiling this function generates an error because you did not specify an upper
bound for u.

There are several ways to fix the problem:

6 Code Generation for Variable-Size Data

6-24

• Enable dynamic memory allocation and recompile. During code generation, MATLAB
does not check for upper bounds when it uses dynamic memory allocation for variable-
size data.

• If you do not want to use dynamic memory allocation, add an assert statement before
the first use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)
 y = ones(3,u);
else
 y = zeros(3,1);
end

 Diagnose and Fix Variable-Size Data Errors

6-25

Incompatibilities with MATLAB in Variable-Size Support
for Code Generation

In this section...
“Incompatibility with MATLAB for Scalar Expansion” on page 6-26
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on page
6-28
“Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 6-28
“Incompatibility with MATLAB in Determining Class of Empty Arrays” on page 6-30
“Incompatibility with MATLAB in Matrix-Matrix Indexing” on page 6-30
“Incompatibility with MATLAB in Vector-Vector Indexing” on page 6-31
“Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on
page 6-32
“Incompatibility with MATLAB in Concatenating Variable-Size Matrices” on page 6-33
“Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside Concatenation
Returns No Elements” on page 6-33

Incompatibility with MATLAB for Scalar Expansion
Scalar expansion is a method of converting scalar data to match the dimensions of vector
or matrix data. If one operand is a scalar and the other is not, scalar expansion applies
the scalar to every element of the other operand.

During code generation, scalar expansion rules apply except when operating on two
variable-size expressions. In this case, both operands must be the same size. The
generated code does not perform scalar expansion even if one of the variable-size
expressions turns out to be scalar at run time. Therefore, when run-time error checks are
enabled, a run-time error can occur.

Consider this function:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
 case 0
 z = 0;

6 Code Generation for Variable-Size Data

6-26

 case 1
 z = 1;
 otherwise
 z = zeros(3);
end
y(:) = z;

When you generate code for this function, the code generator determines that z is
variable size with an upper bound of 3.

If you run the MEX function with u equal to 0 or 1, the generated code does not perform
scalar expansion, even though z is scalar at run time. Therefore, when run-time error
checks are enabled, a run-time error can occur.

scalar_exp_test_err1_mex(0)
Subscripted assignment dimension mismatch: [9] ~= [1].

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

To avoid this issue, use indexing to force z to be a scalar value.

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u
 case 0
 z = 0;
 case 1
 z = 1;
 otherwise
 z = zeros(3);
end
y(:) = z(1);

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-27

Incompatibility with MATLAB in Determining Size of Variable-
Size N-D Arrays
For variable-size N-D arrays, the size function can return a different result in generated
code than in MATLAB. In generated code, size(A) returns a fixed-length output because
it does not drop trailing singleton dimensions of variable-size N-D arrays. By contrast,
size(A) in MATLAB returns a variable-length output because it drops trailing singleton
dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A) returns:

• Three-element vector in generated code
• Two-element vector in MATLAB code

Workarounds

If your application requires generated code to return the same size of variable-size N-D
arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and MATLAB
code.

• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot pass a
variable-size X to matrix constructors such as zeros that require a fixed-size
argument.

Incompatibility with MATLAB in Determining Size of Empty
Arrays
The size of an empty array in generated code might be different from its size in MATLAB
source code. The size might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB.
Therefore, you should not write code that relies on the specific size of empty matrices.

For example, consider the following code:

6 Code Generation for Variable-Size Data

6-28

function y = foo(n) %#codegen
x = [];
i = 0;
while (i < 10)
 x = [5 x];
 i = i + 1;
end
if n > 0
 x = [];
end
y = size(x);
end

Concatenation requires its operands to match on the size of the dimension that is not
being concatenated. In the preceding concatenation, the scalar value has size 1x1 and x
has size 0x0. To support this use case, the code generator determines the size for x as [1
x :?]. Because there is another assignment x = [] after the concatenation, the size of
x in the generated code is 1x0 instead of 0x0.

For incompatibilities with MATLAB in determining the size of an empty array that results
from deleting elements of an array, see “Size of Empty Array That Results from Deleting
Elements of an Array” on page 2-10.

Workaround

If your application checks whether a matrix is empty, use one of these workarounds:

• Rewrite your code to use the isempty function instead of the size function.
• Instead of using x=[] to create empty arrays, create empty arrays of a specific size

using zeros. For example:

function y = test_empty(n) %#codegen
x = zeros(1,0);
i=0;
while (i < 10)
 x = [5 x];
 i = i + 1;
end
if n > 0
 x = zeros(1,0);
end
y=size(x);
end

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-29

Incompatibility with MATLAB in Determining Class of Empty
Arrays
The class of an empty array in generated code can be different from its class in MATLAB
source code. Therefore, do not write code that relies on the class of empty matrices.

For example, consider the following code:

function y = fun(n)
x = [];
if n > 1
 x = ['a' x];
end
y=class(x);
end

fun(0) returns double in MATLAB, but char in the generated code. When the
statement n > 1 is false, MATLAB does not execute x = ['a' x]. The class of x is
double, the class of the empty array. However, the code generator considers all
execution paths. It determines that based on the statement x = ['a' x], the class of x
is char.

Workaround

Instead of using x=[] to create an empty array, create an empty array of a specific class.
For example, use blanks(0) to create an empty array of characters.

function y = fun(n)
x = blanks(0);
if n > 1
 x = ['a' x];
end
y=class(x);
end

Incompatibility with MATLAB in Matrix-Matrix Indexing
In matrix-matrix indexing, you use one matrix to index into another matrix. In MATLAB,
the general rule for matrix-matrix indexing is that the size and orientation of the result
match the size and orientation of the index matrix. For example, if A and B are matrices,
size(A(B)) equals size(B). When A and B are vectors, MATLAB applies a special rule.
The special vector-vector indexing rule is that the orientation of the result is the

6 Code Generation for Variable-Size Data

6-30

orientation of the data matrix. For example, iA is 1-by-5 and B is 3-by-1, then A(B) is 1-
by-3.

The code generator applies the same matrix-matrix indexing rules as MATLAB. If A and B
are variable-size matrices, to apply the matrix-matrix indexing rules, the code generator
assumes that the size(A(B)) equals size(B). If, at run time, A and B become vectors
and have different orientations, then the assumption is incorrect. Therefore, when run-
time error checks are enabled, an error can occur.

To avoid this issue, force your data to be a vector by using the colon operator for
indexing. For example, suppose that your code intentionally toggles between vectors and
regular matrices at run time. You can do an explicit check for vector-vector indexing.

...
if isvector(A) && isvector(B)
 C = A(:);
 D = C(B(:));
else
 D = A(B);
end
...

The indexing in the first branch specifies that C and B(:) are compile-time vectors.
Therefore, the code generator applies the indexing rule for indexing one vector with
another vector. The orientation of the result is the orientation of the data vector, C.

Incompatibility with MATLAB in Vector-Vector Indexing
In MATLAB, the special rule for vector-vector indexing is that the orientation of the result
is the orientation of the data vector. For example, if A is 1-by-5 and B is 3-by-1, then A(B)
is 1-by-3. If, however, the data vector A is a scalar, then the orientation of A(B) is the
orientation of the index vector B.

The code generator applies the same vector-vector indexing rules as MATLAB. If A and B
are variable-size vectors, to apply the indexing rules, the code generator assumes that the
orientation of B matches the orientation of A. At run time, if A is scalar and the orientation
of A and B do not match, then the assumption is incorrect. Therefore, when run-time error
checks are enabled, a run-time error can occur.

To avoid this issue, make the orientations of the vectors match. Alternatively, index single
elements by specifying the row and column. For example, A(row, column).

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-31

Incompatibility with MATLAB in Matrix Indexing Operations for
Code Generation
The following limitation applies to matrix indexing operations for code generation:

• Initialization of the following style:

for i = 1:10
 M(i) = 5;
end

In this case, the size of M changes as the loop is executed. Code generation does not
support increasing the size of an array over time.

For code generation, preallocate M.

M = zeros(1,10);
for i = 1:10
 M(i) = 5;
end

The following limitation applies to matrix indexing operations for code generation when
dynamic memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of the
expressions that change as the program executes. To implement this behavior, use
for-loops as shown:

...
M = ones(10,10);
for i=1:10
 for j = i:10
 M(i,j) = 2*M(i,j);
 end
end
...

Note The matrix M must be defined before entering the loop.

6 Code Generation for Variable-Size Data

6-32

Incompatibility with MATLAB in Concatenating Variable-Size
Matrices
For code generation, when you concatenate variable-size arrays, the dimensions that are
not being concatenated must match exactly.

Differences When Curly-Brace Indexing of Variable-Size Cell
Array Inside Concatenation Returns No Elements
Suppose that:

• c is a variable-size cell array.
• You access the contents of c by using curly braces. For example, c{2:4}.
• You include the results in concatenation. For example, [a c{2:4} b].
• c{I} returns no elements. Either c is empty or the indexing inside the curly braces

produces an empty result.

For these conditions, MATLAB omits c{I} from the concatenation. For example, [a c{I}
b] becomes [a b]. The code generator treats c{I} as the empty array [c{I}]. The
concatenation becomes [...[c{i}]...]. This concatenation then omits the array
[c{I}]. So that the properties of [c{I}] are compatible with the concatenation [...
[c{i}]...], the code generator assigns the class, size, and complexity of [c{I}]
according to these rules:

• The class and complexity are the same as the base type of the cell array.
• The size of the second dimension is always 0.
• For the rest of the dimensions, the size of Ni depends on whether the corresponding

dimension in the base type is fixed or variable size.

• If the corresponding dimension in the base type is variable size, the dimension has
size 0 in the result.

• If the corresponding dimension in the base type is fixed size, the dimension has
that size in the result.

Suppose that c has a base type with class int8 and size:10x7x8x:?. In the generated
code, the class of [c{I}] is int8. The size of [c{I}] is 0x0x8x0. The second dimension
is 0. The first and last dimensions are 0 because those dimensions are variable size in the
base type. The third dimension is 8 because the size of the third dimension of the base
type is a fixed size 8.

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

6-33

Inside concatenation, if curly-brace indexing of a variable-size cell array returns no
elements, the generated code can have the following differences from MATLAB:

• The class of [...c{i}...] in the generated code can differ from the class in
MATLAB.

When c{I} returns no elements, MATLAB removes c{I} from the concatenation.
Therefore, c{I} does not affect the class of the result. MATLAB determines the class
of the result based on the classes of the remaining arrays, according to a precedence
of classes. See “Valid Combinations of Unlike Classes” (MATLAB). In the generated
code, the class of [c{I}] affects the class of the result of the overall concatenation
[...[c{I}]...] because the code generator treats c{I} as [c{I}]. The previously
described rules determine the class of [c{I}].

• In the generated code, the size of [c{I}] can differ from the size in MATLAB.

In MATLAB, the concatenation [c{I}] is a 0x0 double. In the generated code, the
previously described rules determine the size of [c{I}].

6 Code Generation for Variable-Size Data

6-34

Variable-Sizing Restrictions for Code Generation of
Toolbox Functions

In this section...
“Common Restrictions” on page 6-35
“Toolbox Functions with Restrictions for Variable-Size Data” on page 6-36

Common Restrictions
The following common restrictions apply to multiple toolbox functions, but only for code
generation. To determine which of these restrictions apply to specific library functions,
see the table in “Toolbox Functions with Restrictions for Variable-Size Data” on page 6-
36.

Variable-length vector restriction

Inputs to the library function must be variable-length vectors or fixed-size vectors. A
variable-length vector is a variable-size array that has the shape 1x:n or :nx1 (one
dimension is variable sized and the other is fixed at size 1). Other shapes are not
permitted, even if they are vectors at run time.

Automatic dimension restriction

This restriction applies to functions that take the working dimension (the dimension along
which to operate) as input. In MATLAB and in code generation, if you do not supply the
working dimension, the function selects it. In MATLAB, the function selects the first
dimension whose size does not equal 1. For code generation, the function selects the first
dimension that has a variable size or that has a fixed size that does not equal 1. If the
working dimension has a variable size and it becomes 1 at run time, then the working
dimension is different from the working dimension in MATLAB. Therefore, when run-time
error checks are enabled, an error can occur.

For example, suppose that X is a variable-size matrix with dimensions 1x:3x:5. In the
generated code, sum(X) behaves like sum(X,2). In MATLAB, sum(X) behaves like
sum(X,2) unless size(X,2) is 1. In MATLAB, when size(X,2) is 1, sum(X) behaves
like sum(X,3).

To avoid this issue, specify the intended working dimension explicitly as a constant value.
For example, sum(X,2).

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

6-35

Array-to-vector restriction

The function issues an error when a variable-size array that is not a variable-length vector
assumes the shape of a vector at run time. To avoid the issue, specify the input explicitly
as a variable-length vector instead of a variable-size array.

Array-to-scalar restriction

The function issues an error if a variable-size array assumes a scalar value at run time. To
avoid this issue, specify scalars as fixed size.

Toolbox Functions with Restrictions for Variable-Size Data
The following table list functions that have code generation restrictions for variable-size
data. For additional restrictions for these functions, and restrictions for all functions and
objects supported for code generation, see “Functions and Objects Supported for C/C++
Code Generation — Alphabetical List” on page 3-2.

Function Restrictions for Variable-Size Data
all • See “Automatic dimension restriction” on page 6-35.

• An error occurs if you pass the first argument a variable-
size matrix that is 0-by-0 at run time.

any • See “Automatic dimension restriction” on page 6-35.
• An error occurs if you pass the first argument a variable-

size matrix that is 0-by-0 at run time.
cat • Dimension argument must be a constant.
conv • See “Variable-length vector restriction” on page 6-35.

• Input vectors must have the same orientation, either
both row vectors or both column vectors.

cov • For cov(X), see “Array-to-vector restriction” on page 6-
36.

cross • Variable-size array inputs that become vectors at run
time must have the same orientation.

deconv • For both arguments, see “Variable-length vector
restriction” on page 6-35.

6 Code Generation for Variable-Size Data

6-36

Function Restrictions for Variable-Size Data
detrend • For first argument for row vectors only, see “Array-to-

vector restriction” on page 6-36.
diag • See “Array-to-vector restriction” on page 6-36.
diff • See “Automatic dimension restriction” on page 6-35.

• Length of the working dimension must be greater than
the difference order input when the input is variable
sized. For example, if the input is a variable-size matrix
that is 3-by-5 at run time, diff(x,2,1) works but
diff(x,5,1) generates a run-time error.

fft • See “Automatic dimension restriction” on page 6-35.
filter • For first and second arguments, see “Variable-length

vector restriction” on page 6-35.
• See “Automatic dimension restriction” on page 6-35.

hist • For second argument, see “Variable-length vector
restriction” on page 6-35.

• For second input argument, see “Array-to-scalar
restriction” on page 6-36.

histc • See “Automatic dimension restriction” on page 6-35.
ifft • See “Automatic dimension restriction” on page 6-35.
ind2sub • First input (the size vector input) must be fixed size.
interp1 • For the xq input, see “Array-to-vector restriction” on

page 6-36.
• If v becomes a row vector at run time, the array to

vector restriction on page 6-36 applies. If v becomes a
column vector at run time, this restriction does not
apply.

ipermute • Order input must be fixed size.
issorted • See “Automatic dimension restriction” on page 6-35.
magic • Argument must be a constant.

• Output can be fixed-size matrices only.
max • See “Automatic dimension restriction” on page 6-35.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

6-37

Function Restrictions for Variable-Size Data
maxk • See “Automatic dimension restriction” on page 6-35.
mean • See “Automatic dimension restriction” on page 6-35.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

median • See “Automatic dimension restriction” on page 6-35.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.
min • See “Automatic dimension restriction” on page 6-35.
mink • See “Automatic dimension restriction” on page 6-35.
mode • See “Automatic dimension restriction” on page 6-35.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

mtimes Consider the multiplication A*B. If the code generator is
aware that A is scalar and B is a matrix, the code generator
produces code for scalar-matrix multiplication. However, if
the code generator is aware that A and B are variable-size
matrices, it produces code for a general matrix
multiplication. At run time, if A turns out to be scalar, the
generated code does not change its behavior. Therefore,
when run-time error checks are enabled, a size mismatch
error can occur.

nchoosek • The second input, k, must be a fixed-size scalar.
• The second input, k, must be a constant for static

allocation. If you enable dynamic allocation, the second
input can be a variable.

• You cannot create a variable-size array by passing in a
variable, k, unless you enable dynamic allocation.

permute • Order input must be fixed-size.
planerot • Input must be a fixed-size, two-element column vector. It

cannot be a variable-size array that takes on the size 2-
by-1 at run time.

poly • See “Variable-length vector restriction” on page 6-35.

6 Code Generation for Variable-Size Data

6-38

Function Restrictions for Variable-Size Data
polyfit • For first and second arguments, see “Variable-length

vector restriction” on page 6-35.
prod • See “Automatic dimension restriction” on page 6-35.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

rand • For an upper-bounded variable N, rand(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, rand([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

randi • For an upper-bounded variable N, randi(imax,1,N)
produces a variable-length vector of 1x:M where M is the
upper bound on N.

• For an upper-bounded variable N, randi(imax,[1 N])
may produce a variable-length vector of :1x:M where M
is the upper bound on N.

randn • For an upper-bounded variable N, randn(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, randn([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

reshape • If the input is a variable-size array and the output array
has at least one fixed-length dimension, do not specify
the output dimension sizes in a size vector sz. Instead,
specify the output dimension sizes as scalar values,
sz1,...,szN. Specify fixed-size dimensions as
constants.

• When the input is a variable-size empty array, the
maximum dimension size of the output array (also
empty) cannot be larger than that of the input.

roots • See “Variable-length vector restriction” on page 6-35.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

6-39

Function Restrictions for Variable-Size Data
shiftdim • If you do not supply the second argument, the number of

shifts is determined at compilation time by the upper
bounds of the dimension sizes. Therefore, at run time
the number of shifts is constant.

• An error occurs if the dimension that is shifted to the
first dimension has length 1 at run time. To avoid the
error, supply the number of shifts as the second input
argument (must be a constant).

• First input argument must have the same number of
dimensions when you supply a positive number of shifts.

sort • See “Automatic dimension restriction” on page 6-35.
std • See “Automatic dimension restriction” on page 6-35.

• An error occurs if you pass a variable-size matrix with 0-
by-0 dimensions at run time.

sub2ind • First input (the size vector input) must be fixed size.
sum • See “Automatic dimension restriction” on page 6-35.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

trapz • See “Automatic dimension restriction” on page 6-35.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.
typecast • See “Variable-length vector restriction” on page 6-35 on

first argument.
var • See “Automatic dimension restriction” on page 6-35.

• An error occurs if you pass a variable-size matrix with 0-
by-0 dimensions at run time.

vecnorm • See “Automatic dimension restriction” on page 6-35.

6 Code Generation for Variable-Size Data

6-40

Code Generation for MATLAB
Structures

• “Structure Definition for Code Generation” on page 7-2
• “Structure Operations Allowed for Code Generation” on page 7-3
• “Define Scalar Structures for Code Generation” on page 7-4
• “Define Arrays of Structures for Code Generation” on page 7-6
• “Index Substructures and Fields” on page 7-8
• “Assign Values to Structures and Fields” on page 7-10

7

Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use structures
differently than you normally would when running your code in the MATLAB environment:

What's Different More Information
Use a restricted set of operations. “Structure Operations Allowed for Code

Generation” on page 7-3
Observe restrictions on properties and
values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 7-4

Make structures uniform in arrays. “Define Arrays of Structures for Code
Generation” on page 7-6

Reference structure fields individually
during indexing.

“Index Substructures and Fields” on page
7-8

Avoid type mismatch when assigning values
to structures and fields.

“Assign Values to Structures and Fields” on
page 7-10

7 Code Generation for MATLAB Structures

7-2

Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are restricted to the
following operations:

• Index structure fields using dot notation
• Define primary function inputs as structures
• Pass structures to local functions

 Structure Operations Allowed for Code Generation

7-3

Define Scalar Structures for Code Generation
In this section...
“Restrictions When Defining Scalar Structures by Assignment” on page 7-4
“Adding Fields in Consistent Order on Each Control Flow Path” on page 7-4
“Restriction on Adding New Fields After First Use” on page 7-5

Restrictions When Defining Scalar Structures by Assignment
When you define a scalar structure by assigning a variable to a preexisting structure, you
do not need to define the variable before the assignment. However, if you already defined
that variable, it must have the same class, size, and complexity as the structure you
assign to it. In the following example, p is defined as a structure that has the same
properties as the predefined structure S:

...
S = struct('a', 0, 'b', 1, 'c', 2);
p = S;
...

Adding Fields in Consistent Order on Each Control Flow Path
When you create a structure, you must add fields in the same order on each control flow
path. For example, the following code generates a compiler error because it adds the
fields of structure x in a different order in each if statement clause:

function y = fcn(u) %#codegen
if u > 0
 x.a = 10;
 x.b = 20;
else
 x.b = 30; % Generates an error (on variable x)
 x.a = 40;
end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if statement clause,
but the assignments appear in reverse order in the else clause. Here is the corrected
code:

7 Code Generation for MATLAB Structures

7-4

function y = fcn(u) %#codegen
if u > 0
 x.a = 10;
 x.b = 20;
else
 x.a = 40;
 x.b = 30;
end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform the following operations on the
structure:

• Reading from the structure
• Indexing into the structure array
• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

In this example, the attempt to add a new field d after reading from structure x generates
an error.

This restriction extends across the structure hierarchy. For example, you cannot add a
field to a structure after operating on one of its fields or nested structures, as in this
example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading from the
structure's field c generates an error.

 Define Scalar Structures for Code Generation

7-5

Define Arrays of Structures for Code Generation
In this section...
“Ensuring Consistency of Fields” on page 7-6
“Using repmat to Define an Array of Structures with Consistent Field Properties” on
page 7-6
“Defining an Array of Structures by Using struct” on page 7-7
“Defining an Array of Structures Using Concatenation” on page 7-7

Ensuring Consistency of Fields
For code generation, when you create an array of MATLAB structures, corresponding
fields in the array elements must have the same size, type, and complexity.

Once you have created the array of structures, you can make the structure fields variable-
size using coder.varsize. For more information, see “Declare a Variable-Size Structure
Field.”.

Using repmat to Define an Array of Structures with Consistent
Field Properties
You can create an array of structures from a scalar structure by using the MATLAB
repmat function, which replicates and tiles an existing scalar structure:

1 Create a scalar structure, as described in “Define Scalar Structures for Code
Generation” on page 7-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.
3 Assign values to each structure using standard array indexing and structure dot

notation.

For example, the following code creates X, a 1-by-3 array of scalar structures. Each
element of the array is defined by the structure s, which has two fields, a and b:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,3);

7 Code Generation for MATLAB Structures

7-6

X(1).a = 1;
X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures by Using struct
To create an array of structures using the struct function, specify the field value
arguments as cell arrays. Each cell array element is the value of the field in the
corresponding structure array element. For code generation, corresponding fields in the
structures must have the same type. Therefore, the elements in a cell array of field values
must have the same type.

For example, the following code creates a 1-by-3 structure array. For each structure in the
array of structures, a has type double and b has type char.

s = struct('a', {1 2 3}, 'b', {'a' 'b' 'c'});

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator, square
brackets ([]), to join one or more structures into an array. See “Creating,
Concatenating, and Expanding Matrices” (MATLAB). For code generation, the structures
that you concatenate must have the same size, class, and complexity.

For example, the following code uses concatenation and a local function to create the
elements of a 1-by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
 s.a = a;
 s.b = b;
...

 Define Arrays of Structures for Code Generation

7-7

Index Substructures and Fields
Use these guidelines when indexing substructures and fields for code generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields and
substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
 'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by resolving
symbols as follows:

Dot Notation Symbol Resolution
substruct1.a1 Field a1 of local structure substruct1
substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure

substruct2
substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure

of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the array to the
structure of interest and then reference that structure's field individually using dot
notation, as in this example:

...
y = X(1).a % Extracts the value of field a
 % of the first structure in array X
...

7 Code Generation for MATLAB Structures

7-8

To reference all the values of a particular field for each structure in an array, use this
notation in a for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5
 X(i).a = i;
 X(i).b = i+1;
end

This example uses the repmat function to define an array of structures, each with two
fields a and b as defined by s. See “Define Arrays of Structures for Code Generation” on
page 7-6 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which express the
field as a variable expression that MATLAB evaluates at run time (see “Generate Field
Names from Variables” (MATLAB)).

 Index Substructures and Fields

7-9

Assign Values to Structures and Fields
When assigning values to a structure, substructure, or field for code generation, use these
guidelines:

Field properties must be consistent across structure-to-structure assignments

If: Then:
Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a substructure of
a different structure and vice versa.

Define the structure with the same number,
type, and size of fields as the substructure.

Assigning an element of one structure to an
element of another structure.

The elements must have the same type and
size.

For structures with constant fields, do not assign field values inside control flow
constructs

In the following code, the code generator recognizes that the structure fields s.a and
s.b are constants.

function y = mystruct()
s.a = 3;
s.b = 5;
y = zeros(s.a,s.b);

If a field of a structure is assigned inside a control flow construct, the code generator
does not recognize that s.a and s.b are constant. Consider the following code:

function y = mystruct(x)
s.a = 3;
if x > 1
 s.b = 4;
else
 s.b = 5;
end
y = zeros(s.a,s.b);

If variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is
disabled, y, the code generator reports an error.

7 Code Generation for MATLAB Structures

7-10

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to known types
before code generation (see “Working with mxArrays” on page 13-16).

Do not assign handle classes or sparse arrays to global structure variables

Global structure variables cannot contain handle objects or sparse arrays.

 Assign Values to Structures and Fields

7-11

Code Generation for Cell Arrays

• “Code Generation for Cell Arrays” on page 8-2
• “Control Whether a Cell Array Is Variable-Size” on page 8-6
• “Define Cell Array Inputs” on page 8-9
• “Cell Array Limitations for Code Generation” on page 8-10

8

Code Generation for Cell Arrays
When you generate code from MATLAB code that contains cell arrays, the code generator
classifies the cell arrays as homogeneous or heterogeneous. This classification determines
how a cell array is represented in the generated code. It also determines how you can use
the cell array in MATLAB code from which you generate code.

When you use cell arrays in MATLAB code that is intended for code generation, you must
adhere to certain restrictions. See “Cell Array Limitations for Code Generation” on page
8-10.

Homogeneous vs. Heterogeneous Cell Arrays
A homogeneous cell array has these characteristics:

• The cell array is represented as an array in the generated code.
• All elements have the same properties. The type associated with the cell array
specifies the properties of all elements rather than the properties of individual
elements.

• The cell array can be variable-size.
• You can index into the cell array with an index whose value is determined at run time.

A heterogeneous cell array has these characteristics:

• The cell array is represented as a structure in the generated code. Each element is
represented as a field of the structure.

• The elements can have different properties. The type associated with the cell array
specifies the properties of each element individually.

• The cell array cannot be variable-size.
• You must index into the cell array with a constant index or with for-loops that have

constant bounds.

The code generator uses heuristics to determine the classification of a cell array as
homogeneous or heterogeneous. It considers the properties (class, size, complexity) of the
elements and other factors, such as how you use the cell array in your program.
Depending on how you use a cell array, the code generator can classify a cell array as
homogeneous in one case and heterogeneous in another case. For example, consider the
cell array {1 [2 3]}. The code generator can classify this cell array as a heterogeneous

8 Code Generation for Cell Arrays

8-2

1-by-2 cell array. The first element is double scalar. The second element is a 1-by-2 array
of doubles. However, if you index into this cell array with an index whose value is
determined at run time, the code generator classifies it as a homogeneous cell array. The
elements are variable-size arrays of doubles with an upper bound of 2.

Controlling Whether a Cell Array Is Homogeneous or
Heterogeneous
For cell arrays with certain characteristics, you cannot control the classification as
homogeneous or heterogeneous:

• If the elements have different classes, the cell array must be heterogeneous.
• If the cell array is variable-size, it must be homogeneous.
• If you index into the cell array with an index whose value is determined at run time,

the cell array must be homogeneous.

For other cell arrays, you can control the classification as homogeneous or
heterogeneous.

To control the classification of cell arrays that are entry-point function inputs:

• At the command line, use the coder.CellType methods makeHomogeneous or
makeHeterogeneous.

• In the MATLAB Coder app, select cell (Homogeneous) or cell (Heterogeneous)
from the type menu. See “Define or Edit Input Parameter Type by Using the App” on
page 17-20.

To control the classification of cell arrays that are not entry-point function inputs:

• If the cell array is fixed-size, you can force an otherwise homogeneous cell array to be
heterogeneous by using coder.cstructname. For example:

function y = mycell()
%#codegen
c = {1 2 3};
coder.cstructname(c, 'myname');
y = c;
end

• If the cell array elements have the same class, you can force a cell array to be
homogeneous by using coder.varsize. See “Control Whether a Cell Array Is
Variable-Size” on page 8-6.

 Code Generation for Cell Arrays

8-3

Naming the Structure Type That Represents a Heterogeneous
Cell Array in the Generated Code
The code generator represents a heterogeneous cell array as a structure in the generated
code. You can name the generated structure type. You cannot name the fields of the
structure.

If the cell array is an entry-point function input, see “Define Cell Array Inputs” on page 8-
9. If the cell array is not an entry-point function input, use coder.cstructname in the
MATLAB function. For example:

function y = mycell()
%#codegen
c = {1 'a'};
coder.cstructname(c, 'myname');
y = c;
end

Cell Arrays in Reports
To see whether a cell array is homogeneous or heterogeneous, view the variable in the
code generation report.

For a homogeneous cell array, the report has one entry that specifies the properties of all
elements. The notation {:} indicates that all elements of the cell array have the same
properties.

For a heterogeneous cell array, the report has an entry for each element. For example, for
a heterogeneous cell array c with two elements, the entry for c{1} shows the properties
for the first element. The entry for c{2} shows the properties for the second element.

8 Code Generation for Cell Arrays

8-4

See Also
coder.CellType | coder.cstructname | coder.varsize

More About
• “Control Whether a Cell Array Is Variable-Size” on page 8-6
• “Cell Array Limitations for Code Generation” on page 8-10
• “Code Generation Reports” on page 21-9

 See Also

8-5

Control Whether a Cell Array Is Variable-Size
The code generator classifies a variable-size cell array as homogeneous. The cell array
elements must have the same class. In the generated code, the cell array is represented
as an array.

If a cell array is an entry-point function input, to make it variable-size:

• At the command line, you can use the coder.typeof function or the coder.newtype
function to create a type for a variable-size cell array. For example, to create a type for
a cell array whose first dimension is fixed and whose second dimension has an upper
bound of 10, use this code:

 t = coder.typeof({1 2 3}, [1 10], [0 1])

See “Specify Variable-Size Cell Array Inputs” on page 20-63.
• In the MATLAB Coder app, select Homogeneous cell array as the type of the input.

For the variable-size dimension, specify that it is unbounded or has an upper bound.

If a cell array is not an entry-point function input, to make it variable-size:

• Create the cell array by using the cell function. For example:

function z = mycell(n, j)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

For code generation, when you create a variable-size cell array by using cell, you
must adhere to certain restrictions. See “Definition of Variable-Size Cell Array by
Using cell” on page 8-11.

• Grow the cell array. For example:

function z = mycell(n)
%#codegen
c = {1 2 3};
for i = 1:n
 c{end + 1} = 1;

8 Code Generation for Cell Arrays

8-6

end
z = c{n};
end

• Force the cell array to be variable-size by using coder.varsize. Consider this code:

function y = mycellfun()
%#codegen
c = {1 2 3};
coder.varsize('c', [1 10]);
y = c;
end

Without coder.varsize, c is fixed-size with dimensions 1-by-3. With
coder.varsize, c is variable-size with an upper bound of 10.

Sometimes, using coder.varsize changes the classification of a cell array from
heterogeneous to homogeneous. Consider this code:

function y = mycell()
%#codegen
c = {1 [2 3]};
y = c{2};
end

The code generator classifies c as heterogeneous because the elements have different
sizes. c is fixed-size with dimensions 1-by-2. If you use coder.varsize with c, it
becomes homogeneous. For example:

function y = mycell()
%#codegen
c = {1 [2 3]};
coder.varsize('c', [1 10], [0 1]);
y = c{2};
end

c becomes a variable-size homogeneous cell array with dimensions 1-by-:10.

To force c to be homogeneous, but not variable-size, specify that none of the
dimensions vary. For example:

function y = mycell()
%#codegen
c = {1 [2 3]};
coder.varsize('c', [1 2], [0 0]);

 Control Whether a Cell Array Is Variable-Size

8-7

y = c{2};
end

See Also
coder.CellType | coder.varsize

More About
• “Code Generation for Cell Arrays” on page 8-2
• “Cell Array Limitations for Code Generation” on page 8-10
• “Code Generation for Variable-Size Arrays” on page 6-2

8 Code Generation for Cell Arrays

8-8

Define Cell Array Inputs
To define types for cell arrays that are inputs to entry-point functions, use one of these
approaches:

To Define Types: See
At the command line “Specify Cell Array Inputs at the Command

Line” on page 20-59
Programmatically in the MATLAB file “Define Input Properties Programmatically

in the MATLAB File” on page 20-71
In the MATLAB Coder app “Automatically Define Input Types by Using

the App” on page 17-5

“Define Input Parameter by Example by
Using the App” on page 17-8

“Define or Edit Input Parameter Type by
Using the App” on page 17-20

See Also
coder.CellType

More About
• “Code Generation for Cell Arrays” on page 8-2

 Define Cell Array Inputs

8-9

Cell Array Limitations for Code Generation
When you use cell arrays in MATLAB code that is intended for code generation, you must
adhere to these restrictions:

• “Cell Array Element Assignment” on page 8-10
• “Definition of Variable-Size Cell Array by Using cell” on page 8-11
• “Cell Array Indexing” on page 8-14
• “Growing a Cell Array by Using {end + 1}” on page 8-15
• “Variable-Size Cell Arrays” on page 8-16
• “Cell Array Contents” on page 8-16
• “Passing Cell Arrays to External C/C++ Functions” on page 8-17

Cell Array Element Assignment
You must assign a cell array element on all execution paths before you use it. For
example:

function z = foo(n)
%#codegen
c = cell(1,3);
if n < 1
 c{2} = 1;

else
 c{2} = n;
end
z = c{2};
end

The code generator considers passing a cell array to a function or returning it from a
function as a use of all elements of the cell array. Therefore, before you pass a cell array
to a function or return it from a function, you must assign all of its elements. For example,
the following code is not allowed because it does not assign a value to c{2} and c is a
function output.

function c = foo()
%#codegen
c = cell(1,3);
c{1} = 1;

8 Code Generation for Cell Arrays

8-10

c{3} = 3;
end

The assignment of values to elements must be consistent on all execution paths. The
following code is not allowed because y{2} is double on one execution path and char on
the other execution path.

function y = foo(n)
y = cell(1,3)
if n > 1;
 y{1} = 1
 y{2} = 2;
 y{3} = 3;
else
 y{1} = 10;
 y{2} = 'a';
 y{3} = 30;
end

Definition of Variable-Size Cell Array by Using cell
For code generation, before you use a cell array element, you must assign a value to it.
When you use cell to create a variable-size cell array, for example, cell(1,n), MATLAB
assigns an empty matrix to each element. However, for code generation, the elements are
unassigned. For code generation, after you use cell to create a variable-size cell array,
you must assign all elements of the cell array before any use of the cell array. For
example:

function z = mycell(n, j)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

The code generator analyzes your code to determine whether all elements are assigned
before the first use of the cell array. If the code generator detects that some elements are
not assigned, code generation fails with a message like this message:

Unable to determine that every element of 'y' is assigned
before this line.

 Cell Array Limitations for Code Generation

8-11

Sometimes, even though your code assigns all elements of the cell array, the code
generator reports this message because the analysis does not detect that all elements are
assigned. See “Unable to Determine That Every Element of Cell Array Is Assigned” on
page 29-12.

To avoid this error, follow these guidelines:

• When you use cell to define a variable-size cell array, write code that follows this
pattern:

function z = mycell(n, j)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

Here is the pattern for a multidimensional cell array:

function z = mycell(m,n,p)
%#codegen
x = cell(m,n,p);
for i = 1:m
 for j =1:n
 for k = 1:p
 x{i,j,k} = i+j+k;
 end
 end
end
z = x{m,n,p};
end

• Increment or decrement the loop counter by 1.
• Define the cell array within one loop or one set of nested loops. For example, this code

is not allowed:

function z = mycell(n, j)
x = cell(1,n);
for i = 1:5
 x{i} = 5;
end
for i = 6:n
 x{i} = 5;

8 Code Generation for Cell Arrays

8-12

end
z = x{j};
end

• Use the same variables for the cell dimensions and loop initial and end values. For
example, code generation fails for the following code because the cell creation uses n
and the loop end value uses m:

function z = mycell(n, j)
x = cell(1,n);
m = n;
for i = 1:m
 x{i} = 2;
end
z = x{j};
end

Rewrite the code to use n for the cell creation and the loop end value:

function z = mycell(n, j)
x = cell(1,n);
for i = 1:n
 x{i} = 2;
end
z = x{j};
end

• Create the cell array with this pattern:

x = cell(1,n)

Do not assign the cell array to a field of a structure or a property of an object. For
example, this code is not allowed:

myobj.prop = cell(1,n)
for i = 1:n
...
end

Do not use the cell function inside the cell array constructor {}. For example, this
code is not allowed:

x = {cell(1,n)};

• The cell array creation and the loop that assigns values to the cell array elements must
be together in a unique execution path. For example, the following code is not allowed.

 Cell Array Limitations for Code Generation

8-13

function z = mycell(n)
if n > 3
 c = cell(1,n);
else
 c = cell(n,1);
end
for i = 1:n
 c{i} = i;
end
z = c{n};
end

To fix this code, move the assignment loop inside the code block that creates the cell
array.

function z = cellerr(n)
if n > 3
 c = cell(1,n);
 for i = 1:n
 c{i} = i;
 end
else
 c = cell(n,1);
 for i = 1:n
 c{i} = i;
 end
end
z = c{n};
end

Cell Array Indexing
• You cannot index cell arrays by using smooth parentheses(). Consider indexing cell

arrays by using curly braces{} to access the contents of the cell.
• You must index into heterogeneous cell arrays by using constant indices or by using

for-loops with constant bounds.

For example, the following code is not allowed.

x = {1, 'mytext'};
disp(x{randi});

You can index into a heterogeneous cell array in a for-loop with constant bounds
because the code generator unrolls the loop. Unrolling creates a separate copy of the

8 Code Generation for Cell Arrays

8-14

loop body for each loop iteration, which makes the index in each loop iteration
constant. However, if the for-loop has a large body or it has many iterations, the
unrolling can increase compile time and generate inefficient code.

If A and B are constant, the following code shows indexing into a heterogeneous cell
array in a for-loop with constant bounds.

x = {1, 'mytext'};
for i = A:B
 disp(x{i});
end

Growing a Cell Array by Using {end + 1}
To grow a cell array X, you can use X{end + 1}. For example:

...
X = {1 2};
X{end + 1} = 'a';
...

When you use {end + 1} to grow a cell array, follow these restrictions:

• Use only {end + 1}. Do not use {end + 2}, {end + 3}, and so on.
• Use {end + 1} with vectors only. For example, the following code is not allowed

because X is a matrix, not a vector:

...
X = {1 2; 3 4};
X{end + 1} = 5;

...
• Use {end + 1} only with a variable. In the following code, {end + 1} does not

cause {1 2 3} to grow. In this case, the code generator treats {end + 1} as an out-
of-bounds index into X{2}.

...
X = {'a' { 1 2 3 }};
X{2}{end + 1} = 4;
...

• When {end + 1} grows a cell array in a loop, the cell array must be variable-size.
Therefore, the cell array must be homogeneous on page 8-2.

 Cell Array Limitations for Code Generation

8-15

This code is allowed because X is homogeneous.

...
X = {1 2};
for i=1:n
 X{end + 1} = 3;
end
...

This code is not allowed because X is heterogeneous.

...
X = {1 'a' 2 'b'};
for i=1:n
 X{end + 1} = 3;
end
...

Variable-Size Cell Arrays
• Heterogeneous cell arrays cannot be variable-size. See “Control Whether a Cell Array

Is Variable-Size” on page 8-6.
• If you use coder.varsize to make a variable-size cell array, define the cell array

with curly braces. For example:

...
c = {1 [2 3]};
coder.varsize('c')
...

Do not use the cell function. For example, this code is not allowed:

...
c = cell(1,3);
coder.varsize('c')
...

Cell Array Contents
Cell arrays cannot contain mxarrays. In a cell array, you cannot store a value that an
extrinsic function returns.

8 Code Generation for Cell Arrays

8-16

Passing Cell Arrays to External C/C++ Functions
You cannot pass a cell array to coder.ceval. If a variable is an input argument to
coder.ceval, define the variable as an array or structure instead of as a cell array.

See Also

More About
• “Code Generation for Cell Arrays” on page 8-2
• “Differences Between Generated Code and MATLAB Code” on page 2-8

 See Also

8-17

Code Generation for Enumerated
Data

• “Code Generation for Enumerations” on page 9-2
• “Customize Enumerated Types in Generated Code” on page 9-8

9

Code Generation for Enumerations
Enumerations represent a fixed set of named values. Enumerations help make your
MATLAB code and generated C/C++ code more readable. For example, the generated
code can test equality with code such as if (x == Red) instead of using strcmp.

For code generation, when you use enumerations, adhere to these restrictions:

• “Define Enumerations for Code Generation” on page 9-2
• “Allowed Operations on Enumerations” on page 9-4
• “MATLAB Toolbox Functions That Support Enumerations” on page 9-5

Define Enumerations for Code Generation
For code generation, the enumeration class must derive from one of these base types:
int8, uint8, int16, uint16, or int32. For example:

classdef PrimaryColors < int32
 enumeration
 Red(1),
 Blue(2),
 Yellow(4)
 end
end

You can use the base type to control the size of an enumerated type in generated C/C++
code. You can:

• Represent an enumerated type as a fixed-size integer that is portable to different
targets.

• Reduce memory usage.
• Interface with legacy code.
• Match company standards.

The base type determines the representation of the enumerated type in generated C/C++
code.

If the base type is int32, the code generator produces a C enumerated type. Consider
this MATLAB enumerated type definition:

9 Code Generation for Enumerated Data

9-2

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end
end

This enumerated type definition results in the following C code:

enum LEDcolor
{
 GREEN = 1,
 RED
};

typedef enum LEDcolor LEDcolor;

For built-in integer base types other than int32, the code generator produces a typedef
statement for the enumerated type and #define statements for the enumerated values.
Consider this MATLAB enumerated type definition:

classdef LEDcolor < int16
 enumeration
 GREEN(1),
 RED(2)
 end

end

The enumerated type definition results in this C code:

typedef short LEDcolor;
#define GREEN ((LEDcolor)1)
#define RED ((LEDcolor)2)

The C type in the typedef statement depends on:

• The integer sizes defined for the production hardware in the hardware implementation
object or the project settings. See coder.HardwareImplementation.

• The setting that determines the use of built-in C types or MathWorks typedefs in the
generated code. See “Specify Data Types Used in Generated Code” on page 20-40
and “Mapping MATLAB Types to Types in Generated Code” on page 26-18.

 Code Generation for Enumerations

9-3

Allowed Operations on Enumerations
For code generation, you are restricted to the operations on enumerations listed in this
table.

Operation Example Notes
assignment operator: = —
relational operators: < >
<= >= == ~=

xon == xoff Code generation does not
support using == or ~= to
test equality between an
enumeration member and a
string array, a character
array, or a cell array of
character arrays.

cast operation double(LEDcolor.RED) —

9 Code Generation for Enumerated Data

9-4

Operation Example Notes
conversion to character
array or string

y = char(LEDcolor.RED);
y1 = cast(LEDcolor.RED,'char');
y2 = string(LEDcolor.RED);

• You can convert only
compile-time scalar
valued enumerations. For
example, this code runs
in MATLAB, but
produces an error in
code generation:
y2 = string(repmat(LEDcolor.RED,1,2));

• The code generator
preserves enumeration
names when the
conversion inputs are
constants. For example,
consider this enumerated
type definition:
classdef AnEnum < int32
 enumeration
 zero(0),
 two(2),
 otherTwo(2)
 end
end

Generated code
produces "two" for
y = string(AnEnum.two)

and "otherTwo" for
y = string(AnEnum.two)

indexing operation m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

—

control flow statements: if,
switch, while

if state == sysMode.ON
 led = LEDcolor.GREEN;
else
 led = LEDcolor.RED;
end

—

MATLAB Toolbox Functions That Support Enumerations
For code generation, you can use enumerations with these MATLAB toolbox functions:

 Code Generation for Enumerations

9-5

• cast
• cat
• char
• circshift
• enumeration
• fliplr
• flipud
• histc
• intersect
• ipermute
• isequal
• isequaln
• isfinite
• isinf
• ismember
• isnan
• issorted
• length
• permute
• repmat
• reshape
• rot90
• setdiff
• setxor
• shiftdim
• sort
• sortrows
• squeeze
• string
• union

9 Code Generation for Enumerated Data

9-6

• unique

See Also

More About
• “Generate Code for an LED Control Function That Uses Enumerated Types” on page

20-181
• “Customize Enumerated Types in Generated Code” on page 9-8

 See Also

9-7

Customize Enumerated Types in Generated Code
For code generation, to customize an enumeration, in the static methods section of the
class definition, include customized versions of the methods listed in this table.

Method Description Default Value
Returned or
Specified

When to Use

getDefaultValue Returns the default
enumerated value.

First value in the
enumeration class
definition.

For a default value
that is different than
the first enumeration
value, provide a
getDefaultValue
method that returns
the default value that
you want. See
“Specify a Default
Enumeration Value”
on page 9-9.

getHeaderFile Specifies the file that
defines an externally
defined enumerated
type.

'' To use an externally
defined enumerated
type, provide a
getHeaderFile
method that returns
the path to the
header file that
defines the type. In
this case, the code
generator does not
produce the class
definition. See
“Specify a Header
File” on page 9-10

9 Code Generation for Enumerated Data

9-8

Method Description Default Value
Returned or
Specified

When to Use

addClassNameToEnumNames Specifies whether the
class name becomes a
prefix in the
generated code.

false — prefix is not
used.

If you want the class
name to become a
prefix in the
generated code, set
the return value of
the
addClassNameToEn
umNames method to
true. See “Include
Class Name Prefix in
Generated
Enumerated Type
Value Names” on
page 9-10.

Specify a Default Enumeration Value
If the value of a variable that is cast to an enumerated type does not match one of the
enumerated type values:

• Generated MEX reports an error.
• Generated C/C++ code replaces the value of the variable with the enumerated type

default value.

Unless you specify otherwise, the default value for an enumerated type is the first value in
the enumeration class definition. To specify a different default value, add your own
getDefaultValue method to the methods section. In this example, the first enumeration
member value is LEDcolor.GREEN, but the getDefaultValue method returns
LEDcolor.RED:

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end

 methods (Static)

 Customize Enumerated Types in Generated Code

9-9

 function y = getDefaultValue()
 y = LEDcolor.RED;
 end
 end
end

Specify a Header File
To specify that an enumerated type is defined in an external file, provide a customized
getHeaderFile method. This example specifies that LEDcolor is defined in the external
file my_LEDcolor.h.

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end

 methods(Static)
 function y=getHeaderFile()
 y='my_LEDcolor.h';
 end
 end
end

You must provide my_LEDcolor.h. For example:

enum LEDcolor
{
 GREEN = 1,
 RED
};
typedef enum LEDcolor LEDcolor;

Include Class Name Prefix in Generated Enumerated Type
Value Names
By default, the generated enumerated type value name does not include the class name
prefix. For example:

enum LEDcolor
{

9 Code Generation for Enumerated Data

9-10

 GREEN = 1,
 RED
};

typedef enum LEDcolor LEDcolor;

To include the class name prefix, provide an addClassNameToEnumNames method that
returns true. For example:

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end

 methods(Static)
 function y = addClassNameToEnumNames()
 y=true;
 end
 end
end

In the generated type definition, the enumerated value names include the class prefix
LEDcolor.

enum LEDcolor
{
 LEDcolor_GREEN = 1,
 LEDcolor_RED
};

typedef enum LEDcolor LEDcolor;

See Also

More About
• Modifying Superclass Methods and Properties (MATLAB)
• “Code Generation for Enumerations” on page 9-2

 See Also

9-11

Code Generation for MATLAB
Classes

• “MATLAB Classes Definition for Code Generation” on page 10-2
• “Classes That Support Code Generation” on page 10-9
• “Generate Code for MATLAB Value Classes” on page 10-10
• “Generate Code for MATLAB Handle Classes and System Objects” on page 10-15
• “Code Generation for Handle Class Destructors” on page 10-18
• “Class Does Not Have Property” on page 10-22
• “Passing By Reference Not Supported for Some Properties” on page 10-24
• “Handle Object Limitations for Code Generation” on page 10-25
• “System Objects in MATLAB Code Generation” on page 10-29
• “Specify Objects as Inputs at the Command Line” on page 10-33
• “Specify Objects as Inputs in the MATLAB Coder App” on page 10-37

10

MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB classes, you must use classes
differently than when running your code in the MATLAB environment.

What’s Different More Information
Restricted set of language features. “Language Limitations” on page 10-2
Restricted set of code generation features. “Code Generation Features Not Compatible

with Classes” on page 10-3
Definition of class properties. “Defining Class Properties for Code

Generation” on page 10-4
Use of handle classes. “Generate Code for MATLAB Handle

Classes and System Objects” on page 10-
15

“Code Generation for Handle Class
Destructors” on page 10-18

“Handle Object Limitations for Code
Generation” on page 10-25

Calls to base class constructor. “Calls to Base Class Constructor” on page
10-6

Global variables containing MATLAB handle
objects are not supported for code
generation.

N/A

Inheritance from built-in MATLAB classes is
not supported.

“Inheritance from Built-In MATLAB Classes
Not Supported” on page 10-7

Language Limitations
Although code generation support is provided for common features of classes such as
properties and methods, there are a number of advanced features which are not
supported, such as:

• Events
• Listeners

10 Code Generation for MATLAB Classes

10-2

• Arrays of objects
• Recursive data structures

• Linked lists
• Trees
• Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref, subsassign, and
subsindex methods. Code generation does not support classes that have their own
definitions of these methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an empty
array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

• addlistener
• delete
• eq
• findobj
• findpro

• The AbortSet property attribute
• A class that has a transient property cannot be an input to or output from an entry-

point function or an extrinsic function.

Code Generation Features Not Compatible with Classes
• You can generate code for entry-point MATLAB functions that use classes, but you

cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code by
executing:

codegen ClassNameA

• A handle class object cannot be an entry-point function input or output.

 MATLAB Classes Definition for Code Generation

10-3

• A value class object can be an entry-point function input or output. However, if a value
class object contains a handle class object, then the value class object cannot be an
entry-point function input or output. A handle class object cannot be an entry-point
function input or output.

• Code generation does not support global variables that are handle classes.
• Code generation does not support assigning an object of a value class into a

nontunable property. For example, obj.prop=v; is invalid when prop is a nontunable
property and v is an object based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.
• You cannot pass a MATLAB class to coder.ceval. You can pass class properties to

coder.ceval.
• If a property has a get method, a set method, or validators, or is a System object

property with certain attributes, then you cannot pass the property by reference to an
external function. See “Passing By Reference Not Supported for Some Properties” on
page 10-24.

• If an object has duplicate property names and the code generator tries to constant-fold
the object, code generation can fail. The code generator constant-folds an object when
it is used with coder.Constant or coder.const, or when it is an input to or output
from a constant-folded extrinsic function.

Duplicate property names occur in an object of a subclass in these situations:

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a

property.

For information about when MATLAB allows duplicate property names, see
“Subclassing Multiple Classes” (MATLAB).

Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you do when
running your code in the MATLAB environment:

• MEX functions report errors that result from property validation. Standalone C/C++
code reports these errors only if you enable run-time error reporting. See “Run-Time
Error Detection and Reporting in Standalone C/C++ Code” on page 21-17. Before
you generate standalone C/C++ code, it is a best practice to test property validation
by running a MEX function over the full range of input values.

10 Code Generation for MATLAB Classes

10-4

• After defining a property, do not assign it an incompatible type. Do not use a property
before attempting to grow it.

When you define class properties for code generation, consider the same factors that
you take into account when defining variables. In the MATLAB language, variables can
change their class, size, or complexity dynamically at run time so you can use the
same variable to hold a value of varying class, size, or complexity. C and C++ use
static typing. Before using variables, to determine their type, the code generator
requires a complete assignment to each variable. Similarly, before using properties,
you must explicitly define their class, size, and complexity.

• Initial values:

• If the property does not have an explicit initial value, the code generator assumes
that it is undefined at the beginning of the constructor. The code generator does
not assign an empty matrix as the default.

• If the property does not have an initial value and the code generator cannot
determine that the property is assigned prior to first use, the software generates a
compilation error.

• For System objects, if a nontunable property is a structure, you must completely
assign the structure. You cannot do partial assignment using subscripting.

For example, for a nontunable property, you can use the following assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = 'a';
mySystemObject.nonTunableProperty.fieldB = 'b';

• coder.varsize is not supported for class properties.
• If the initial value of a property is an object, then the property must be constant. To

make a property constant, declare the Constant attribute in the property block.
For example:

classdef MyClass
 properties (Constant)
 p1 = MyClass2;
 end
end

• MATLAB computes class initial values at class loading time before code generation.
If you use persistent variables in MATLAB class property initialization, the value of

 MATLAB Classes Definition for Code Generation

10-5

the persistent variable computed when the class loads belongs to MATLAB; it is not
the value used at code generation time. If you use coder.target in MATLAB class
property initialization, coder.target('MATLAB') returns true (1).

• If dynamic memory allocation is enabled, code generation supports variable-size
properties for handle classes. Without dynamic memory allocation, you cannot
generate code for handle classes that have variable-size properties.

• To avoid differences in results between MATLAB and MEX functions, do not use
classes with property access methods in certain cases. See “MATLAB Class Property
Access Methods That Modify Property Values” on page 2-13.

• If a property is constant and its value is an object, you cannot change the value of a
property of that object. For example, suppose that:

• obj is an object of myClass1.
• myClass1 has a constant property p1 that is an object of myClass2.
• myClass2 has a property p2.

Code generation does not support the following code:

obj.p1.p2 = 1;

Calls to Base Class Constructor
If a class constructor contains a call to the constructor of the base class, the call to the
base class constructor must come before for, if, return, switch or while statements.

For example, if you define a class B based on class A:

classdef B < A
 methods
 function obj = B(varargin)
 if nargin == 0
 a = 1;
 b = 2;
 elseif nargin == 1
 a = varargin{1};
 b = 1;
 elseif nargin == 2
 a = varargin{1};
 b = varargin{2};
 end
 obj = obj@A(a,b);

10 Code Generation for MATLAB Classes

10-6

 end

 end
end

Because the class definition for B uses an if statement before calling the base class
constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB
x = B;
y1 = x.p1;
y2 = x.p2;
end

However, you can generate code for callB if you define class B as:

classdef B < A
 methods
 function obj = NewB(varargin)
 [a,b] = getaandb(varargin{:});
 obj = obj@A(a,b);
 end

 end
end

function [a,b] = getaandb(varargin)
if nargin == 0
 a = 1;
 b = 2;
elseif nargin == 1
 a = varargin{1};
 b = 1;
elseif nargin == 2
 a = varargin{1};
 b = varargin{2};
end
end

Inheritance from Built-In MATLAB Classes Not Supported
You cannot generate code for classes that inherit from built-in MATLAB classes. For
example, you cannot generate code for the following class:

 MATLAB Classes Definition for Code Generation

10-7

classdef myclass < double

10 Code Generation for MATLAB Classes

10-8

Classes That Support Code Generation
You can generate code for MATLAB value and handle classes and user-defined System
objects. Your class can have multiple methods and properties and can inherit from
multiple classes.

To generate code for: Example:
Value classes “Generate Code for MATLAB Value Classes”

on page 10-10
Handle classes including user-defined
System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page 10-
15

For more information, see:

• “Role of Classes in MATLAB” (MATLAB)
• “MATLAB Classes Definition for Code Generation” on page 10-2

 Classes That Support Code Generation

10-9

Generate Code for MATLAB Value Classes
This example shows how to generate code for a MATLAB value class and then view the
generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code as Shape.m.

classdef Shape
% SHAPE Create a shape at coordinates
% centerX and centerY
 properties
 centerX;
 centerY;
 end
 properties (Dependent = true)
 area;
 end
 methods
 function out = get.area(obj)
 out = obj.getarea();
 end
 function obj = Shape(centerX,centerY)
 obj.centerX = centerX;
 obj.centerY = centerY;
 end
 end
 methods(Abstract = true)
 getarea(obj);
 end
 methods(Static)
 function d = distanceBetweenShapes(shape1,shape2)
 xDist = abs(shape1.centerX - shape2.centerX);
 yDist = abs(shape1.centerY - shape2.centerY);
 d = sqrt(xDist^2 + yDist^2);
 end
 end
end

2 In the same folder, create a class, Square, that is a subclass of Shape. Save the code
as Square.m.

classdef Square < Shape
% Create a Square at coordinates center X and center Y
% with sides of length of side
 properties

10 Code Generation for MATLAB Classes

10-10

 side;
 end
 methods
 function obj = Square(side,centerX,centerY)
 obj@Shape(centerX,centerY);
 obj.side = side;
 end
 function Area = getarea(obj)
 Area = obj.side^2;
 end
 end
end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape. Save the
code as Rhombus.m.

classdef Rhombus < Shape
 properties
 diag1;
 diag2;
 end
 methods
 function obj = Rhombus(diag1,diag2,centerX,centerY)
 obj@Shape(centerX,centerY);
 obj.diag1 = diag1;
 obj.diag2 = diag2;
 end
 function Area = getarea(obj)
 Area = 0.5*obj.diag1*obj.diag2;
 end
 end
end

4 Write a function that uses this class.

function [TotalArea, Distance] = use_shape
%#codegen
s = Square(2,1,2);
r = Rhombus(3,4,7,10);
TotalArea = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation report.

codegen -config:lib -report use_shape

 Generate Code for MATLAB Value Classes

10-11

codegen generates a C static library with the default name, use_shape, and
supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.
7 To see the Rhombus class definition, on the MATLAB Source pane, under

Rhombus.m, click Rhombus. The Rhombus class constructor is highlighted.
8 Click the Variables tab. You see that the variable obj is an object of the Rhombus

class. To see its properties, expand obj.

9 In the MATLAB Source pane, click Call Tree.

The Call Tree view shows that use_shape calls the Rhombus constructor and that
the Rhombus constructor calls the Shape constructor.

10 Code Generation for MATLAB Classes

10-12

10 In the code pane, in the Rhombus class constructor, move your pointer to this line:

obj@Shape(centerX,centerY)

The Rhombus class constructor calls the Shape method of the base Shape class. To
view the Shape class definition, in obj@Shape, double-click Shape.

 Generate Code for MATLAB Value Classes

10-13

10 Code Generation for MATLAB Classes

10-14

Generate Code for MATLAB Handle Classes and System
Objects

This example shows how to generate code for a user-defined System object and then view
the generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

 methods (Access=protected)
 % stepImpl method is called by the step method
 function y = stepImpl(~,x)
 y = x+1;
 end
 end
end

2 Write a function that uses this System object.

function y = testAddOne(x)
%#codegen
 p = AddOne();
 y = p.step(x);
end

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report, even if
no errors or warnings occur. The -args option specifies that the testAddOne
function takes one scalar double input.

4 Click the View report link.
5 In the MATLAB Source pane, click testAddOne. To see information about the

variables in testAddOne, click the Variables tab.

 Generate Code for MATLAB Handle Classes and System Objects

10-15

6 To view the class definition for addOne, in the MATLAB Source pane, click AddOne.

10 Code Generation for MATLAB Classes

10-16

See Also

More About
• “Code Generation for Handle Class Destructors” on page 10-18

 See Also

10-17

Code Generation for Handle Class Destructors
You can generate code for MATLAB code that uses delete methods (destructors) for
handle classes. To perform clean-up operations, such as closing a previously opened file
before an object is destroyed, use a delete method. The generated code calls the
delete method at the end of an object's lifetime, even if execution is interrupted by a
run-time error. When System objects are destroyed, delete calls the release method,
which in turn calls the user-defined releaseImpl. For more information on when to
define a delete method in a MATLAB code, see “Handle Class Destructor” (MATLAB).

Guidelines and Restrictions
When you write the MATLAB code, adhere to these guidelines and restrictions:

• Code generation does not support recursive calls of the delete method. Do not create
an object of a certain class inside the delete method for the same class. This usage
might cause a recursive call of delete and result in an error message.

• The generated code always calls the delete method, when an object goes out of
scope. Code generation does not support explicit calls of the delete method.

• Initialize all properties of MyClass that the delete method of MyClass uses either in
the constructor or as the default property value. If delete tries to access a property
that has not been initialized in one of these two ways, the code generator produces an
error message.

• Suppose a property prop1 of MyClass1 is itself an object (an instance of another
class MyClass2). Initialize all properties of MyClass2 that the delete method of
MyClass1 uses. Perform this initialization either in the constructor of MyClass2 or as
the default property value. If delete tries to access a property of MyClass2 that has
not been initialized in one of these two ways, the code generator produces an error
message. For example, define the two classes MyClass1 and MyClass2:

classdef MyClass1 < handle
 properties
 prop1
 end
 methods
 function h = MyClass1(index)
 h.prop1 = index;
 end
 function delete(h)
 fprintf('h.prop1.prop2 is: %1.0f\n',h.prop1.prop2);

10 Code Generation for MATLAB Classes

10-18

 end
 end
end

classdef MyClass2 < handle
 properties
 prop2
 end
end

Suppose you try to generate code for this function:

function MyFunction
obj2 = MyClass2;
obj1 = MyClass1(obj2); % Assign obj1.prop1 to the input (obj2)
end

The code generator produces an error message because you have not initialized the
property obj2.prop2 that the delete method displays.

Behavioral Differences of Objects in Generated Code and in
MATLAB
The behavior of objects in the generated code can be different from their behavior in
MATLAB in these situations:

• The order of destruction of several independent objects might be different in MATLAB
than in the generated code.

• The lifetime of objects in the generated code can be different from their lifetime in
MATLAB. MATLAB calls the delete method when an object can no longer be reached
from any live variable. The generated code calls the delete method when an object
goes out of scope. In some situations, this difference causes delete to be called later
on in the generated code than in MATLAB. For example, define the class:

classdef MyClass < handle
 methods
 function delete(h)
 global g
 % Destructor displays current value of global variable g
 fprintf('The global variable is: %1.0f\n',g);
 end
 end
end

 Code Generation for Handle Class Destructors

10-19

Run the function:

function MyFunction
global g
g = 1;
obj = MyClass;
obj = MyClass;
% MATLAB destroys the first object here
g = 2;
% MATLAB destroys the second object here
% Generated code destroys both objects here
end

The first object can no longer be reached from any live variable after the second
instance of obj = MyClass in MyFunction. MATLAB calls the delete method for
the first object after the second instance of obj = MyClass in MyFunction and for
the second object at the end of the function. The output is:

The global variable is: 1
The global variable is: 2

In the generated code, both delete method calls happen at the end of the function
when the two objects go out of scope. Running MyFunction_mex results in a different
output:

The global variable is: 2
The global variable is: 2

• In MATLAB, persistent objects are automatically destroyed when they cannot be
reached from any live variable. In the generated code, you have to call the terminate
function explicitly to destroy the persistent objects.

• The generated code does not destroy partially constructed objects. If a handle object is
not fully constructed at run time, the generated code produces an error message but
does not call the delete method for that object. For a System object, if there is a run-
time error in setupImpl, the generated code does not call releaseImpl for that
object.

MATLAB does call the delete method to destroy a partially constructed object.

10 Code Generation for MATLAB Classes

10-20

See Also

More About
• “Generate Code for MATLAB Handle Classes and System Objects” on page 10-15
• “System Objects in MATLAB Code Generation” on page 10-29

 See Also

10-21

Class Does Not Have Property
If a MATLAB class has a method, mymethod, that returns a handle class with a property,
myprop, you cannot generate code for the following type of assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle
 properties
 myprop
 end
 methods
 function this = MyClass
 this.myprop = MyClass2;
 end
 function y = mymethod(this)
 y = this.myprop;
 end
 end
end

classdef MyClass2 < handle
 properties
 aa
 end
end

You cannot generate code for function foo.

function foo

h = MyClass;

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In MATLAB,
the assignment h.mymethod().aa = 12; changes the property of that object. Code
generation does not support this assignment.

Solution
Rewrite the code to return the object and then assign a value to a property of the object.

10 Code Generation for MATLAB Classes

10-22

function foo

h = MyClass;

b=h.mymethod();
b.aa=12;

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 10-2

 See Also

10-23

Passing By Reference Not Supported for Some
Properties

The code generator does not support passing a property by reference to an external
function for these types of properties:

• A property with a get method or a set method.
• A property that uses validation functions.
• A System object property with an attribute, such as Logical or PositiveInteger,

that constrains or modifies the property value.

Instead of passing a property by reference, save the property value in a temporary
variable. Then, pass the temporary variable by reference to the external function. After
the external function call, assign the temporary variable to the property. For example:

tmp = myObj.prop;
coder.ceval('myFcn', coder.ref(tmp));
myObj.prop = tmp;

The assignment after the coder.ceval call validates or modifies the property value
according to the property access methods, validation functions, or attributes.

See Also
coder.ceval | coder.ref | coder.rref | coder.wref

More About
• “Call C/C++ Code from MATLAB Code” on page 26-2
• “MATLAB Classes Definition for Code Generation” on page 10-2

10 Code Generation for MATLAB Classes

10-24

Handle Object Limitations for Code Generation
The code generator statically determines the lifetime of a handle object. When you use
handle objects, this static analysis has certain restrictions.

With static analysis the generated code can reuse memory rather than rely on a dynamic
memory management scheme, such as reference counting or garbage collection. The code
generator can avoid dynamic memory allocation and run-time automatic memory
management. These generated code characteristics are important for some safety-critical
and real-time applications.

For limitations, see:

• “A Variable Outside a Loop Cannot Refer to a Handle Object Created Inside a Loop” on
page 10-25

• “A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object” on
page 10-26

The code generator analyzes whether all variables are defined prior to use. Undefined
variables or data types cause an error during code generation. In certain circumstances,
the code generator cannot determine if references to handle objects are defined. See
“References to Handle Objects Can Appear Undefined” on page 10-27.

A Variable Outside a Loop Cannot Refer to a Handle Object
Created Inside a Loop
Consider the handle class mycls and the function usehandle1. The code generator
reports an error because p, which is outside the loop, has a property that refers to a
mycls object created inside the loop.

classdef mycls < handle
 properties
 prop
 end
end

function usehandle1
p = mycls;
for i = 1:10
 p.prop = mycls;
end

 Handle Object Limitations for Code Generation

10-25

A Handle Object That a Persistent Variable Refers To Must Be
a Singleton Object
If a persistent variable refers to a handle object, the code generator allows only one
instance of the object during the program’s lifetime. The object must be a singleton
object. To create a singleton handle object, enclose statements that create the object in
the if isempty() guard for the persistent variable.

For example, consider the class mycls and the function usehandle2. The code generator
reports an error for usehandle2 because p.prop refers to the mycls object that the
statement inner = mycls creates. This statement creates a mycls object for each
invocation of usehandle2.

classdef mycls < handle
 properties
 prop
 end
end

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
inner = mycls;
inner.prop = x;
if isempty(p)
 p = mycls;
 p.prop = inner;
end

If you move the statements inner = mycls and inner.prop = x inside the if
isempty() guard, code generation succeeds. The statement inner = mycls executes
only once during the program’s lifetime.

function usehandle2(x)
assert(isa(x, 'double'));
persistent p;
if isempty(p)
 inner = mycls;
 inner.prop = x;
 p = mycls;
 p.prop = inner;
end

10 Code Generation for MATLAB Classes

10-26

Consider the function usehandle3. The code generator reports an error for usehandle3
because the persistent variable p refers to the mycls object that the statement myobj =
mycls creates. This statement creates a mycls object for each invocation of
usehandle3.

function usehandle3(x)
assert(isa(x, 'double'));
myobj = mycls;
myobj.prop = x;
doinit(myobj);
disp(myobj.prop);
function doinit(obj)
persistent p;
if isempty(p)
 p = obj;
end

If you make myobj persistent and enclose the statement myobj = mycls inside an if
isempty() guard, code generation succeeds. The statement myobj = mycls executes
only once during the program’s lifetime.

function usehandle3(x)
assert(isa(x, 'double'));
persistent myobj;
if isempty(myobj)
 myobj = mycls;
end

doinit(myobj);

function doinit(obj)
persistent p;
if isempty(p)
 p = obj;
end

References to Handle Objects Can Appear Undefined
Consider the function refHandle that copies a handle object property to another object.
The function uses a simple handle class and value class. In MATLAB, the function runs
without error.

function [out1, out2, out3] = refHandle()
 x = myHandleClass;

 Handle Object Limitations for Code Generation

10-27

 y = x;
 v = myValueClass();
 v.prop = x;
 x.prop = 42;
 out1 = x.prop;
 out2 = y.prop;
 out3 = v.prop.prop;
end

classdef myHandleClass < handle
 properties
 prop
 end
end

classdef myValueClass
 properties
 prop
 end
end

During code generation, an error occurs:

Property 'v.prop.prop' is undefined on some execution paths.

Three variables reference the same memory location: x, y, and v.prop. The code
generator determines that x.prop and y.prop share the same value. The code generator
cannot determine that the handle object property v.prop.prop shares its definition with
x.prop and y.prop. To avoid the error, define v.prop.prop directly.

10 Code Generation for MATLAB Classes

10-28

System Objects in MATLAB Code Generation
In this section...
“Usage Rules and Limitations for System Objects for Generating Code” on page 10-29
“System Objects in codegen” on page 10-32
“System Objects in the MATLAB Function Block” on page 10-32
“System Objects in the MATLAB System Block” on page 10-32
“System Objects and MATLAB Compiler Software” on page 10-32

You can generate C/C++ code in MATLAB from your system that contains System objects
by using MATLAB Coder. You can generate efficient and compact code for deployment in
desktop and embedded systems and accelerate fixed-point algorithms.

Usage Rules and Limitations for System Objects for
Generating Code
The following usage rules and limitations apply to using System objects in code generated
from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• Initialize all System objects properties that releaseImpl uses before the end of

setupImpl.
• You cannot initialize System objects properties with other MATLAB class objects as

default values in code generation. You must initialize these properties in the
constructor.

Inputs and Outputs

• System objects accept a maximum of 1024 inputs. A maximum of eight dimensions per
input is supported.

• The data type of the inputs should not change.
• The complexity of the inputs should not change.

 System Objects in MATLAB Code Generation

10-29

• If you want the size of inputs to change, verify that support for variable-size is
enabled. Code generation support for variable-size data also requires that variable-size
support is enabled. By default in MATLAB, support for variable-size data is enabled.

• System objects predefined in the software do not support variable-size if their data
exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function. But, these functions do not
generate code.

Properties

• In MATLAB System blocks, you cannot use variable-size for discrete state properties of
System objects. Private properties can be variable-size.

• Objects cannot be used as default values for properties.
• You can only assign values to nontunable properties once, including the assignment in

the constructor.
• Nontunable property values must be constant.
• For fixed-point inputs, if a tunable property has dependent data type properties, you

can set tunable properties only at construction time or after the object is locked.
• For getNumInputsImpl and getNumOutputsImpl methods, if you set the return

argument from an object property, that object property must have the Nontunable
attribute.

Global Variables

• Global variables are allowed in a System object, unless you are using that System
object in Simulink via the MATLAB System block. See “Generate Code for Global Data”
on page 20-102.

Methods

10 Code Generation for MATLAB Classes

10-30

• Code generation support is available only for these System object methods:

• get
• getNumInputs
• getNumOutputs
• isDone (for sources only)
• isLocked
• release
• reset
• set (for tunable properties)
• step

• For System objects that you define, code generation support is available only for these
methods:

• getDiscreteStateImpl
• getNumInputsImpl
• getNumOutputsImpl
• infoImpl
• isDoneImpl
• isInputDirectFeedthroughImpl
• outputImpl
• processTunedPropertiesImpl
• releaseImpl — Code is not generated automatically for this method. To release

an object, you must explicitly call the release method in your code.
• resetImpl
• setupImpl
• stepImpl
• updateImpl
• validateInputsImpl
• validatePropertiesImpl

 System Objects in MATLAB Code Generation

10-31

System Objects in codegen
You can include System objects in MATLAB code in the same way you include any other
elements. You can then compile a MEX file from your MATLAB code by using the
codegen command, which is available if you have a MATLAB Coder license. This
compilation process, which involves a number of optimizations, is useful for accelerating
simulations. See “Getting Started with MATLAB Coder” and “MATLAB Classes” for more
information.

Note Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects in the MATLAB Function Block
Using the MATLAB Function block, you can include any System object and any MATLAB
language function in a Simulink model. This model can then generate embeddable code.
System objects provide higher-level algorithms for code generation than do most
associated blocks. For more information, see “What Is a MATLAB Function Block?”
(Simulink).

System Objects in the MATLAB System Block
Using the MATLAB System block, you can include in a Simulink model individual System
objects that you create with a class definition file. The model can then generate
embeddable code. For more information, see “MATLAB System Block” (Simulink).

System Objects and MATLAB Compiler Software
MATLAB Compiler software supports System objects for use inside MATLAB functions.
The compiler product does not support System objects for use in MATLAB scripts.

See Also

More About
• “Generate Code That Uses Row-Major Array Layout” on page 30-4

10 Code Generation for MATLAB Classes

10-32

Specify Objects as Inputs at the Command Line
If you generate code by using codegen, to specify the type of an input that is a value
class object, you can provide an example object with the -args option.

1 Define the value class. For example, define a class myRectangle.

classdef myRectangle
 properties
 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

2 Define a function that takes an object of the value class as an input. For example:

function z = getarea(r)
%#codegen
z = calcarea(r);
end

3 Create an object of the class.

rect_obj = myRectangle(4,5)

rect_obj =

 myRectangle with properties:

 length: 4
 width: 5

4 Pass the example object to codegen by using the -args option.

codegen getarea -args {rect_obj} -report

 Specify Objects as Inputs at the Command Line

10-33

In the code generation report, you see that r has the same properties, length and
width, as the example object rect_object. The properties have the same size and
type as they do in the example object, rect_object.

Instead of providing an example object, you can create a type for an object of the value
class, and then provide the type with the -args option.

1 Create an object of the class:

rect_obj = myRectangle(4,5)

rect_obj =

 myRectangle with properties:

 length: 4
 width: 5

2 To create a type for an object of myRectangle that has the same property types as
rect_obj, use coder.typeof.

coder.typeof creates a coder.ClassType object that defines a type for a class.

t= coder.typeof(rect_obj)

t =

coder.ClassType
 1×1 myRectangle
 length: 1×1 double
 width : 1×1 double

3 Pass the type to codegen by using the -args option.

codegen getarea -args {t} -report

After you create a type for a value class, you can change the types of the properties. For
example, to make the properties of t 16-bit integers:

10 Code Generation for MATLAB Classes

10-34

t.Properties.length = coder.typeof(int16(1))
t.Properties.width = coder.typeof(int16(1))

You can also add or delete properties. For example, to add a property newprop:

t.Properties.newprop = coder.typeof(int16(1))

Consistency Between coder.ClassType Object and Class
Definition File
When you generate code, the properties of the coder.ClassType object that you pass to
codegen must be consistent with the properties in the class definition file. If the class
definition file has properties that your code does not use, the coder.ClassType object
does not have to include those properties. The code generator removes properties that
you do not use.

Limitations for Using Objects as Entry-Point Function Inputs
Entry-point function inputs that are objects have these limitations:

• An object that is an entry-point function input must be an object of a value class.
Objects of handle classes cannot be entry-point function inputs. Therefore, a value
class that contains a handle class cannot be an entry-point function input.

• An object cannot be a global variable.
• If an object has duplicate property names, you cannot use it with coder.Constant.

Duplicate property names occur in an object of a subclass in these situations:

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a

property.

For information about when MATLAB allows duplicate property names, see
“Subclassing Multiple Classes” (MATLAB).

See Also
coder.ClassType

 See Also

10-35

More About
• “Automatically Define Input Types by Using the App” on page 17-5
• “Define Input Parameter by Example by Using the App” on page 17-8
• “MATLAB Classes Definition for Code Generation” on page 10-2
• “Specify Objects as Inputs in the MATLAB Coder App” on page 10-37

10 Code Generation for MATLAB Classes

10-36

Specify Objects as Inputs in the MATLAB Coder App
In the MATLAB Coder app, to specify the type of an input that is a value class object:

1 Define the value class. For example, define a class myRectangle.

classdef myRectangle
 properties
 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

2 Define a function that takes an object of the value class as an input. For example:

function z = getarea(r)
%#codegen
z = calcarea(r);
end

3 In the app, create a project for getarea. On the Define Input Types page, specify
the type of the object in one of these ways:

• Automatically define a value class input type on page 10-37.
• Provide an Example Object on page 10-38.

Automatically Define an Object Input Type
• Write a test file getarea_test that creates an object of the myRectangle class and

passes it to getarea. For example:

 Specify Objects as Inputs in the MATLAB Coder App

10-37

rect_obj = myRectangle(4,5);
rect_area = getarea(rect_obj);
disp(rect_area);

• In the app, on the Define Input Types page, specify the test file getarea_test.
• Click Autodefine Input Types.

Provide an Example
If you provide an object of the value class, the app uses the sizes and types of the
properties of the example object.

1 In MATLAB, define an object of the value class myRectangle.

rect_obj = myRectangle(4,5)
2 In the app, on the Define Input Types page, click Let me enter input or global

types directly.
3 Click the field to the right of the input parameter r.
4 Select Define by Example.
5 Enter rect_obj or select it from the list of workspace variables.

The app determines the properties and their sizes and types from the example object.

Alternatively, you can provide the name of the value class, myRectangle, or a
coder.ClassType object for that class. To define a coder.ClassType object, use
coder.typeof. For example:

1 In MATLAB, define a coder.ClassType object that has the same properties as
rect_obj.

t = coder.typeof(rect_obj)
2 In the app, provide t as the example.

10 Code Generation for MATLAB Classes

10-38

To change the size or type of a property, click the field to the right of the property.

Consistency Between the Type Definition and Class Definition
File
When you generate code, the properties that you define in the app must be consistent
with the properties in the class definition file. If the class definition file has properties
that your code does not use, your type definition in the app does not have to include those
properties. The code generator removes properties that your code does not use.

Limitations for Using Objects as Entry-Point Function Inputs
Entry-point function inputs that are objects have these limitations:

• An object that is an entry-point function input must be an object of a value class.
Objects of handle classes cannot be entry-point function inputs. Therefore, a value
class that contains a handle class cannot be an entry-point function input.

• An object cannot be a global variable.
• If an object has duplicate property names, you cannot use it with coder.Constant.

Duplicate property names occur in an object of a subclass in these situations:

• The subclass has a property with the same name as a property of the superclass.
• The subclass derives from multiple superclasses that use the same name for a

property.

For information about when MATLAB allows duplicate property names, see
“Subclassing Multiple Classes” (MATLAB).

See Also
coder.ClassType

More About
• “Automatically Define Input Types by Using the App” on page 17-5
• “Define Input Parameter by Example by Using the App” on page 17-8
• “Specify Objects as Inputs at the Command Line” on page 10-33

 See Also

10-39

• “MATLAB Classes Definition for Code Generation” on page 10-2

10 Code Generation for MATLAB Classes

10-40

Code Generation for Function
Handles

11

Function Handle Limitations for Code Generation
When you use function handles in MATLAB code intended for code generation, adhere to
the following restrictions:

Do not use the same bound variable to reference different function handles

In some cases, using the same bound variable to reference different function handles
causes a compile-time error. For example, this code does not compile:

function y = foo(p)
x = @plus;
if p
 x = @minus;
end
y = x(1, 2);

Do not pass function handles to or from coder.ceval

You cannot pass function handles as inputs to or outputs from coder.ceval. For
example, suppose that f and str.f are function handles:

f = @sin;
str.x = pi;
str.f = f;

The following statements result in compilation errors:

coder.ceval('foo', @sin);
coder.ceval('foo', f);
coder.ceval('foo', str);

Do not associate a function handle with an extrinsic function

You cannot create a function handle that references an extrinsic MATLAB function.

Do not pass function handles to or from extrinsic functions

You cannot pass function handles to or from feval and other extrinsic MATLAB
functions.

11 Code Generation for Function Handles

11-2

Do not pass function handles to or from entry-point functions

You cannot pass function handles as inputs to or outputs from entry-point functions. For
example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its data as inputs.
plotFcn attempts to call the function referenced by the fhandle with the input data
and plot the results. However, this code generates a compilation error. The error indicates
that the function isa does not recognize 'function_handle' as a class name when
called inside a MATLAB function to specify properties of inputs.

See Also

More About
• “Declaring MATLAB Functions as Extrinsic Functions” on page 13-10

 See Also

11-3

Defining Functions for Code
Generation

• “Code Generation for Variable Length Argument Lists” on page 12-2
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate”

on page 12-3
• “Code Generation for Anonymous Functions” on page 12-7
• “Code Generation for Nested Functions” on page 12-8

12

Code Generation for Variable Length Argument Lists
When you use varargin and varargout for code generation, there are these
restrictions:

• If you use varargin to define an argument to an entry-point function, the code
generator produces the function with a fixed number of arguments. This fixed number
of arguments is based on the number of arguments that you specify when you
generate code.

• You cannot write to varargin. If you want to write to input arguments, copy the
values into a local variable.

• To index into varargin and varargout, use curly braces {}, not parentheses ().
• The code generator must be able to determine the value of the index into varargin or

varargout.

See Also

More About
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 29-16
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate”

on page 12-3

12 Defining Functions for Code Generation

12-2

Specify Number of Entry-Point Function Input or Output
Arguments to Generate

You can control the number of input or output arguments in a generated entry-point
function. From one MATLAB function, you can generate entry-point functions that have
different signatures.

Control Number of Input Arguments
If your entry-point function uses varargin, specify the properties for the arguments that
you want in the generated function.

Consider this function:

function [x, y] = myops(varargin)
%#codegen
if (nargin > 1)
 x = varargin{1} + varargin{2};
 y = varargin{1} * varargin{2};
else
 x = varargin{1};
 y = -varargin{1};
end

To generate a function that takes only one argument, provide one argument with -args.

codegen myops -args {3} -report

If you use the MATLAB Coder app:

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 To add an argument, in the variables table, to the right of varargin, click .

 Specify Number of Entry-Point Function Input or Output Arguments to Generate

12-3

3 Specify the properties for each argument.

If you generate code by using codegen, you can also control the number of input
arguments when the MATLAB function does not use varargin.

Consider this function:

function [x, y] = myops(a,b)
%#codegen
if (nargin > 1)
 x = a + b;
 y = a * b;
else
 x = a;
 y = -a;
end

To generate a function that takes only one argument, provide one argument with -args.

codegen myops -args {3} -report

Control the Number of Output Arguments
If you generate code by using codegen, you can specify the number of output arguments
by using the -nargout option.

Consider this function:

function [x, y] = myops(a,b)
%#codegen
x = a + b;
y = a * b;
end

12 Defining Functions for Code Generation

12-4

Generate a function that has one output argument.

codegen myops -args {2 3} -nargout 1 -report

You can also use -nargout to specify the number of output arguments for an entry-point
function that uses varargout.

Rewrite myops to use varargout.

function varargout = myops(a,b)
%#codegen
varargout{1} = a + b;
varargout{2} = a * b;
end

Generate code for one output argument.

codegen myops -args {2 3} -nargout 1 -report

If you use the MATLAB Coder app, to specify the number of outputs when a function
returns varargout or to generate fewer outputs than the function defines:

1 On the Define Input Types page, define the input types manually or by using
Autodefine Input Types.

2 In Number of outputs, select the number.

See Also

More About
• “Code Generation for Variable Length Argument Lists” on page 12-2

 See Also

12-5

• “Specify Properties of Entry-Point Function Inputs” on page 20-48

12 Defining Functions for Code Generation

12-6

Code Generation for Anonymous Functions
You can use anonymous functions in MATLAB code intended for code generation. For
example, you can generate code for the following MATLAB code that defines an
anonymous function that finds the square of a number.

sqr = @(x) x.^2;
a = sqr(5);

Anonymous functions are useful for creating a function handle to pass to a MATLAB
function that evaluates an expression over a range of values. For example, this MATLAB
code uses an anonymous function to create the input to the fzero function:

b = 2;
c = 3.5;
x = fzero(@(x) x^3 + b*x + c,0);

Anonymous Function Limitations for Code Generation
Anonymous functions have the code generation limitations of value classes and cell
arrays.

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 10-2
• “Cell Array Limitations for Code Generation” on page 8-10
• “Parameterizing Functions” (MATLAB)

 Code Generation for Anonymous Functions

12-7

Code Generation for Nested Functions
You can generate code for MATLAB functions that contain nested functions. For example,
you can generate code for the function parent_fun, which contains the nested function
child_fun.

function parent_fun
x = 5;
child_fun

 function child_fun
 x = x + 1;
 end

end

Nested Function Limitations for Code Generation
When you generate code for nested functions, you must adhere to the code generation
restrictions for value classes, cell arrays, and handle classes. You must also adhere to
these restrictions:

• If the parent function declares a persistent variable, it must assign the persistent
variable before it calls a nested function that uses the persistent variable.

• A nested recursive function cannot refer to a variable that the parent function uses.
• If a nested function refers to a structure variable, you must define the structure by

using struct.
• If a nested function uses a variable defined by the parent function, you cannot use

coder.varsize with the variable in either the parent or the nested function.

See Also

More About
• “MATLAB Classes Definition for Code Generation” on page 10-2
• “Handle Object Limitations for Code Generation” on page 10-25
• “Cell Array Limitations for Code Generation” on page 8-10

12 Defining Functions for Code Generation

12-8

• “Code Generation for Recursive Functions” on page 13-19

 See Also

12-9

Calling Functions for Code
Generation

• “Resolution of Function Calls for Code Generation” on page 13-2
• “Resolution of File Types on Code Generation Path” on page 13-6
• “Compilation Directive %#codegen” on page 13-8
• “Extrinsic Functions” on page 13-9
• “Code Generation for Recursive Functions” on page 13-19
• “Force Code Generator to Use Run-Time Recursion” on page 13-23

13

Resolution of Function Calls for Code Generation
From a MATLAB function, you can call local functions, supported toolbox functions, and
other MATLAB functions. MATLAB resolves function names for code generation as
follows:

13 Calling Functions for Code Generation

13-2

Subfunction?

Function
on the code
generation

path?

Function
on

MATLAB
path?

Extrinsic
function?

Function
on

MATLAB
path?

YesYes
Dispatch to
MATLAB

for execution
at runtime

No

No

No

Yes

Suitable
for code

 generation?

Yes

Yes

Yes

Generate

C code

Start

Generate error

No

No

No

 Resolution of Function Calls for Code Generation

13-3

Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function calls for code
generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 13-4.
• Attempts to compile functions unless the code generator determines that it should not

compile them or you explicitly declare them to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare it to be
extrinsic by using the construct coder.extrinsic, as described in “Declaring
MATLAB Functions as Extrinsic Functions” on page 13-10. During simulation, the
code generator produces code for the call to an extrinsic function, but does not
generate the internal code for the function. Therefore, simulation can run only on
platforms where MATLAB software is installed. During standalone code generation,
the code generator attempts to determine whether the extrinsic function affects the
output of the function in which it is called — for example by returning mxArrays to an
output variable. If the output does not change, code generation proceeds, but the
extrinsic function is excluded from the generated code. Otherwise, compilation errors
occur.

The code generator detects calls to many common visualization functions, such as
plot, disp, and figure. The software treats these functions like extrinsic functions
but you do not have to declare them extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of File Types on
Code Generation Path” on page 13-6

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code generation path
contains the toolbox functions supported for code generation.

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this path.

13 Calling Functions for Code Generation

13-4

MATLAB applies the same dispatcher rules when searching each path (see “Function
Precedence Order” (MATLAB)).

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a customized version.
A file on the code generation path shadows a file of the same name on the MATLAB path.

 Resolution of Function Calls for Code Generation

13-5

Resolution of File Types on Code Generation Path
MATLAB uses the following precedence rules for code generation:

13 Calling Functions for Code Generation

13-6

MEX-file?

MDL-file?

P-file?

M-file and
MEX-file in same

directory?

Yes

No

No

No

Yes

M-file?

Yes

Yes

Start

No

Compile
M-file

Generate
error

YesNo

 Resolution of File Types on Code Generation Path

13-7

Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function after the function signature to
indicate that you intend to generate code for the MATLAB algorithm. Adding this directive
instructs the MATLAB Code Analyzer to help you diagnose and fix violations that would
result in errors during code generation.

function y = my_fcn(x) %#codegen

....

Note The %#codegen directive is not necessary for MATLAB Function blocks. Code
inside a MATLAB Function block is always intended for code generation. The %#codegen
directive, or the absence of it, does not change the error checking behavior.

13 Calling Functions for Code Generation

13-8

Extrinsic Functions
When processing a call to a function foo in your MATLAB code, the code generator finds
the definition of foo and generates code for its body. In some cases, you might want to
bypass code generation and instead use the MATLAB engine to execute the call. Use
coder.extrinsic('foo') to declare that calls to foo do not generate code and
instead use the MATLAB engine for execution. In this context, foo is referred to as an
extrinsic function. This functionality is available only when the MATLAB engine is
available in MEX functions or during coder.const calls at compile time.

If you generate standalone code for a function that calls foo and includes
coder.extrinsic('foo'), the code generator attempts to determine whether foo
affects the output. If foo does not affect the output, the code generator proceeds with
code generation, but excludes foo from the generated code. Otherwise, the code
generator produces a compilation error.

The code generator automatically treats many common MATLAB visualization functions,
such as plot, disp, and figure, as extrinsic. You do not have to explicitly declare them
as extrinsic functions by using coder.extrinsic. For example, you might want to call
plot to visualize your results in the MATLAB environment. If you generate a MEX
function from a function that calls plot, and then run the generated MEX function, the
code generator dispatches calls to the plot function to the MATLAB engine. If you
generate a library or executable, the generated code does not contain calls to the plot
function. The code generation report highlights calls from your MATLAB code to extrinsic
functions so that it is easy to determine which functions are supported only in the
MATLAB environment.

 Extrinsic Functions

13-9

For unsupported functions other than common visualization functions, you must declare
the functions to be extrinsic (see “Resolution of Function Calls for Code Generation” on
page 13-2). Extrinsic functions are not compiled, but instead executed in MATLAB during
simulation (see “Resolution of Extrinsic Functions During Simulation” on page 13-15).

There are two ways to declare a function to be extrinsic:

• Use the coder.extrinsic construct in main functions or local functions (see
“Declaring MATLAB Functions as Extrinsic Functions” on page 13-10).

• Call the function indirectly using feval (see “Calling MATLAB Functions Using feval”
on page 13-14).

Declaring MATLAB Functions as Extrinsic Functions
To declare a MATLAB function to be extrinsic, add the coder.extrinsic construct at
the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

13 Calling Functions for Code Generation

13-10

Declaring Extrinsic Functions

The following code declares the MATLAB patch function extrinsic in the local function
create_plot. You do not have to declare axis as extrinsic because axis is one of the
common visualization functions that the code generator automatically treats as extrinsic.

function c = pythagoras(a,b,color) %#codegen
% Calculates the hypotenuse of a right triangle
% and displays the triangle.

c = sqrt(a^2 + b^2);
create_plot(a, b, color);

function create_plot(a, b, color)
%Declare patch as extrinsic

coder.extrinsic('patch');

x = [0;a;a];
y = [0;0;b];
patch(x, y, color);
axis('equal');

The code generator does not produce code for patch and axis, but instead dispatches
them to MATLAB for execution.

To test the function, follow these steps:

1 Convert pythagoras to a MEX function by executing this command at the MATLAB
prompt:

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}
2 Click the link to the code generation report and then, in the report, view the MATLAB

code for create_plot.

The report highlights the patch and axis functions to indicate that they are
supported only within the MATLAB environment.

 Extrinsic Functions

13-11

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

13 Calling Functions for Code Generation

13-12

When to Use the coder.extrinsic Construct

Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output during simulation, without
generating unnecessary code (see “Resolution of Extrinsic Functions During
Simulation” on page 13-15).

• Make your code self-documenting and easier to debug. You can scan the source code
for coder.extrinsic statements to isolate calls to MATLAB functions, which can
potentially create and propagate mxArrays (see “Working with mxArrays” on page 13-
16).

• Save typing. With one coder.extrinsic statement, each subsequent function call is
extrinsic, as long as the call and the statement are in the same scope (see “Scope of
Extrinsic Function Declarations” on page 13-13).

• Declare the MATLAB function(s) extrinsic throughout the calling function scope (see
“Scope of Extrinsic Function Declarations” on page 13-13). To narrow the scope, use
feval (see “Calling MATLAB Functions Using feval” on page 13-14).

Rules for Extrinsic Function Declarations

Observe the following rules when declaring functions extrinsic for code generation:

• Declare the function extrinsic before you call it.
• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations

The coder.extrinsic construct has function scope. For example, consider the
following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are called in the
main function foo. There are two ways to narrow the scope of an extrinsic declaration
inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this example:

 Extrinsic Functions

13-13

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main function foo,
but the function min is extrinsic only when called inside the local function mymin.

• Call the MATLAB function using feval, as described in “Calling MATLAB Functions
Using feval” on page 13-14.

Calling MATLAB Functions Using feval
The function feval is automatically interpreted as an extrinsic function during code
generation. Therefore, you can use feval to conveniently call functions that you want to
execute in the MATLAB environment, rather than compiled to generated code.

Consider the following example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated by
MATLAB — not compiled — which has the same result as declaring the function min
extrinsic for just this one call. By contrast, the function rat is extrinsic throughout the
function foo.

The code generator does not support the use of feval to call local functions or functions
that are located in a private folder.

Extrinsic Declaration for Nonstatic Methods
Suppose that you define a class myClass that has a nonstatic method foo, and then
create an instance obj of this class. If you want to declare the method obj.foo as
extrinsic in your MATLAB code that you intend for code generation, follow these rules:

13 Calling Functions for Code Generation

13-14

• Write the call to foo as a function call. Do not write the call by using the dot notation.
• Declare foo to be extrinsic by using the syntax coder.extrinsic('foo').

For example, define myClass as:

classdef myClass
 properties
 prop = 1
 end
 methods
 function y = foo(obj,x)
 y = obj.prop + x;
 end
 end
end

Here is an example MATLAB function that declares foo as extrinsic.

function y = myFunction(x) %#codegen
coder.extrinsic('foo');
obj = myClass;
y = foo(obj,x);
end

Nonstatic methods are also known as ordinary methods. See “Methods and Functions”
(MATLAB).

Resolution of Extrinsic Functions During Simulation
The code generator resolves calls to extrinsic functions — functions that do not support
code generation — as follows:

 Extrinsic Functions

13-15

During simulation, the code generator produces code for the call to an extrinsic function,
but does not generate the internal code for the function. Therefore, you can run the
simulation only on platforms where you install MATLAB software.

During code generation, the code generator attempts to determine whether the extrinsic
function affects the output of the function in which it is called — for example by returning
mxArrays to an output variable (see “Working with mxArrays” on page 13-16). Provided
that the output does not change, code generation proceeds, but the extrinsic function is
excluded from the generated code. Otherwise, the code generator issues a compiler error.

Working with mxArrays
The output of an extrinsic function is an mxArray — also called a MATLAB array. The only
valid operations for mxArrays are:

• Storing mxArrays in variables

13 Calling Functions for Code Generation

13-16

• Passing mxArrays to functions and returning them from functions
• Converting mxArrays to known types at run time

To use mxArrays returned by extrinsic functions in other operations, you must first
convert them to known types, as described in “Converting mxArrays to Known Types” on
page 13-17.

Converting mxArrays to Known Types

To convert an mxArray to a known type, assign the mxArray to a variable whose type is
defined. At run time, the mxArray is converted to the type of the variable assigned to it.
However, if the data in the mxArray is not consistent with the type of the variable, you
get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat, which returns
two mxArrays representing the numerator N and denominator D of the rational fraction
approximation of pi. Although you can pass these mxArrays to another MATLAB function
— in this case, min — you cannot assign the mxArray returned by min to the output y.

If you run this function foo in a MATLAB Function block in a Simulink model, the code
generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you expect min to
return — in this case, a scalar double — as follows:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double
y = min(N,D);

 Extrinsic Functions

13-17

Restrictions on Extrinsic Functions for Code Generation
The full MATLAB run-time environment is not supported during code generation.
Therefore, the following restrictions apply when calling MATLAB functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller workspace do
not work during code generation. Such functions include:

• dbstack
• evalin
• assignin
• save

• The MATLAB debugger cannot inspect variables defined in extrinsic functions.
• Functions in generated code can produce unpredictable results if your extrinsic

function performs the following actions at run time:

• Change folders
• Change the MATLAB path
• Delete or add MATLAB files
• Change warning states
• Change MATLAB preferences
• Change Simulink parameters

• The code generator does not support the use of coder.extrinsic to call functions
that are located in a private folder.

• The code generator does not support the use of coder.extrinsic to call local
functions.

Limit on Function Arguments
You can call functions with up to 64 inputs and 64 outputs.

13 Calling Functions for Code Generation

13-18

Code Generation for Recursive Functions
To generate code for recursive MATLAB functions, the code generator uses compile-time
recursion on page 13-19 or run-time recursion on page 13-21. You can influence
whether the code generator uses compile-time or run-time recursion by modifying your
MATLAB code. See “Force Code Generator to Use Run-Time Recursion” on page 13-23.

You can disallow recursion on page 13-21 or disable run-time recursion on page 13-21
by modifying configuration parameters.

When you use recursive functions in MATLAB code that is intended for code generation,
you must adhere to certain restrictions. See “Recursive Function Limitations for Code
Generation” on page 13-21.

Compile-Time Recursion
With compile-time recursion, the code generator creates multiple versions of a recursive
function in the generated code. The inputs to each version have values or sizes that are
customized for that version. These versions are known as function specializations. You
can tell that the code generator used compile-time recursion by looking at the code
generation report or the generated C code. Here is an example of compile-time recursion
in the report.

Sometimes, the function specializations do not appear in the C/C++ code because of
optimizations. For example, consider this function:

function y = foo()
%#codegen

 Code Generation for Recursive Functions

13-19

 x = 10;
 y = sub(x);
end

function y = sub(x)
coder.inline('never');
if x > 1
 y = x + sub(x-1);
else
 y = x;
end
end

In the code generation report, on the Function List tab, you see the function
specializations for MATLAB function sub.

However, the C code does not contain the specializations. It contains one function that
returns the value 55.

13 Calling Functions for Code Generation

13-20

Run-Time Recursion
With run-time recursion, the code generator produces a recursive function in the
generated code. You can tell that the code generator used run-time recursion by looking
at the code generation report or the generated C code. Here is an example of run-time
recursion in the report.

Disallow Recursion
• In a code generation configuration object, set the CompileTimeRecursionLimit
configuration parameter to 0.

• In the MATLAB Coder app, set the value of the Compile-time recursion limit setting
to 0.

Disable Run-Time Recursion
Some coding standards, such as MISRA®, do not allow recursion. To increase the
likelihood of generating code that is compliant with MISRA C®, disable run-time
recursion.

• In a code generation configuration object, set EnableRuntimeRecursion to false.
• In the MATLAB Coder app, set Enable run-time recursion to No.

If your code requires run-time recursion and run-time recursion is disabled, you must
rewrite your code so that it uses compile-time recursion or does not use recursion.

Recursive Function Limitations for Code Generation
When you use recursion in MATLAB code that is intended for code generation, follow
these restrictions:

 Code Generation for Recursive Functions

13-21

• Assign all outputs of a run-time recursive function before the first recursive call in the
function.

• Assign all elements of cell array outputs of a run-time recursive function.
• Inputs and outputs of run-time recursive functions cannot be classes.
• The maximum stack usage on page 27-16 setting is ignored for run-time recursion.

See Also

More About
• “Force Code Generator to Use Run-Time Recursion” on page 13-23
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 29-4
• “Compile-Time Recursion Limit Reached” on page 29-7
• “Configure Build Settings” on page 20-28
• “Code Generation Reports” on page 21-9

13 Calling Functions for Code Generation

13-22

Force Code Generator to Use Run-Time Recursion
When your MATLAB code includes recursive function calls, the code generator uses
compile-time or run-time recursion. With compile-time recursion on page 13-19, the code
generator creates multiple versions of the recursive function in the generated code. These
versions are known as function specializations. With run-time recursion on page 13-21,
the code generator produces a recursive function. If compile-time recursion results in too
many function specializations or if you prefer run-time recursion, you can try to force the
code generator to use run-time recursion. Try one of these approaches:

• “Treat the Input to the Recursive Function as a Nonconstant” on page 13-23
• “Make the Input to the Recursive Function Variable-Size” on page 13-25
• “Assign Output Variable Before the Recursive Call” on page 13-25

Treat the Input to the Recursive Function as a Nonconstant
Consider this function:

function y = call_recfcn(n)
A = ones(1,n);
x = 5;
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

call_recfcn calls recfcn with the value 5 for the second argument. recfcn calls itself
recursively until x is 1. For each recfcn call, the input argument x has a different value.
The code generator produces five specializations of recfcn, one for each call. After you
generate code, you can see the specializations in the code generation report.

 Force Code Generator to Use Run-Time Recursion

13-23

To force run-time recursion, in call_recfcn, in the call to recfcn, instruct the code
generator to treat the value of the input argument x as a nonconstant value by using
coder.ignoreConst.

function y = call_recfcn(n)
A = ones(1,n);
x = coder.ignoreConst(5);
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

After you generate code, in the code generation report., you see only one specialization.

13 Calling Functions for Code Generation

13-24

Make the Input to the Recursive Function Variable-Size
Consider this code:

function z = call_mysum(A)
%#codegen
z = mysum(A);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. To
force the code generator to use run-time conversion, make the input to mysum variable-
size by using coder.varsize.

function z = call_mysum(A)
%#codegen
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

Assign Output Variable Before the Recursive Call
The code generator uses compile-time recursion for this code:

function y = callrecursive(n)
x = 10;

 Force Code Generator to Use Run-Time Recursion

13-25

y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline('never')
if x > 1
 y = n + myrecursive(x-1,n-1);

else
 y = n;
end
end

To force the code generator to use run-time recursion, modify myrecursive so that the
output y is assigned before the recursive call. Place the assignment y = n in the if
block and the recursive call in the else block.

function y = callrecursive(n)
x = 10;
y = myrecursive(x,n);
end

function y = myrecursive(x,n)
coder.inline('never')
if x == 1
 y = n;
else
 y = n + myrecursive(x-1,n-1);
end
end

See Also
coder.ignoreConst

More About
• “Code Generation for Recursive Functions” on page 13-19
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 29-4
• “Compile-Time Recursion Limit Reached” on page 29-7

13 Calling Functions for Code Generation

13-26

Fixed-Point Conversion

• “Detect Dead and Constant-Folded Code” on page 14-2
• “Convert MATLAB Code to Fixed-Point C Code” on page 14-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 14-7
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 14-21
• “Specify Type Proposal Options” on page 14-35
• “Detect Overflows” on page 14-40
• “Replace the exp Function with a Lookup Table” on page 14-50
• “Replace a Custom Function with a Lookup Table” on page 14-59
• “Enable Plotting Using the Simulation Data Inspector” on page 14-67
• “Visualize Differences Between Floating-Point and Fixed-Point Results”

on page 14-68
• “View and Modify Variable Information” on page 14-79
• “Automated Fixed-Point Conversion” on page 14-83
• “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 14-105
• “Generated Fixed-Point Code” on page 14-108
• “Fixed-Point Code for MATLAB Classes” on page 14-114
• “Automated Fixed-Point Conversion Best Practices” on page 14-117
• “Replacing Functions Using Lookup Table Approximations” on page 14-126
• “MATLAB Language Features Supported for Automated Fixed-Point Conversion”

on page 14-127
• “Inspecting Data Using the Simulation Data Inspector” on page 14-130
• “Custom Plot Functions” on page 14-133
• “Data Type Issues in Generated Code” on page 14-135

14

Detect Dead and Constant-Folded Code
During the simulation of your test file, the MATLAB Coder app detects dead code or code
that is constant folded. The app uses the code coverage information when translating
your code from floating-point MATLAB code to fixed-point MATLAB code. Reviewing code
coverage results helps you to verify that your test file is exercising the algorithm
adequately.

The app inserts inline comments in the fixed-point code to mark the dead and
untranslated regions. It includes the code coverage information in the generated fixed-
point conversion HTML report. The app editor displays a color-coded bar to the left of the
code. This table describes the color coding.

Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code
executes more than one time.

• The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code
executes one time.

Red Code does not execute.

What Is Dead Code?
Dead code is code that does not execute during simulation. Dead code can result from
these scenarios:

• Defensive code containing intended corner cases that are not reached
• Human error in the code, resulting in code that cannot be reached by any execution

path
• Inadequate test bench range

14 Fixed-Point Conversion

14-2

• Constant folding

Detect Dead Code
This example shows how to detect dead code in your algorithm by using the MATLAB
Coder app.

1 In a local writable folder, create the function myFunction.m.

function y = myFunction(u,v)
 %#codegen
 for i = 1:length(u)
 if u(i) > v(i)
 y=bar(u,v);
 else
 tmp = u;
 v = tmp;
 y = baz(u,v);
 end
 end
end

function y = bar(u,v)
 y = u+v;
end

function y = baz(u,v)
 y = u-v;
end

2 In the same folder, create a test file, myFunction_tb.

u = 1:100;
v = 101:200;

myFunction(u,v);
3 From the apps gallery, open the MATLAB Coder app.
4 Set Numeric Conversion to Convert to fixed point.
5 On the Select Source Files page, browse to the myFunction file, and click Open.
6 Click Next. On the Define Input Types page, browse to select the test file that you

created, myFunction_tb. Click Autodefine Input Types.
7 Click Next. On the Check for Run-Time Issues page, click Check for Issues.

The app runs the myFunction_tb test file and detects no issues.

 Detect Dead and Constant-Folded Code

14-3

8 Click Next. On the Convert to Fixed-Point page, click Analyze to simulate the
entry-point functions, gather range information, and get proposed data types.

The color-coded bar on the left side of the edit window indicates whether the code
executes. The code in the first condition of the if-statement does not execute during
simulation because u is never greater than v. The bar function never executes
because the if-statement never executes. These parts of the algorithm are marked
with a red bar, indicating that they are dead code.

9 To apply the proposed data types to the function, click Convert .

The MATLAB Coder app generates a fixed-point function, myFunction_fixpt. The
generated fixed-point code contains comments around the pieces of code identified as
dead code. The Validation Results pane proposes that you use a more thorough test
bench.

When the MATLAB Coder app detects dead code, consider editing your test file so
that your algorithm is exercised over its full range. If your test file already reflects
the full range of the input variables, consider editing your algorithm to eliminate the
dead code.

10 Close the MATLAB Coder app.

Fix Dead Code
1 Edit the test file myFunction_tb.m to include a wider range of inputs.

u = 1:100;
v = -50:2:149;

myFunction(u,v);
2 Reopen the MATLAB Coder app.
3 Using the same function and the edited test file, go through the conversion process

again.
4 After you click Analyze, this time the code coverage bar shows that all parts of the

algorithm execute with the new test file input ranges.

To finish the conversion process and convert the function to fixed point, click
Convert.

14 Fixed-Point Conversion

14-4

Convert MATLAB Code to Fixed-Point C Code
To convert MATLAB Code to fixed-point C Code using the MATLAB Coder app:

1 Open the MATLAB Coder app.
2 On the Select Source Files page, add the entry-point function from which you want

to generate code.
3 Set Numeric Conversion to Convert to fixed point.
4 Click Next to go to the Define Input Types step. The app analyzes the function for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. If
the app does not find issues, it opens the Define Input Types page.

5 On the Define Input Types page, specify a test file that the app can use to define the
input types.

6 Click Next to go to the Check for Run-Time Issues step.
7 On the Check for Run-Time Issues page, specify a test file that calls your entry-

point function. Alternatively, at the prompt, enter code that calls your entry-point
function. The app generates instrumented MEX. It runs the test file or code that you
specified, replacing calls to your entry-point function with calls to the generated MEX
function. If the app finds issues, it provides warning and error messages. Click a
message to highlight the problematic code in a window where you can edit the code.

8 Click Next to go to the Convert to Fixed Point step.
9 Propose data types based on simulation range data, derived (also known as static)

range data, or both. See “Propose Fixed-Point Data Types Based on Simulation
Ranges” on page 14-7 and “Propose Fixed-Point Data Types Based on Derived
Ranges” on page 14-21.

10 To convert the floating-point MATLAB code to fixed-point MATLAB code, click
Convert. During fixed-point conversion, the app validates the build using the
proposed fixed-point data types. See “Validating Types” on page 14-103.

11 Verify the behavior of the fixed-point MATLAB code. See “Testing Numerics” on page
14-103.

12 Click Next to go to the Generate Code step.
13 In the Generate dialog box, set Build source to Fixed-Point. Set the Build type

to build a static or dynamic library, or executable. Set Language to C. Click
Generate.

MATLAB Coder generates fixed-point C code for your entry-point MATLAB function.

 Convert MATLAB Code to Fixed-Point C Code

14-5

See Also

Related Examples
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 14-7
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 14-21

14 Fixed-Point Conversion

14-6

Propose Fixed-Point Data Types Based on Simulation
Ranges

This example shows how to propose fixed-point data types based on simulation range data
using the MATLAB Coder app.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to

your local working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test

.m
MATLAB script that tests
ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z

 Propose Fixed-Point Data Types Based on Simulation Ranges

14-7

 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp,
step, and impulse to cover the full intended operating range of the system. The script
then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)

14 Fixed-Point Conversion

14-8

 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function ex_2ndOrder_filter to the project, browse to the file
ex_2ndOrder_filter.m, and then click Open. By default, the app saves information
and settings for this project in the current folder in a file named
ex_2ndOrder_filter.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

 Propose Fixed-Point Data Types Based on Simulation Ranges

14-9

2 Click Next to go to the Define Input Types step.

The app screens ex_2ndOrder_filter.m for code violations and code generation
readiness issues. The app does not find issues in ex_2ndOrder_filter.m.

Define Input Types

1 On the Define Input Types page, to add ex_2ndOrder_filter_test as a test file,
browse to ex_2ndOrder_filter_test, and then click Open.

2 Click Autodefine Input Types.

The test file runs and displays the outputs of the filter for each of the input signals.

14 Fixed-Point Conversion

14-10

The app determines from the test file that the input type of x is double(1x256).

 Propose Fixed-Point Data Types Based on Simulation Ranges

14-11

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file
ex_2ndOrder_filter_test replacing calls to ex_2ndOrder_filter with calls to the
generated MEX function. If the app finds issues, it provides warning and error messages.
You can click a message to highlight the problematic code in a window where you can edit
the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
ex_2ndOrder_filter_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables in
your code. See “View and Modify Variable Information” on page 14-79.

14 Fixed-Point Conversion

14-12

On the Function Replacements tab, the app displays functions that are not
supported for fixed-point conversion. See “Running a Simulation” on page 14-89.

2 Click the Analyze arrow . Verify that Analyze ranges using simulation is
selected and that the test bench file is ex_2ndOrder_filter_test. You can add
test files and select to run more than one test file during the simulation. If you run
multiple test files, the app merges the simulation results.

3 Select Log data for histogram.

By default, the Show code coverage option is selected. This option provides code
coverage information that helps you verify that your test file is testing your algorithm
over the intended operating range.

 Propose Fixed-Point Data Types Based on Simulation Ranges

14-13

4 Click Analyze.

The simulation runs and the app displays a color-coded code coverage bar to the left
of the MATLAB code. Review this information to verify that the test file is testing the
algorithm adequately. The dark green line to the left of the code indicates that the
code runs every time the algorithm executes. The orange bar indicates that the code
next to it executes only once. This behavior is expected for this example because the
code initializes a persistent variable. If your test file does not cover all of your code,
update the test or add more test files.

14 Fixed-Point Conversion

14-14

If a value has ... next to it, the value is rounded. Pause over the ... to view the
actual value.

The app displays simulation minimum and maximum ranges on the Variables tab.
Using the simulation range data, the software proposes fixed-point types for each
variable based on the default type proposal settings, and displays them in the
Proposed Type column. The app enables the Convert option.

Note You can manually enter static ranges. These manually entered ranges take
precedence over simulation ranges. The app uses the manually entered ranges to
propose data types. You can also modify and lock the proposed type.

 Propose Fixed-Point Data Types Based on Simulation Ranges

14-15

5 Examine the proposed types and verify that they cover the full simulation range. To
view logged histogram data for a variable, click its Proposed Type field.

To modify the proposed data types, either enter the required type into the Proposed
Type field or use the histogram controls. For more information about the histogram,
see “Log Data for Histogram” on page 14-100.

6 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types
and generates the following files in the codegen\ex_2ndOrder_filter\fixpt
folder in your local working folder.

• ex_2ndOrder_filter_fixpt.m — the fixed-point version of
ex_2ndOrder_filter.m.

• ex_2ndOrder_filter_wrapper_fixpt.m — this file converts the floating-point
data values supplied by the test file to the fixed-point types determined for the
inputs during conversion. These fixed-point values are fed into the converted
fixed-point design, ex_2ndOrder_filter_fixpt.m.

• ex_2ndOrder_filter_fixpt_report.html — this report shows the generated
fixed-point code and the fixed-point instrumentation results.

• ex_2ndOrder_filter_report.html — this report shows the original algorithm
and the fixed-point instrumentation results.

14 Fixed-Point Conversion

14-16

• ex_2ndOrder_filter_fixpt_args.mat — MAT-file containing a structure for
the input arguments, a structure for the output arguments and the name of the
fixed-point file.

If errors or warnings occur during validation, you see them on the Output tab. See
“Validating Types” on page 14-103.

7 In the Output Files list, select ex_2ndOrder_filter_fixpt.m. The app displays
the generated fixed-point code.

8 Click the Test arrow . Select Log inputs and outputs for comparison plots,
and then click Test.

 Propose Fixed-Point Data Types Based on Simulation Ranges

14-17

To test the fixed-point MATLAB code, the app runs the test file that you used to define
input types. Optionally, you can add test files and select to run more than one test file
to test numerics. The software runs both a floating-point and a fixed-point simulation
and then calculates the errors for the output variable y. Because you selected to log
inputs and outputs for comparison plots, the app generates a plot for each input and
output. The app docks these plots in a single figure window.

The app also reports error information on the Verification Output tab. The
maximum error is less than 0.03%. For this example, this margin of error is
acceptable.

14 Fixed-Point Conversion

14-18

If the difference is not acceptable, modify the fixed-point data types or your original
algorithm. For more information, see “Testing Numerics” on page 14-103.

9 On the Verification Output tab, the app provides a link to a report that shows the
generated fixed-point code and the proposed type information.

10 Click Next to go to the Generate Code page.

Generate Fixed-Point C Code

1 In the Generate dialog box, set Build source to Fixed-Point and Build type to
Static Library.

 Propose Fixed-Point Data Types Based on Simulation Ranges

14-19

2 Set Language to C.
3 Click Generate to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and supporting
files in the default subfolder, codegen/lib/ex_2ndOrder_filter.

4 The app displays the generated code for ex_2ndOrder_filter.c. In the generated
C code, variables are assigned fixed-point data types.

5 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to
generated output files.

14 Fixed-Point Conversion

14-20

Propose Fixed-Point Data Types Based on Derived
Ranges

This example shows how to propose fixed-point data types based on static ranges using
the MATLAB Coder app. When you propose data types based on derived ranges you, do
not have to provide test files that exercise your algorithm over its full operating range.
Running such test files often takes a long time. You can save time by deriving ranges
instead.

Note Derived range analysis is not supported for non-scalar variables.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the dti.m and dti_test.m files to your local working folder.

Type Name Description
Function code dti.m Entry-point MATLAB function

 Propose Fixed-Point Data Types Based on Derived Ranges

14-21

Type Name Description
Test file dti_test.m MATLAB script that tests

dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
init_val = 1;
gain_val = 1;
limit_upper = 500;
limit_lower = -500;

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)
 u_state = init_val+1;
end

% Compute Output
if (u_state > limit_upper)
 y = limit_upper;
 clip_status = -2;
elseif (u_state >= limit_upper)
 y = limit_upper;
 clip_status = -1;
elseif (u_state < limit_lower)
 y = limit_lower;
 clip_status = 2;
elseif (u_state <= limit_lower)
 y = limit_lower;
 clip_status = 1;
else
 y = u_state;
 clip_status = 0;
end

14 Fixed-Point Conversion

14-22

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the
input and output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10);

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
 data = x_in(ii);
 % call to the dti function
 init_val = 0;
 gain_val = 1;
 upper_limit = 500;
 lower_limit = -500;

 % call to the design that does DTI
 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot']);
subplot(2,1,1)
plot(1:len,x_in)
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

subplot(2,1,2)
plot(1:len,y_out)
xlabel('Time')

 Propose Fixed-Point Data Types Based on Derived Ranges

14-23

ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.');

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function dti to the project, browse to the file dti.m, and then
click Open. By default, the app saves information and settings for this project in the
current folder in a file named dti.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

14 Fixed-Point Conversion

14-24

2 Click Next to go to the Define Input Types step.

The app screens dti.m for code violations and code generation readiness issues. The
app does not find issues in dti.m.

Define Input Types
1 On the Define Input Types page, to add dti_test as a test file, browse to

dti_test.m, and then click Open.
2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of u_in is
double(1x1).

 Propose Fixed-Point Data Types Based on Derived Ranges

14-25

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file
dti_test replacing calls to dti with calls to the generated MEX function. If the app
finds issues, it provides warning and error messages. You can click a message to highlight
the problematic code in a window where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
dti_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information—type, size, and complexity—for variables in
your code. For more information, see “View and Modify Variable Information” on
page 14-79.

14 Fixed-Point Conversion

14-26

If functions are not supported for fixed-point conversion, the app displays them on
the Function Replacements tab.

2 Click the Analyze arrow .

a Select Analyze ranges using derived range analysis.
b Clear the Analyze ranges using simulation check box.

Design ranges are required to use derived range analysis.

 Propose Fixed-Point Data Types Based on Derived Ranges

14-27

3 On the Convert to Fixed Point page, on the Variables tab, for input u_in, select
Static Min and set it to -1. Set Static Max to 1.

To compute derived range information, at a minimum you must specify static
minimum and maximum values or proposed data types for all input variables.

Note If you manually enter static ranges, these manually entered ranges take
precedence over simulation ranges. The app uses the manually entered ranges to
propose data types. You can also modify and lock the proposed type.

4 Click Analyze.

Range analysis computes the derived ranges and displays them in the Variables tab.
Using these derived ranges, the analysis proposes fixed-point types for each variable
based on the default type proposal settings. The app displays them in the Proposed
Type column.

In the dti function, the clip_status output has a minimum value of -2 and a
maximum of 2.

% Compute Output
if (u_state > limit_upper)
 y = limit_upper;
 clip_status = -2;
elseif (u_state >= limit_upper)
 y = limit_upper;
 clip_status = -1;
elseif (u_state < limit_lower)
 y = limit_lower;
 clip_status = 2;
elseif (u_state <= limit_lower)
 y = limit_lower;
 clip_status = 1;
else

14 Fixed-Point Conversion

14-28

 y = u_state;
 clip_status = 0;
end

When you derive ranges, the app analyzes the function and computes these minimum
and maximum values for clip_status.

 Propose Fixed-Point Data Types Based on Derived Ranges

14-29

The app provides a Quick derived range analysis option and the option to specify a
timeout in case the analysis takes a long time. See “Computing Derived Ranges” on
page 14-89.

5 To convert the floating-point algorithm to fixed point, click Convert.

During the fixed-point conversion process, the software validates the proposed types
and generates the following files in the codegen\dti\fixpt folder in your local
working folder:

• dti_fixpt.m — the fixed-point version of dti.m.
• dti_wrapper_fixpt.m — this file converts the floating-point data values

supplied by the test file to the fixed-point types determined for the inputs during
conversion. The app feeds these fixed-point values into the converted fixed-point
design, dti_fixpt.m.

• dti_fixpt_report.html — this report shows the generated fixed-point code
and the fixed-point instrumentation results.

• dti_report.html — this report shows the original algorithm and the fixed-point
instrumentation results.

• dti_fixpt_args.mat — MAT-file containing a structure for the input
arguments, a structure for the output arguments and the name of the fixed-point
file.

If errors or warnings occur during validation, they show on the Output tab. See
“Validating Types” on page 14-103.

6 In the Output Files list, select dti_fixpt.m. The app displays the generated fixed-
point code.

7 Use the Simulation Data Inspector to plot the floating-point and fixed-point results.

a Click the Settings arrow .
b Expand the Plotting and Reporting settings and set Plot with Simulation

Data Inspector to Yes.

14 Fixed-Point Conversion

14-30

c Click the Test arrow . Select Log inputs and outputs for comparison
plots. Click Test.

The app runs the test file that you used to define input types to test the fixed-
point MATLAB code. Optionally, you can add test files and select to run more
than one test file to test numerics. The software runs both a floating-point and a
fixed-point simulation and then calculates the errors for the output variable y.
Because you selected to log inputs and outputs for comparison plots and to use
the Simulation Data Inspector for these plots, the Simulation Data Inspector
opens.

 Propose Fixed-Point Data Types Based on Derived Ranges

14-31

d You can use the Simulation Data Inspector to view floating-point and fixed-point
run information and compare results. For example, to compare the floating-point
and fixed-point values for the output y, select y. Click Compare. Set Baseline to
the original run and Compare to to the converter run. Click Compare.

The Simulation Data Inspector displays a plot of the baseline floating-point run
against the fixed-point run and the difference between them.

14 Fixed-Point Conversion

14-32

8 On the Verification Output tab, the app provides a link to the Fixed_Point Report.

To open the report, click the dti_fixpt_report.html link.
9 Click Next to go to the Generate Code step.

Generate Fixed-Point C Code

1 In the Generate dialog box, set Build source to Fixed-Point and Build type to
Source Code.

 Propose Fixed-Point Data Types Based on Derived Ranges

14-33

2 Set Language to C.
3 Click Generate to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and supporting
files in the default subfolder, codegen/lib/dti_fixpt.

4 The app displays the generated code for dti_fixpt.c. In the generated C code,
variables are assigned fixed-point data types.

5 Click Next to go to the Finish Workflow page.

On the Finish Workflow page, the app displays a project summary and links to
generated output files.

14 Fixed-Point Conversion

14-34

Specify Type Proposal Options
To view type proposal options, in the MATLAB Coder app, on the Convert to Fixed Point
page, click the Settings arrow .

The following options are available.

Basic Type Proposal
Settings

Values Description

Fixed-point type proposal
mode

Propose fraction lengths for
specified word length

Use the specified word
length for data type
proposals and propose the
minimum fraction lengths to
avoid overflows.

Propose word lengths for
specified fraction length
(default)

Use the specified fraction
length for data type
proposals and propose the
minimum word lengths to
avoid overflows.

Default word length 16 (default) Default word length to use
when Fixed-point type
proposal mode is set to
Propose fraction
lengths for specified
word lengths

Default fraction length 4 (default) Default fraction length to
use when Fixed-point type
proposal mode is set to
Propose word lengths
for specified
fraction lengths

Advanced Type Proposal Settings Values Description
When proposing types ignore simulation

ranges
Propose data types based on
derived ranges.

 Specify Type Proposal Options

14-35

Advanced Type Proposal Settings Values Description
Note Manually-entered static ranges
always take precedence over simulation
ranges.

ignore derived
ranges

Propose data types based on
simulation ranges.

use all collected data
(default)

Propose data types based on both
simulation and derived ranges.

Propose target container types Yes Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation (8,16,32, 64 …). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

No (default) Propose data types with the
minimum word length needed to
represent the value.

Optimize whole numbers No Do not use integer scaling for
variables that were whole numbers
during simulation.

Yes (default) Use integer scaling for variables
that were whole numbers during
simulation.

Signedness Automatic (default) Proposes signed and unsigned data
types depending on the range
information for each variable.

Signed Propose signed data types.
Unsigned Propose unsigned data types.

14 Fixed-Point Conversion

14-36

Advanced Type Proposal Settings Values Description
Safety margin for sim min/max (%) 0 (default) Specify safety factor for simulation

minimum and maximum values.

The simulation minimum and
maximum values are adjusted by
the percentage designated by this
parameter, allowing you to specify a
range different from that obtained
from the simulation run. For
example, a value of 55 specifies
that you want a range at least 55
percent larger. A value of -15
specifies that a range up to 15
percent smaller is acceptable.

Search paths '' (default) Add paths to the list of paths to
search for MATLAB files. Separate
list items with a semicolon.

fimath Settings Values Description
Rounding method Ceiling Specify the fimath

properties for the generated
fixed-point data types.

The default fixed-point math
properties use the Floor
rounding and Wrap overflow
because they are the default
actions in C. These settings
generate the most efficient
code but might cause
problems with overflow.

After code generation, if
required, modify these
settings to optimize the
generated code, or example,
avoid overflow or eliminate

Convergent
Floor (default)
Nearest
Round
Zero

Overflow action Saturate
Wrap (default)

Product mode FullPrecision (default)
KeepLSB
KeepMSB
SpecifyPrecision

Sum mode FullPrecision (default)

 Specify Type Proposal Options

14-37

fimath Settings Values Description
KeepLSB bias, and then rerun the

verification.

For more information on
fimath properties, see
“fimath Object Properties”
(Fixed-Point Designer).

KeepMSB
SpecifyPrecision

Generated File Settings Value Description
Generated fixed-point file
name suffix

_fixpt (default) Specify the suffix to add to
the generated fixed-point
file names. For example, by
default, if you generate a
static library for a project
named test, the generated
files are in the subfolder
codegen\lib
\test_fixpt. The
generated static library is
named test.lib, but the
generated C code files use
the suffix, for example,
test_fixpt.c.

Plotting and Reporting
Settings

Values Description

Custom plot function '' (default) Specify the name of a
custom plot function to use
for comparison plots.

Plot with Simulation Data
Inspector

No (default) Specify whether to use the
Simulation Data Inspector
for comparison plots.

Yes

Highlight potential data
type issues

No (default) Specify whether to highlight
potential data types in the
generated html report. If
this option is turned on, the
report highlights single-

14 Fixed-Point Conversion

14-38

Plotting and Reporting
Settings

Values Description

Yes precision, double-precision,
and expensive fixed-point
operation usage in your
MATLAB code.

 Specify Type Proposal Options

14-39

Detect Overflows
This example shows how to detect overflows using the MATLAB Coder app. At the
numerical testing stage in the conversion process, you choose to simulate the fixed-point
code using scaled doubles. The app then reports which expressions in the generated code
produce values that overflow the fixed-point data type.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\overflow.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the overflow.m and overflow_test.m files to your local working folder.

Type Name Description
Function code overflow.m Entry-point MATLAB function
Test file overflow_test.m MATLAB script that tests

overflow.m

The overflow Function

function y = overflow(b,x,reset)
 if nargin<3, reset = true; end
 persistent z p

14 Fixed-Point Conversion

14-40

 if isempty(z) || reset
 p = 0;
 z = zeros(size(b));
 end
 [y,z,p] = fir_filter(b,x,z,p);
end
function [y,z,p] = fir_filter(b,x,z,p)
 y = zeros(size(x));
 nx = length(x);
 nb = length(b);
 for n = 1:nx
 p=p+1; if p>nb, p=1; end
 z(p) = x(n);
 acc = 0;
 k = p;
 for j=1:nb
 acc = acc + b(j)*z(k);
 k=k-1; if k<1, k=nb; end
 end
 y(n) = acc;
 end
end

The overflow_test Function

You use this test file to define input types for b, x, and reset, and, later, to verify the
fixed-point version of the algorithm.

function overflow_test
 % The filter coefficients were computed using the FIR1 function from
 % Signal Processing Toolbox.
 % b = fir1(11,0.25);
 b = [-0.004465461051254
 -0.004324228005260
 +0.012676739550326
 +0.074351188907780
 +0.172173206073645
 +0.249588554524763
 +0.249588554524763
 +0.172173206073645
 +0.074351188907780
 +0.012676739550326
 -0.004324228005260
 -0.004465461051254]';

 Detect Overflows

14-41

 % Input signal
 nx = 256;
 t = linspace(0,10*pi,nx)';

 % Impulse
 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain
 % The maximum gain of a filter will occur when the inputs line up with the
 % signs of the filter's impulse response.
 x_max_gain = sign(b)';
 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
 x_max_gain = x_max_gain(1:nx);

 % Sums of sines
 f0=0.1; f1=2;
 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp
 f_chirp = 1/16; % Target frequency
 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];
 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};
 y = zeros(size(x));

 for i=1:size(x,2)
 reset = true;
 y(:,i) = overflow(b,x(:,i),reset);
 end

 test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)
 figure(fig)
 clf
 sub_plot = 1;
 font_size = 10;
 for i=1:size(x,2)
 subplot(4,1,sub_plot)
 sub_plot = sub_plot+1;
 plot(t,x(:,i),'c',t,y1(:,i),'k')

14 Fixed-Point Conversion

14-42

 axis('tight')
 xlabel('t','FontSize',font_size);
 title(titles{i},'FontSize',font_size);
 ax = gca;
 ax.FontSize = 10;
 end
 figure(gcf)
end

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function overflow to the project, browse to the file overflow.m,
and then click Open. By default, the app saves information and settings for this project in
the current folder in a file named overflow.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

 Detect Overflows

14-43

2 Click Next to go to the Define Input Types step.

The app screens overflow.m for code violations and code generation readiness
issues. The app does not find issues in overflow.m.

Define Input Types
1 On the Define Input Types page, to add overflow_test as a test file, browse to

overflow_test.m, and then click Open.
2 Click Autodefine Input Types.

The test file runs. The app determines from the test file that the input type of b is
double(1x12), x is double(256x1), and reset is logical(1x1).

14 Fixed-Point Conversion

14-44

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file
overflow_test replacing calls to overflow with calls to the generated MEX function.
If the app finds issues, it provides warning and error messages. You can click a message
to highlight the problematic code in a pane where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
overflow_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information — type, size, and complexity — for variables in
your code. For more information, see “View and Modify Variable Information” on
page 14-79.

 Detect Overflows

14-45

On the Function Replacements tab the app displays functions that are not
supported for fixed-point conversion. See “Running a Simulation” on page 14-89.

2 To view the fimath settings, click the Settings arrow . Set the fimath Product
mode and Sum mode to KeepLSB. These settings model the behavior of integer
operations in the C language.

14 Fixed-Point Conversion

14-46

3 Click Analyze.

The test file, overflow_test, runs. The app displays simulation minimum and
maximum ranges on the Variables tab. Using the simulation range data, the software
proposes fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column.

4 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the
entry-point function.

 Detect Overflows

14-47

If errors and warnings occur during validation, the app displays them on the Output
tab. See “Validating Types” on page 14-103.

Test Numerics and Check for Overflows

1 Click the Test arrow . Verify that the test file is overflow_test.m. Select Use
scaled doubles to detect overflows, and then click Test.

The app runs the test file that you used to define input types to test the fixed-point
MATLAB code. Because you selected to detect overflows, it also runs the simulation
using scaled double versions of the proposed fixed-point types. Scaled doubles store
their data in double-precision floating-point, so they carry out arithmetic in full
range. Because they retain their fixed-point settings, they can report when a
computation goes out of the range of the fixed-point type.

The simulation runs. The app detects an overflow. The app reports the overflow on
the Overflow tab. To highlight the expression that overflowed, click the overflow.

2 Determine whether it was the sum or the multiplication that overflowed.

14 Fixed-Point Conversion

14-48

In the fimath settings, set Product mode to FullPrecision, and then repeat the
conversion and test the fixed-point code again.

The overflow still occurs, indicating that it is the addition in the expression that is
overflowing.

 Detect Overflows

14-49

Replace the exp Function with a Lookup Table
This example shows how to replace the exp function with a lookup table approximation in
fixed-point code generated using the MATLAB Coder app.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)
 y = exp(x);
end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = my_fcn(x(itr));
end
plot(x, y);

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

14 Fixed-Point Conversion

14-50

Select Source Files

To add the entry-point function my_fcn to the project, browse to the file my_fcn.m, and
then click Open. By default, the app saves information and settings for this project in the
current folder in a file named my_fcn.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

2 Click Next to go to the Define Input Types step.

 Replace the exp Function with a Lookup Table

14-51

The app screens my_fcn.m for code violations and code generation readiness issues.
The app opens the Review Code Generation Readiness page.

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for
fixed-point conversion. In a later step, you specify a lookup table replacement for this
function.

2 Click Next to go to the Define Input Types step.

14 Fixed-Point Conversion

14-52

Define Input Types

1 Add my_fcn_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates an instrumented MEX function. It runs
the test file my_fcn_test replacing calls to my_fcn with calls to the generated MEX
function. If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a pane where you can edit the code.

1 On the Check for Run-Time Issues page, the app populates the test file field with
my_fcn_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Replace exp Function with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

 Replace the exp Function with a Lookup Table

14-53

2 On the Function Replacements tab, right-click the exp function and select Lookup
Table.

14 Fixed-Point Conversion

14-54

The app moves the exp function to the list of functions that it will replace with a
Lookup Table. By default, the lookup table uses linear interpolation and 1000 points.
Design Min and Design Max are set to Auto which means that the app uses the
design minimum and maximum values that it detects by either running a simulation
or computing derived ranges.

3 Click the Analyze arrow , select Log data for histogram, and verify that the test
file is my_fcn_test.

4 Click Analyze.

 Replace the exp Function with a Lookup Table

14-55

The simulation runs. On the Variables tab, the app displays simulation minimum and
maximum ranges. Using the simulation range data, the software proposes fixed-point
types for each variable based on the default type proposal settings, and displays them
in the Proposed Type column. The app enables the Convert option.

5 Examine the proposed types and verify that they cover the full simulation range. To
view logged histogram data for a variable, click its Proposed Type field. The
histogram provides range information and the percentage of simulation range
covered by the proposed data type.

Convert to Fixed Point

1 Click Convert.

The app validates the proposed types, and generates a fixed-point version of the
entry-point function, my_fcn_fixpt.m.

2 In the Output Files list, select my_fcn_fixpt.m.

The conversion process generates a lookup table approximation, replacement_exp,
for the exp function.

14 Fixed-Point Conversion

14-56

The generated fixed-point function, my_fcn_fixpt.m, calls this approximation
instead of calling exp. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. By
default, the lookup table uses linear interpolation, 1000 points, and the minimum and
maximum values detected by running the test file.

function y = my_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not

 Replace the exp Function with a Lookup Table

14-57

match the behavior of the original code closely enough, modify the interpolation
method or number of points used in the lookup table. Then, regenerate the code.

14 Fixed-Point Conversion

14-58

Replace a Custom Function with a Lookup Table
This example shows how to replace a custom function with a lookup table approximation
function using the MATLAB Coder app.

Prerequisites

This example requires the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn.m which is the function that you want to
replace.

function y = custom_fcn(x)
 y = 1./(1+exp(-x));
end

2 Create a wrapper function, call_custom_fcn.m, that calls custom_fcn.m.

function y = call_custom_fcn(x)
 y = custom_fcn(x);
end

3 Create a test file, custom_test.m, that uses call_custom_fcn.

close all
clear all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = call_custom_fcn(x(itr));

 Replace a Custom Function with a Lookup Table

14-59

end
plot(x, y);

Open the MATLAB Coder App

1 Navigate to the work folder that contains the file for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function call_custom_fcn to the project, browse to the file
call_custom_fcn.m, and then click Open. By default, the app saves information and
settings for this project in the current folder in a file named call_custom_fcn.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

14 Fixed-Point Conversion

14-60

2 Click Next to go to the Define Input Types step.

The app screens call_custom_fcn.m for code violations and code generation
issues. The app opens the Review Code Generation Readiness page.

Review Code Generation Readiness

1 Click Review Issues. The app indicates that the exp function is not supported for
fixed-point conversion. You can ignore this warning because you are going to replace
custom_fcn, which is the function that calls exp.

 Replace a Custom Function with a Lookup Table

14-61

2 Click Next to go to the Define Input Types step.

Define Input Types
1 Add custom_test as a test file and then click Autodefine Input Types.

The test file runs. The app determines from the test file that x is a scalar double.
2 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. It runs the test file
custom_test replacing calls to call_custom_fcn with calls to the generated MEX
function. If the app finds issues, it provides warning and error messages. You can click a
message to highlight the problematic code in a pane where you can edit the code.

14 Fixed-Point Conversion

14-62

1 On the Check for Run-Time Issues page, the app populates the test file field with
custom_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Replace custom_fcn with Lookup Table

1 Select the Function Replacements tab.

The app indicates that you must replace the exp function.

2 Enter the name of the function to replace, custom_fcn, select Lookup Table, and
then click .

The app adds custom_fcn to the list of functions that it will replace with a Lookup
Table. By default, the lookup table uses linear interpolation and 1000 points. The app
sets Design Min and Design Max to Auto which means that app uses the design
minimum and maximum values that it detects by either running a simulation or
computing derived ranges.

 Replace a Custom Function with a Lookup Table

14-63

3 Click the Analyze arrow , select Log data for histogram, and verify that the test
file is call_custom_test.

4 Click Analyze.

The simulation runs. The app displays simulation minimum and maximum ranges on
the Variables tab. Using the simulation range data, the software proposes fixed-point
types for each variable based on the default type proposal settings, and displays them
in the Proposed Type column. The Convert option is now enabled.

5 Examine the proposed types and verify that they cover the full simulation range. To
view logged histogram data for a variable, click its Proposed Type field. The
histogram provides range information and the percentage of simulation range
covered by the proposed data type.

14 Fixed-Point Conversion

14-64

Convert to Fixed Point

1 Click Convert.

The app validates the proposed types and generates a fixed-point version of the entry-
point function, call_custom_fcn_fixpt.m.

2 In the Output Files list, select call_custom_fcn_fixpt.m.

The conversion process generates a lookup table approximation,
replacement_custom_fcn, for the custom_fcn function. The fixed-point
conversion process infers the ranges for the function and then uses an interpolated
lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by
running the test file.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this
approximation instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_custom_fcn(x), 0, 16, 16, fm);
end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not

 Replace a Custom Function with a Lookup Table

14-65

match the behavior of the original code closely enough, modify the interpolation
method or number of points used in the lookup table and then regenerate code.

14 Fixed-Point Conversion

14-66

Enable Plotting Using the Simulation Data Inspector
You can use the Simulation Data Inspector with the MATLAB Coder app to inspect and
compare floating-point and fixed-point logged input and output data.

1 On the Convert to Fixed Point page,

Click the Settings arrow .
2 Expand the Plotting and Reporting settings and set Plot with Simulation Data

Inspector to Yes.

3 Click the Test arrow . Select Log inputs and outputs for comparison plots,
and then click Test.

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” on page
14-21“Propose Data Types Based on Derived Ranges” (Fixed-Point Designer).

 Enable Plotting Using the Simulation Data Inspector

14-67

Visualize Differences Between Floating-Point and Fixed-
Point Results

This example shows how to configure the MATLAB Coder app to use a custom plot
function to compare the behavior of the generated fixed-point code against the behavior
of the original floating-point MATLAB code.

By default, when the Log inputs and outputs for comparison plots option is enabled,
the conversion process uses a time series based plotting function to show the floating-
point and fixed-point results and the difference between them. However, during fixed-
point conversion you might want to visualize the numerical differences in a view that is
more suitable for your application domain. This example shows how to customize plotting
and produce scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

This example requires the following products:

• MATLAB
• Fixed-Point Designer
• MATLAB Coder
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

14 Fixed-Point Conversion

14-68

Type Name Description
Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m
Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;
if isempty(b)
 b = complex(zeros(1,16));
 h = complex(zeros(1,16));
 h(8) = 1;
end

b = [in, b(1:end-1)];
y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;

h = h + update;
h(8) = 1;
ho = h;

end

The myFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
 y = myFilter(d(idx));
end

 Visualize Differences Between Floating-Point and Fixed-Point Results

14-69

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
% i) name
% ii) functionName
% floatVals - cell array of logged original values for the 'varInfo.name' variable
% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.
function plotDiff(varInfo, floatVals, fixedVals)
 varName = varInfo.name;
 fcnName = varInfo.functionName;

 % escape the '_'s because plot titles treat these as subscripts
 escapedVarName = regexprep(varName,'_','_');
 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values
 flatFloatVals = floatVals(1:end);
 flatFixedVals = fixedVals(1:end);

 % build Titles
 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];
 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName
 case 'y'
 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values
 y_vec = flatFloatVals;
 subplot(1, 2, 1);
 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values
 y_vec = flatFixedVals;
 subplot(1, 2, 2);
 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise
 % Plot only output 'y' for this example, skip the rest
 end

14 Fixed-Point Conversion

14-70

end

function plotScatter(x_vec, y_vec, n, figTitle)
 % plot the last n samples
 x_plot = x_vec(end-n+1:end);
 y_plot = y_vec(end-n+1:end);

 hold on
 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on
 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);
end

Open the MATLAB Coder App

1 Navigate to the folder that contains the files for this example.
2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select Source Files

To add the entry-point function myFilter to the project, browse to the file myFilter.m,
and then click Open.

By default, the app saves information and settings for this project in the current folder in
a file named myFilter.prj.

Enable Fixed-Point Conversion

1 Set Numeric Conversion to Convert to fixed point.

 Visualize Differences Between Floating-Point and Fixed-Point Results

14-71

2 Click Next to go to the Define Input Types step.

The app screens myFilter.m for code violations and code generation readiness
issues. The app does not find issues in myFilter.m.

Define Input Types
1 On the Define Input Types page, to add myFilterTest as a test file, browse to

myFilterTest.m, and then click Open.
2 Click Autodefine Input Types.

The app determines from the test file that the input type of in is
complex(double(1x1)).

14 Fixed-Point Conversion

14-72

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates instrumented MEX. myFilter. It runs
the test file myFilterTest replacing calls to myFilter with calls to the generated MEX.
If the app finds issues, it provides warning and error messages. You can click a message
to highlight the problematic code in a window where you can edit the code.

1 Browse to the test file myFiltertest.m.
2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Convert to Fixed Point step.

Convert to Fixed Point

1 The app displays compiled information for variables in your code. For more
information, see “View and Modify Variable Information” on page 14-79“View and
Modify Variable Information” (Fixed-Point Designer).

 Visualize Differences Between Floating-Point and Fixed-Point Results

14-73

2 To open the settings dialog box, click the Settings arrow .

a Verify that Default word length is set to 16.
b Under Advanced, set Signedness to Signed
c Under Plotting and Reporting, set Custom plot function to plotDiff.

3 Click the Analyze arrow . Verify that the test file is myFilterTest.
4 Click Analyze.

The test file, myFilterTest, runs and the app displays simulation minimum and
maximum ranges on the Variables tab. Using the simulation range data, the software

14 Fixed-Point Conversion

14-74

proposes fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column.

5 To convert the floating-point algorithm to fixed point, click Convert.

The software validates the proposed types and generates a fixed-point version of the
entry-point function.

 Visualize Differences Between Floating-Point and Fixed-Point Results

14-75

Test Numerics and View Comparison Plots

1 Click Test arrow , select Log inputs and outputs for comparison plots, and
then click Test.

The app runs the test file that you used to define input types to test the fixed-point
MATLAB code. Because you selected to log inputs and outputs for comparison plots
and to use the custom plotting function, plotDiff.m, for these plots, the app uses

14 Fixed-Point Conversion

14-76

this function to generate the comparison plot. The plot shows that the fixed-point
results do not closely match the floating-point results.

2 In the settings, increase the DefaultWordLength to 24 and then convert to fixed
point again.

The app converts myFilter.m to fixed point and proposes fixed-point data types
using the new default word length.

3 Run the test numerics step again.

The increased word length improves the results. This time, the plot shows that the
fixed-point results match the floating-point results.

 Visualize Differences Between Floating-Point and Fixed-Point Results

14-77

14 Fixed-Point Conversion

14-78

View and Modify Variable Information

View Variable Information
On the Convert to Fixed Point page of the MATLAB Coder app, you can view
information about the variables in the MATLAB functions. To view information about the
variables for the function that you selected in the Source Code pane, use the Variables
tab or pause over a variable in the code window. For more information, see “Viewing
Variables” on page 14-98.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or
local variables.

• Type

The original size, type, and complexity of each variable.
• Sim Min

The minimum value assigned to the variable during simulation.
• Sim Max

The maximum value assigned to the variable during simulation.

To search for a variable in the MATLAB code window and on the Variables tab, use Ctrl
+F.

Modify Variable Information
If you modify variable information, the app highlights the modified values using bold text.
You can modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min information.
See “Promote Sim Min and Sim Max Values” on page 14-81.

 View and Modify Variable Information

14-79

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

• Static Max

You can enter a value for Static Max into the field or promote Sim Max information.
See “Promote Sim Min and Sim Max Values” on page 14-81.

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

• Whole Number

The app uses simulation data to determine whether the values assigned to a variable
during simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited
value in subsequent analyses.

• Proposed Type

You can modify the signedness, word length, and fraction length settings individually:

• On the Variables tab, modify the value in the ProposedType field.

• In the code window, select a variable, and then modify the Proposed Type field.

14 Fixed-Point Conversion

14-80

If you selected to log data for a histogram, the histogram dynamically updates to
reflect the modifications to the proposed type. You can also modify the proposed type
in the histogram, see “Log Data for Histogram” on page 14-100.

Revert Changes
• To clear results and revert edited values, right-click the Variables tab and select

Reset entire table.
• To revert the type of a selected variable to the type computed by the app, right-click

the field and select Undo changes.
• To revert changes to variables, right-click the field and select Undo changes for

all variables.
• To clear a static range value, right-click an edited field and select Clear this

static range.
• To clear manually entered static range values, right-click anywhere on the Variables

tab and select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values
With the MATLAB Coder app, you can promote simulation minimum and maximum values
to static minimum and maximum values. This capability is useful if you have not specified
static ranges and you have simulated the model with inputs that cover the full intended
operating range.

 View and Modify Variable Information

14-81

To copy:

• A simulation range for a selected variable, select a variable, right-click, and then
select Copy sim range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static Max column,
and then select Copy sim ranges for all top-level inputs.

• Simulation ranges for persistent variables, right-click the Static Min or Static Max
column, and then select Copy sim ranges for all persistent variables.

14 Fixed-Point Conversion

14-82

Automated Fixed-Point Conversion
In this section...
“Automated Fixed-Point Conversion Capabilities” on page 14-83
“Code Coverage” on page 14-84
“Proposing Data Types” on page 14-88
“Locking Proposed Data Types” on page 14-90
“Viewing Functions” on page 14-91
“Viewing Variables” on page 14-98
“Log Data for Histogram” on page 14-100
“Function Replacements” on page 14-102
“Validating Types” on page 14-103
“Testing Numerics” on page 14-103
“Detecting Overflows” on page 14-103

Automated Fixed-Point Conversion Capabilities
You can convert floating-point MATLAB code to fixed-point code using the MATLAB Coder
app or at the command line using the codegen function -float2fixed option. You can
choose to propose data types based on simulation range data, derived (also known as
static) range data, or both.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the app uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the app cannot change it. For more
information, see “Locking Proposed Data Types” on page 14-90.

For a list of supported MATLAB features and functions, see “MATLAB Language Features
Supported for Automated Fixed-Point Conversion” (Fixed-Point Designer).

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your algorithm
using code coverage results.

• Propose fraction lengths based on default word lengths.

 Automated Fixed-Point Conversion

14-83

• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits that each variable uses.
• Detect overflows.

Code Coverage
By default, the app shows code coverage results. Your test files must exercise the
algorithm over its full operating range so that the simulation ranges are accurate. The
quality of the proposed fixed-point data types depends on how well the test files cover the
operating range of the algorithm with the accuracy that you want.

Reviewing code coverage results helps you to verify that your test files are exercising the
algorithm adequately. If the code coverage is inadequate, modify the test files or add
more test files to increase coverage. If you simulate multiple test files in one run, the app
displays cumulative coverage. However, if you specify multiple test files, but run them one
at a time, the app displays the coverage of the file that ran last.

The app displays a color-coded coverage bar to the left of the code.

14 Fixed-Point Conversion

14-84

This table describes the color coding.

 Automated Fixed-Point Conversion

14-85

Coverage Bar
Color

Indicates

Green One of the following situations:

• The entry-point function executes multiple times and the code
executes more than one time.

• The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code
executes one time.

Red Code does not execute.

When you place your cursor over the coverage bar, the color highlighting extends over
the code. For each section of code, the app displays the number of times that the section
executes.

14 Fixed-Point Conversion

14-86

To verify that your test files are testing your algorithm over the intended operating range,
review the code coverage results.

Coverage Bar
Color

Action

Green If you expect sections of code to execute more frequently than the
coverage shows, either modify the MATLAB code or the test files.

 Automated Fixed-Point Conversion

14-87

Coverage Bar
Color

Action

Orange This behavior is expected for initialization code, for example, the
initialization of persistent variables. If you expect the code to execute
more than one time, either modify the MATLAB code or the test files.

Red If the code that does not execute is an error condition, this behavior is
acceptable. If you expect the code to execute, either modify the
MATLAB code or the test files. If the code is written conservatively
and has upper and lower boundary limits, and you cannot modify the
test files to reach this code, add static minimum and maximum values.
See “Computing Derived Ranges” on page 14-89.

Code coverage is on by default. Turn it off only after you have verified that you have
adequate test file coverage. Turning off code coverage can speed up simulation. To turn
off code coverage, on the Convert to Fixed Point page:

1 Click the Analyze arrow .
2 Clear the Show code coverage check box.

Proposing Data Types
The app proposes fixed-point data types based on computed ranges and the word length
or fraction length setting. The computed ranges are based on simulation range data,
derived range data (also known as static ranges), or both. If you run a simulation and
compute derived ranges, the app merges the simulation and derived ranges.

Note You cannot propose data types based on derived ranges for MATLAB classes.

Derived range analysis is not supported for non-scalar variables.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the app uses them when proposing data types. You can modify
and lock the proposed type so that the tool cannot change it. For more information, see
“Locking Proposed Data Types” on page 14-90.

14 Fixed-Point Conversion

14-88

Running a Simulation

During fixed-point conversion, the app generates an instrumented MEX function for your
entry-point MATLAB file. If the build completes without errors, the app displays compiled
information (type, size, complexity) for functions and variables in your code. To navigate
to local functions, click the Functions tab. If build errors occur, the app provides error
messages that link to the line of code that caused the build issues. You must address
these errors before running a simulation. Use the link to navigate to the offending line of
code in the MATLAB editor and modify the code to fix the issue. If your code uses
functions that are not supported for fixed-point conversion, the app displays them on the
Function Replacements tab. See “Function Replacements” on page 14-102.

Before running a simulation, specify the test file or files that you want to run. When you
run a simulation, the app runs the test file, calling the instrumented MEX function. If you
modify the MATLAB design code, the app automatically generates an updated MEX
function before running a test file.

If the test file runs successfully, the simulation minimum and maximum values and the
proposed types are displayed on the Variables tab. If you manually enter static ranges for
a variable, the manually entered ranges take precedence over the simulation ranges. If
you manually modify the proposed types by typing or using the histogram, the data types
are locked so that the app cannot modify them.

If the test file fails, the errors are displayed on the Output tab.

Test files must exercise your algorithm over its full operating range. The quality of the
proposed fixed-point data types depends on how well the test file covers the operating
range of the algorithm with the accuracy that you want. You can add test files and select
to run more than one test file during the simulation. If you run multiple test files, the app
merges the simulation results.

Optionally, you can select to log data for histograms. After running a simulation, you can
view the histogram for each variable. For more information, see “Log Data for Histogram”
on page 14-100.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such
test files often takes a very long time. The app can compute derived ranges for scalar
variables only.

 Automated Fixed-Point Conversion

14-89

To compute derived ranges and propose data types based on these ranges, provide static
minimum and maximum values or proposed data types for all input variables. To improve
the analysis, enter as much static range information as possible for other variables. You
can manually enter ranges or promote simulation ranges to use as static ranges. Manually
entered static ranges always take precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to
match this type. Manually entered data types are locked so that the app cannot modify
them. The app uses these data types to calculate the input minimum and maximum values
and to derive ranges for other variables. For more information, see “Locking Proposed
Data Types” on page 14-90.

When you select Compute Derived Ranges, the app runs a derived range analysis to
compute static ranges for variables in your MATLAB algorithm. When the analysis is
complete, the static ranges are displayed on the Variables tab. If the run produces +/-
Inf derived ranges, consider defining ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the app
performs faster static analysis. The computed ranges might be larger than necessary.
Select this option in cases where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set
a timeout. When the timeout is reached, the app aborts the analysis.

Locking Proposed Data Types
You can lock proposed data types against changes by the app using one of the following
methods:

• Manually setting a proposed data type in the app.
• Right-clicking a type proposed by the tool and selecting Lock computed value.

The app displays locked data types in bold so that they are easy to identify. You can unlock
a type using one of the following methods:

• Manually overwriting it.
• Right-clicking it and selecting Undo changes. This action unlocks only the selected

type.
• Right-clicking and selecting Undo changes for all variables. This action

unlocks all locked proposed types.

14 Fixed-Point Conversion

14-90

Viewing Functions
During the Convert to Fixed Point step of the fixed-point conversion process, you can
view a list of functions in your project in the left pane. This list also includes function
specializations and class methods. When you select a function from the list, the MATLAB
code for that function or class method is displayed in the code window and the variables
that they use are displayed on the Variables tab.

After conversion, the left pane also displays a list of output files including the fixed-point
version of the original algorithm. If your function is not specialized, the app retains the
original function name in the fixed-point file name and appends the fixed-point suffix. For
example, here the fixed-point version of ex_2ndOrder_filter.m is
ex_2ndOrder_filter_fixpt.m.

 Automated Fixed-Point Conversion

14-91

Classes

The app displays information for the class and each of its methods. For example, consider
a class, Counter, that has a static method, MAX_VALUE, and a method, next.

If you select the class, the app displays the class and its properties on the Variables tab.

14 Fixed-Point Conversion

14-92

If you select a method, the app displays only the variables that the method uses.

 Automated Fixed-Point Conversion

14-93

Specializations

If a function is specialized, the app lists each specialization and numbers them
sequentially. For example, consider a function, dut, that calls subfunctions, foo and bar,
multiple times with different input types.

function y = dut(u, v)

tt1 = foo(u);
tt2 = foo([u v]);
tt3 = foo(complex(u,v));

ss1 = bar(u);
ss2 = bar([u v]);
ss3 = bar(complex(u,v));

14 Fixed-Point Conversion

14-94

y = (tt1 + ss1) + sum(tt2 + ss2) + real(tt3) + real(ss3);

end

function y = foo(u)
 y = u * 2;
end

function y = bar(u)
 y = u * 4;
end

If you select the top-level function, the app displays all the variables on the Variables tab.

 Automated Fixed-Point Conversion

14-95

If you select the tree view, the app also displays the line numbers for the call to each
specialization.

If you select a specialization, the app displays only the variables that the specialization
uses.

14 Fixed-Point Conversion

14-96

In the generated fixed-point code, the number of each fixed-point specialization matches
the number in the Source Code list, which makes it easy to trace between the floating-
point and fixed-point versions of your code. For example, the generated fixed-point
function for foo > 1 is named foo_s1.

 Automated Fixed-Point Conversion

14-97

Viewing Variables
The Variables tab provides the following information for each variable in the function
selected in the Navigation pane:

• Type — The original data type of the variable in the MATLAB algorithm.
• Sim Min and Sim Max — The minimum and maximum values assigned to the variable

during simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown in
bold. Editing these fields does not trigger static range analysis, but the tool uses the
edited values in subsequent analyses. You can revert to the types proposed by the app.

• Static Min and Static Max — The static minimum and maximum values.

14 Fixed-Point Conversion

14-98

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values for all input variables. To improve the analysis,
enter as much static range information as possible for other variables.

When you compute derived ranges, the app runs a static analysis to compute static
ranges for variables in your code. When the analysis is complete, the static ranges are
displayed. You can edit the computed results. Edited fields are shown in bold. Editing
these fields does not trigger static range analysis, but the tool uses the edited values
in subsequent analyses. You can revert to the types proposed by the app.

• Whole Number — Whether all values assigned to the variable during simulation are
integers.

The app determines whether a variable is always a whole number. You can modify this
field. Edited fields are shown in bold. Editing these fields does not trigger static range
analysis, but the app uses the edited values in subsequent analyses. You can revert to
the types proposed by the app.

• The proposed fixed-point data type for the specified word (or fraction) length.
Proposed data types use the numerictype notation. For example,
numerictype(1,16,12) denotes a signed fixed-point type with a word length of 16
and a fraction length of 12. numerictype(0,16,12) denotes an unsigned fixed-point
type with a word length of 16 and a fraction length of 12.

Because the app does not apply data types to expressions, it does not display proposed
types for them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor
over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables
tab. The app highlights occurrences in the code and displays only the variable with the
specified name on the Variables tab.

Viewing Information for MATLAB Classes

The app displays:

• Code for MATLAB classes and code coverage for class methods in the code window.
Use the Source Code list on the Convert to Fixed Point page to select which class
or class method to view. If you select a class method, the app highlights the method in
the code window.

 Automated Fixed-Point Conversion

14-99

• Information about MATLAB classes on the Variables tab.

Log Data for Histogram
To log data for histograms:

14 Fixed-Point Conversion

14-100

• On the Convert to Fixed Point page, click the Analyze arrow .
• Select Log data for histogram.

• Click Analyze Ranges.

After simulation, to view the histogram for a variable, on the Variables tab, click the
Proposed Type field for that variable.

The histogram provides the range of the proposed data type and the percentage of
simulation values that the proposed data type covers. The bit weights are displayed along
the X-axis, and the percentage of occurrences along the Y-axis. Each bin in the histogram
corresponds to a bit in the binary word. For example, this histogram displays the range
for a variable of type numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change the
proposed data type.

 Automated Fixed-Point Conversion

14-101

• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram window,

click .

Function Replacements
If your MATLAB code uses functions that do not have fixed-point support, the app lists
these functions on the Function Replacements tab. You can choose to replace
unsupported functions with a custom function replacement or with a lookup table.

You can add and remove function replacements from this list. If you enter a function
replacement for a function, the replacement function is used when you build the project.
If you do not enter a replacement, the app uses the type specified in the original MATLAB
code for the function.

Note Using this table, you can replace the names of the functions but you cannot replace
argument patterns.

If code generation readiness screening is disabled, the list of unsupported functions on
the Function Replacements tab can be incomplete or incorrect. In this case, add the
functions manually. See “Code Generation Readiness Screening in the MATLAB Coder
App” on page 17-43.

14 Fixed-Point Conversion

14-102

Validating Types
Converting the code to fixed point validates the build using the proposed fixed-point data
types. If the validation is successful, you are ready to test the numerical behavior of the
fixed-point MATLAB algorithm.

If the errors or warnings occur during validation, they are displayed on the Output tab. If
errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified types to
verify that they are valid.

• On the Function Replacements tab, verify that you have provided function
replacements for unsupported functions.

Testing Numerics
After converting code to fixed point and validating the proposed fixed-point data types,
click Test to verify the behavior of the fixed-point MATLAB algorithm. By default, if you
added a test file to define inputs or run a simulation, the app uses this test file to test
numerics. Optionally, you can add test files and select to run more than one test file. The
app compares the numerical behavior of the generated fixed-point MATLAB code with the
original floating-point MATLAB code. If you select to log inputs and outputs for
comparison plots, the app generates an additional plot for each scalar output. This plot
shows the floating-point and fixed-point results and the difference between them. For
nonscalar outputs, only the error information is shown.

After fixed-point simulation, if the numerical results do not meet the accuracy that you
want, modify fixed-point data type settings and repeat the type validation and numerical
testing steps. You might have to iterate through these steps multiple times to achieve the
results that you want.

Detecting Overflows
When testing numerics, selecting Use scaled doubles to detect overflows enables
overflow detection. When this option is selected, the conversion app runs the simulation
using scaled double versions of the proposed fixed-point types. Because scaled doubles
store their data in double-precision floating-point, they carry out arithmetic in full range.
They also retain their fixed-point settings, so they are able to report when a computation
goes out of the range of the fixed-point type. .

 Automated Fixed-Point Conversion

14-103

If the app detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed
• Information on how much each variable overflowed
• A link to the variables or expressions in the code window

If your original algorithm uses scaled doubles, the app also provides overflow information
for these expressions.

See Also

“Detect Overflows” on page 14-40

14 Fixed-Point Conversion

14-104

Convert Fixed-Point Conversion Project to MATLAB
Scripts

This example shows how to convert a MATLAB Coder project to MATLAB scripts when the
project includes automated fixed-point conversion. You can use the -tocode option of the
coder command to create a pair of scripts for fixed-point conversion and fixed-point code
generation. You can use the scripts to repeat the project workflow in a command-line
workflow. Before you convert the project to the scripts, you must complete the Test step
of the fixed-point conversion process.

Prerequisites

This example uses the following files:

• Project file ex_2ndOrder_filter.prj
• Entry-point file ex_2ndOrder_filter.m
• Test bench file ex_2ndOrder_filter_test.m
• Generated fixed-point MATLAB file ex_2ndOrder_filter_fixpt.m

To obtain these files, complete the example “Propose Fixed-Point Data Types Based on
Simulation Ranges” on page 14-7, including these steps:

1 Complete the Test step of the fixed-point conversion process.
2 Configure the project to build a C/C++ static library.

Generate the Scripts

1 Change to the folder that contains the project file ex_2ndOrder_filter.prj.
2 Use the -tocode option of the coder command to convert the project to the scripts.

Use the -script option to specify the file name for the scripts.

coder -tocode ex_2ndOrder_filter -script ex_2ndOrder_filter_script.m

The coder command generates two scripts in the current folder:

ex_2ndOrder_filter_script.m contains the MATLAB commands to:

• Create a code configuration object that has the same settings as the project.
• Run the codegen command to convert the fixed-point MATLAB function

ex_2ndOrder_filter_fixpt to a fixed-point C function.

 Convert Fixed-Point Conversion Project to MATLAB Scripts

14-105

The fixedPointConverter command generates a script in the current folder.
ex_2ndOrder_filter_script_fixpt.m contains the MATLAB commands to:

• Create a floating-point to fixed-point conversion configuration object that has the
same fixed-point conversion settings as the project.

• Run the codegen command to convert the MATLAB function
ex_2ndOrder_filter to the fixed-point MATLAB function
ex_2ndOrder_filter_fixpt.

The suffix in the script file name is the generated fixed-point file name suffix
specified by the project file. In this example, the suffix is the default value
_fixpt.

The coder command overwrites existing files that have the same names as the
generated scripts. If you omit the -script option, the coder command writes the
scripts to the Command Window.

Run Script That Generates Fixed-Point C Code

To run the script that generates fixed-point C code from fixed-point MATLAB code, the
fixed-point MATLAB function specified in the script must be available.

1 Make sure that the fixed-point MATLAB function ex_2ndOrder_filter_fixpt.m is
on the search path.

 addpath c:\coder\ex_2ndOrder_filter\codegen\ex_2ndOrder_filter\fixpt
2 Run the script:

 ex_2ndOrder_filter_script

The code generator creates a C static library with the name
ex_2ndOrder_filter_fixpt in the folder codegen\lib
\ex_2ndOrder_filter_fixpt. The variables cfg and ARGS appear in the base
workspace.

Run Script That Generates Fixed-Point MATLAB Code

If you do not have the fixed-point MATLAB function, or if you want to regenerate it, use
the script that generates the fixed-point MATLAB function from the floating-point
MATLAB function.

1 Make sure that the current folder contains the entry-point function
ex_2ndOrder_filter.m and the test bench file ex_2ndOrder_filter_test.m.

14 Fixed-Point Conversion

14-106

2 Run the script.

 ex_2ndOrder_filter_script_fixpt

The code generator creates ex_2ndOrder_filter_fixpt.m in the folder codegen
\ex_2ndOrder_filter\fixpt. The variables cfg and ARGS appear in the base
workspace.

See Also
codegen | coder | coder.FixptConfig

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 14-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 14-7
• “Convert MATLAB Coder Project to MATLAB Script” on page 20-44

 See Also

14-107

Generated Fixed-Point Code

In this section...
“Location of Generated Fixed-Point Files” on page 14-108
“Minimizing fi-casts to Improve Code Readability” on page 14-109
“Avoiding Overflows in the Generated Fixed-Point Code” on page 14-109
“Controlling Bit Growth” on page 14-110
“Avoiding Loss of Range or Precision” on page 14-110
“Handling Non-Constant mpower Exponents” on page 14-112

Location of Generated Fixed-Point Files
By default, the fixed-point conversion process generates files in a folder named codegen/
fcn_name/fixpt in your local working folder. fcn_name is the name of the MATLAB
function that you are converting to fixed point.

File name Description
fcn_name_fixpt.m Generated fixed-point MATLAB code.

To integrate this fixed-point code into a
larger application, consider generating a
MEX-function for the function and calling
this MEX-function in place of the original
MATLAB code.

fcn_name_fixpt_exVal.mat MAT-file containing:

• A structure for the input arguments.
• The name of the fixed-point file.

fcn_name_fixpt_report.html Link to the type proposal report that
displays the generated fixed-point code and
the proposed type information.

fcn_name_report.html Link to the type proposal report that
displays the original MATLAB code and the
proposed type information.

14 Fixed-Point Conversion

14-108

File name Description
fcn_name_wrapper_fixpt.m File that converts the floating-point data

values supplied by the test file to the fixed-
point types determined for the inputs
during the conversion step. These fixed-
point values are fed into the converted
fixed-point function, fcn_name_fixpt.

Minimizing fi-casts to Improve Code Readability
The conversion process tries to reduce the number of fi-casts by analyzing the floating-
point code. If an arithmetic operation is comprised of only compile-time constants, the
conversion process does not cast the operands to fixed point individually. Instead, it casts
the entire expression to fixed point.

For example, here is the fixed-point code generated for the constant expression x = 1/
sqrt(2) when the selected word length is 14.

Original MATLAB Code Generated Fixed-Point Code
x = 1/sqrt(2); x = fi(1/sqrt(2), 0, 14, 14, fm);

fm is the local fimath.

Avoiding Overflows in the Generated Fixed-Point Code
The conversion process avoids overflows by:

• Using full-precision arithmetic unless you specify otherwise.
• Avoiding arithmetic operations that involve double and fi data types. Otherwise, if the

word length of the fi data type is not able to represent the value in the double
constant expression, overflows occur.

• Avoiding overflows when adding and subtracting non fixed-point variables and fixed-
point variables.

The fixed-point conversion process casts non-fi expressions to the corresponding fi
type.

For example, consider the following MATLAB algorithm.

 Generated Fixed-Point Code

14-109

% A = 5;
% B = ones(300, 1)
function y = fi_plus_non_fi(A, B)
 % '1024' is non-fi, cast it
 y = A + 1024;
 % 'size(B, 1)*length(A)' is a non-fi, cast it
 y = A + size(B, 1)*length(A);
end

The generated fixed-point code is:

%#codegen
% A = 5;
% B = ones(300, 1)
function y = fi_plus_non_fi_fixpt(A, B)
 % '1024' is non-fi, cast it
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(A + fi(1024, 0, 11, 0, fm), 0, 11, 0, fm);
 % 'size(B, 1)*length(A)' is a non-fi, cast it
 y(:) = A + fi(size(B, fi(1, 0, 1, 0, fm))*length(A), 0, 9, 0, fm);
end

Controlling Bit Growth
The conversion process controls bit growth by using subscripted assignments, that is,
assignments that use the colon (:) operator, in the generated code. When you use
subscripted assignments, MATLAB overwrites the value of the left-hand side argument
but retains the existing data type and array size. Using subscripted assignment keeps
fixed-point variables fixed point rather than inadvertently turning them into doubles.
Maintaining the fixed-point type reduces the number of type declarations in the generated
code. Subscripted assignment also prevents bit growth which is useful when you want to
maintain a particular data type for the output.

Avoiding Loss of Range or Precision
Avoiding Loss of Range or Precision in Unsigned Subtraction Operations

When the result of the subtraction is negative, the conversion process promotes the left
operand to a signed type.

14 Fixed-Point Conversion

14-110

For example, consider the following MATLAB algorithm.

% A = 1;
% B = 5
function [y,z] = unsigned_subtraction(A,B)
 y = A - B;

 C = -20;
 z = C - B;
end

In the original code, both A and B are unsigned and the result of A-B can be negative. In
the generated fixed-point code, A is promoted to signed. In the original code, C is signed,
so does not require promotion in the generated code.

%#codegen
% A = 1;
% B = 5
function [y,z] = unsigned_subtraction_fixpt(A,B)

fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
y = fi(fi_signed(A) - B, 1, 3, 0, fm);
C = fi(-20, 1, 6, 0, fm);
z = fi(C - B, 1, 6, 0, fm);
end

function y = fi_signed(a)
coder.inline('always');
if isfi(a) && ~(issigned(a))
 nt = numerictype(a);
 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);
 y = fi(a, new_nt, fimath(a));
else
 y = a;
end
end

Avoiding Loss of Range When Concatenating Arrays of Fixed-Point Numbers

If you concatenate matrices using vertcat and horzcat, the conversion process uses
the largest numerictype among the expressions of a row and casts the leftmost element to
that type. This type is then used for the concatenated matrix to avoid loss of range.

 Generated Fixed-Point Code

14-111

For example, consider the following MATLAB algorithm.

% A = 1, B = 100, C = 1000
function [y, z] = lb_node(A, B, C)
 %% single rows
 y = [A B C];
 %% multiple rows
 z = [A 5; A B; A C];
end

In the generated fixed-point code:

• For the expression y = [A B C], the leftmost element, A, is cast to the type of C
because C has the largest type in the row.

• For the expression [A 5; A B; A C]:

• In the first row, A is cast to the type of C because C has the largest type of the
whole expression.

• In the second row, A is cast to the type of B because B has the larger type in the
row.

• In the third row, A is cast to the type of C because C has the larger type in the row.

%#codegen
% A = 1, B = 100, C = 1000
function [y, z] = lb_node_fixpt(A, B, C)
 %% single rows
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi([fi(A, 0, 10, 0, fm) B C], 0, 10, 0, fm);

 %% multiple rows
 z = fi([fi(A, 0, 10, 0, fm) 5; fi(A, 0, 7, 0, fm) B;...
 fi(A, 0, 10, 0, fm) C], 0, 10, 0, fm);
end

Handling Non-Constant mpower Exponents
If the function that you are converting has a scalar input, and the mpower exponent input
is not constant, the conversion process sets the fimath ProductMode to
SpecifyPrecision in the generated code. With this setting , the output data type can
be determined at compile time.

14 Fixed-Point Conversion

14-112

For example, consider the following MATLAB algorithm.

% a = 1
% b = 3
function y = exp_operator(a, b)
 % exponent is a constant so no need to specify precision
 y = a^3;
 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'
 y = b^a;
end

In the generated fixed-point code, for the expression y = a^3 , the exponent is a
constant, so there is no need to specify precision. For the expression, y = b^a, the
exponent is not constant, so the ProductMode is set to SpecifyPrecision.

%#codegen
% a = 1
% b = 3
function y = exp_operator_fixpt(a, b)
 % exponent is a constant so no need to specify precision
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(a^3, 0, 2, 0, fm);
 % exponent is not a constant, use 'SpecifyPrecision' for 'ProductMode'
 y(:) = fi(b, 'ProductMode', 'SpecifyPrecision',...
 'ProductWordLength', 2, 'ProductFractionLength', 0)^a;
end

 Generated Fixed-Point Code

14-113

Fixed-Point Code for MATLAB Classes
In this section...
“Automated Conversion Support for MATLAB Classes” on page 14-114
“Unsupported Constructs” on page 14-114
“Coding Style Best Practices” on page 14-115

Automated Conversion Support for MATLAB Classes
The automated fixed-point conversion process:

• Proposes fixed-point data types based on simulation ranges for MATLAB classes. It
does not propose data types based on derived ranges for MATLAB classes.

After simulation, the MATLAB Coder app:

• Function list contains class constructors, methods, and specializations.
• Code window displays the objects used in each function.
• Provides code coverage for methods.

For more information, see “Viewing Information for MATLAB Classes” on page 14-99.
• Supports class methods, properties, and specializations. For each specialization of a

class, class_name, the conversion generates a separate class_name_fixpt.m file.
For every instantiation of a class, the generated fixed-point code contains a call to the
constructor of the appropriate specialization.

• Supports classes that have get and set methods such as get.PropertyName,
set.PropertyName. These methods are called when properties are read or assigned.
The set methods can be specialized. Sometimes, in the generated fixed-point code,
assignment statements are transformed to function calls.

Unsupported Constructs
The automated conversion process does not support:

• Class inheritance.
• Packages.

14 Fixed-Point Conversion

14-114

• Constructors that use nargin and varargin.

Coding Style Best Practices
When you write MATLAB code that uses MATLAB classes:

• Initialize properties in the class constructor.
• Replace constant properties with static methods.

For example, consider the counter class.

classdef Counter < handle
 properties
 Value = 0;
 end

 properties(Constant)
 MAX_VALUE = 128
 end

 methods
 function out = next(this)
 out = this.Count;
 if this.Value == this.MAX_VALUE
 this.Value = 0;
 else
 this.Value = this.Value + 1;
 end
 end
 end
end

To use the automated fixed-point conversion process, rewrite the class to have a static
class that initializes the constant property MAX_VALUE and a constructor that initializes
the property Value.

classdef Counter < handle
 properties
 Value;
 end

 methods(Static)
 function t = MAX_VALUE()

 Fixed-Point Code for MATLAB Classes

14-115

 t = 128;
 end
 end

 methods
 function this = Counter()
 this.Value = 0;
 end
 function out = next(this)
 out = this.Value;
 if this.Value == this.MAX_VALUE
 this.Value = 0;
 else
 this.Value = this.Value + 1;
 end
 end
 end
end

14 Fixed-Point Conversion

14-116

Automated Fixed-Point Conversion Best Practices
In this section...
“Create a Test File” on page 14-117
“Prepare Your Algorithm for Code Acceleration or Code Generation” on page 14-119
“Check for Fixed-Point Support for Functions Used in Your Algorithm” on page 14-119
“Manage Data Types and Control Bit Growth” on page 14-120
“Convert to Fixed Point” on page 14-120
“Use the Histogram to Fine-Tune Data Type Settings” on page 14-121
“Optimize Your Algorithm” on page 14-122
“Avoid Explicit Double and Single Casts” on page 14-125

Create a Test File
A best practice for structuring your code is to separate your core algorithm from other
code that you use to test and verify the results. Create a test file to call your original
MATLAB algorithm and fixed-point versions of the algorithm. For example, as shown in
the following table, you might set up some input data to feed into your algorithm, and
then, after you process that data, create some plots to verify the results. Since you need
to convert only the algorithmic portion to fixed point, it is more efficient to structure your
code so that you have a test file, in which you create your inputs, call your algorithm, and
plot the results, and one (or more) algorithmic files, in which you do the core processing.

 Automated Fixed-Point Conversion Best Practices

14-117

Original code Best Practice Modified code
% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = zeros(size(x));
y(1) = x(1);
for n=2:length(x)
 y(n)=y(n-1) + x(n);
end

% VERIFY RESULTS
yExpected=cumsum(x);
plot(y-yExpected)
title('Error')

Issue

Generation of test input and
verification of results are
intermingled with the algorithm
code.

Fix

Create a test file that is
separate from your algorithm.
Put the algorithm in its own
function.

Test file

% TEST INPUT
x = randn(100,1);

% ALGORITHM
y = cumulative_sum(x);

% VERIFY RESULTS
yExpected = cumsum(x);
plot(y-yExpected)
title('Error')

Algorithm in its own function

function y = cumulative_sum(x)
 y = zeros(size(x));
 y(1) = x(1);
 for n=2:length(x)
 y(n) = y(n-1) + x(n);
 end
end

You can use the test file to:

• Verify that your floating-point algorithm behaves as you expect before you convert it to
fixed point. The floating-point algorithm behavior is the baseline against which you
compare the behavior of the fixed-point versions of your algorithm.

• Propose fixed-point data types.
• Compare the behavior of the fixed-point versions of your algorithm to the floating-
point baseline.

• Help you determine initial values for static ranges.

By default, the MATLAB Coder app shows code coverage results. Your test files should
exercise the algorithm over its full operating range so that the simulation ranges are
accurate. For example, for a filter, realistic inputs are impulses, sums of sinusoids, and
chirp signals. With these inputs, using linear theory, you can verify that the outputs are
correct. Signals that produce maximum output are useful for verifying that your system
does not overflow. The quality of the proposed fixed-point data types depends on how well
the test files cover the operating range of the algorithm with the accuracy that you want.

14 Fixed-Point Conversion

14-118

Reviewing code coverage results help you verify that your test file is exercising the
algorithm adequately. Review code flagged with a red code coverage bar because this
code is not executed. If the code coverage is inadequate, modify the test file or add more
test files to increase coverage. See “Code Coverage” on page 14-84.

Prepare Your Algorithm for Code Acceleration or Code
Generation
The automated conversion process instruments your code and provides data type
proposals to help you convert your algorithm to fixed point.

MATLAB algorithms that you want to convert to fixed point automatically must comply
with code generation requirements and rules. To view the subset of the MATLAB
language that is supported for code generation, see “Functions and Objects Supported for
C/C++ Code Generation — Alphabetical List” on page 3-2.

To help you identify unsupported functions or constructs in your MATLAB code, add the
%#codegen pragma to the top of your MATLAB file. The MATLAB Code Analyzer flags
functions and constructs that are not available in the subset of the MATLAB language
supported for code generation. This advice appears in real time as you edit your code in
the MATLAB editor. For more information, see “Check Code with the Code Analyzer” on
page 18-6. The software provides a link to a report that identifies calls to functions and
the use of data types that are not supported for code generation. For more information,
see “Check Code by Using the Code Generation Readiness Tool” on page 18-8.

Check for Fixed-Point Support for Functions Used in Your
Algorithm
The app flags unsupported function calls found in your algorithm on the Function
Replacements tab. For example, if you use the fft function, which is not supported for
fixed point, the tool adds an entry to the table on this tab and indicates that you need to
specify a replacement function to use for fixed-point operations.

 Automated Fixed-Point Conversion Best Practices

14-119

You can specify additional replacement functions. For example, functions like sin,
cos,and sqrt might support fixed point, but for better efficiency, you might want to
consider an alternative implementation like a lookup table or CORDIC-based algorithm.
The app provides an option to generate lookup table approximations for continuous and
stateless single-input, single-output functions in your original MATLAB code. See
“Replacing Functions Using Lookup Table Approximations” on page 14-126.

Manage Data Types and Control Bit Growth
The automated fixed-point conversion process automatically manages data types and
controls bit growth. It controls bit growth by using subscripted assignments, that is,
assignments that use the colon (:) operator, in the generated code. When you use
subscripted assignments, MATLAB overwrites the value of the left-hand side argument
but retains the existing data type and array size. In addition to preventing bit growth,
subscripted assignment reduces the number of casts in the generated fixed-point code
and makes the code more readable.

Convert to Fixed Point
What Are Your Goals for Converting to Fixed Point?

Before you start the conversion, consider your goals for converting to fixed point. Are you
implementing your algorithm in C or HDL? What are your target constraints? The
answers to these questions determine many fixed-point properties such as the available
word length, fraction length, and math modes, as well as available math libraries.

To set up these properties, use the Advanced settings.

14 Fixed-Point Conversion

14-120

For more information, see “Specify Type Proposal Options” on page 14-35.

Run With Fixed-Point Types and Compare Results

Create a test file to validate that the floating-point algorithm works as expected before
converting it to fixed point. You can use the same test file to propose fixed-point data
types, and to compare fixed-point results to the floating-point baseline after the
conversion. For more information, see “Running a Simulation” on page 14-89 and “Log
Data for Histogram” on page 14-100 .

Use the Histogram to Fine-Tune Data Type Settings
To fine-tune fixed-point type settings, use the histogram. To log data for histograms, in the
app, click the Analyze arrow and select Log data for histogram.

After simulation and static analysis:

 Automated Fixed-Point Conversion Best Practices

14-121

• To view the histogram for a variable, on the Variables tab, click the Proposed Type
field for that variable.

You can view the effect of changing the proposed data types by dragging the edges of
the bounding box in the histogram window to change the proposed data type and
selecting or clearing the Signed option.

• If the values overflow and the range cannot fit the proposed type, the table shows
proposed types in red.

When the tool applies data types, it generates an html report that provides overflow
information and highlights overflows in red. Review the proposed data types.

Optimize Your Algorithm
Use fimath to Get Optimal Types for C or HDL

fimath properties define the rules for performing arithmetic operations on fi objects,
including math, rounding, and overflow properties. You can use the fimath
ProductMode and SumMode properties to retain optimal data types for C or HDL. HDL
can have arbitrary word length types in the generated HDL code whereas C requires
container types (uint8, uint16, uint32). Use the Advanced settings, see “Specify Type
Proposal Options” on page 14-35.

14 Fixed-Point Conversion

14-122

C

The KeepLSB setting for ProductMode and SumMode models the behavior of integer
operations in the C language, while KeepMSB models the behavior of many DSP devices.
Different rounding methods require different amounts of overhead code. Setting the
RoundingMethod property to Floor, which is equivalent to two's complement
truncation, provides the most efficient rounding implementation. Similarly, the standard
method for handling overflows is to wrap using modulo arithmetic. Other overflow
handling methods create costly logic. Whenever possible, set OverflowAction to Wrap.

MATLAB Code Best Practice Generated C Code
Code being compiled

function y = adder(a,b)
 y = a + b;
end

Note In the app, set
Default word length to
16.

Issue

With the default word length set to 16
and the default fimath settings,
additional code is generated to
implement saturation overflow, nearest
rounding, and full-precision arithmetic.

int adder(short a, short b)
{
 int y;
 int i0;
 int i1;
 int i2;
 int i3;
 i0 = a;
 i1 = b;
 if ((i0 & 65536) != 0) {
 i2 = i0 | -65536;
 } else {
 i2 = i0 & 65535;
 }

 if ((i1 & 65536) != 0) {
 i3 = i1 | -65536;
 } else {
 i3 = i1 & 65535;
 }

 i0 = i2 + i3;
 if ((i0 & 65536) != 0) {
 y = i0 | -65536;
 } else {
 y = i0 & 65535;
 }

 return y;
}

 Automated Fixed-Point Conversion Best Practices

14-123

MATLAB Code Best Practice Generated C Code
Fix

To make the generated C code more
efficient, choose fixed-point math
settings that match your processor
types.

To customize fixed-point type proposals,
use the app Settings. Select fimath and
then set:

int adder(short a, short b)
{
 return a + b;
}

Rounding method Floor
Overflow action Wrap
Product mode KeepLSB
Sum mode KeepLSB
Product word
length

32

Sum word length 32

HDL

For HDL code generation, set:

• ProductMode and SumMode to FullPrecision
• Overflow action to Wrap
• Rounding method to Floor

Replace Built-in Functions with More Efficient Fixed-Point Implementations

Some MATLAB built-in functions can be made more efficient for fixed-point
implementation. For example, you can replace a built-in function with a Lookup table
implementation, or a CORDIC implementation, which requires only iterative shift-add
operations. For more information, see “Function Replacements” on page 14-102.

Reimplement Division Operations Where Possible

Often, division is not fully supported by hardware and can result in slow processing.
When your algorithm requires a division, consider replacing it with one of the following
options:

14 Fixed-Point Conversion

14-124

• Use bit shifting when the denominator is a power of two. For example, bitsra(x,3)
instead of x/8.

• Multiply by the inverse when the denominator is constant. For example, x*0.2 instead
of x/5.

• If the divisor is not constant, use a temporary variable for the division. Doing so
results in a more efficient data type proposal and, if overflows occur, makes it easier to
see which expression is overflowing.

Eliminate Floating-Point Variables

For more efficient code, the automated fixed-point conversion process eliminates floating-
point variables. The one exception to this is loop indices because they usually become
integer types. It is good practice to inspect the fixed-point code after conversion to verify
that there are no floating-point variables in the generated fixed-point code.

Avoid Explicit Double and Single Casts
For the automated workflow, do not use explicit double or single casts in your MATLAB
algorithm to insulate functions that do not support fixed-point data types. The automated
conversion tool does not support these casts.

Instead of using casts, supply a replacement function. For more information, see
“Function Replacements” on page 14-102.

 Automated Fixed-Point Conversion Best Practices

14-125

Replacing Functions Using Lookup Table Approximations
The MATLAB Coder software provides an option to generate lookup table approximations
for continuous and stateless single-input, single-output functions in your original MATLAB
code. These functions must be on the MATLAB path.

You can use this capability to handle functions that are not supported for fixed point and
to replace your own custom functions. The fixed-point conversion process infers the
ranges for the function and then uses an interpolated lookup table to replace the function.
You can control the interpolation method and number of points in the lookup table. By
adjusting these settings, you can tune the behavior of replacement function to match the
behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site
of the function that needs replacement.

To use lookup table approximations in a MATLAB Coder project, see “Replace the exp
Function with a Lookup Table” on page 14-50 and “Replace a Custom Function with a
Lookup Table” on page 14-59.

To use lookup table approximations in the programmatic workflow, see
coder.approximation, “Replace the exp Function with a Lookup Table” on page 15-
25, and “Replace a Custom Function with a Lookup Table” on page 15-27.

14 Fixed-Point Conversion

14-126

MATLAB Language Features Supported for Automated
Fixed-Point Conversion

In this section...
“MATLAB Language Features Supported for Automated Fixed-Point Conversion” on page
14-127
“MATLAB Language Features Not Supported for Automated Fixed-Point Conversion” on
page 14-129

MATLAB Language Features Supported for Automated Fixed-
Point Conversion
Fixed-Point Designer supports the following MATLAB language features in automated
fixed-point conversion:

• N-dimensional arrays
• Matrix operations, including deletion of rows and columns
• Variable-sized data (see “Generate Code for Variable-Size Data” on page 20-116).

Range computation for variable–sized data is supported via simulation mode only.
Variable-sized data is not supported for comparison plotting.

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for
Code Generation” (Fixed-Point Designer))

• Complex numbers (see “Code Generation for Complex Data” (Fixed-Point Designer))
• Numeric classes (see “Supported Variable Types” (Fixed-Point Designer))
• Double-precision, single-precision, and integer math
• Fixed-point arithmetic (see “Code Acceleration and Code Generation from MATLAB”

(Fixed-Point Designer))
• Program control statements if, switch, for, while, and break
• Arithmetic, relational, and logical operators
• Local functions
• Global variables
• Persistent variables
• Structures, including arrays of structures. Range computation for structures is

supported via simulation mode only.

 MATLAB Language Features Supported for Automated Fixed-Point Conversion

14-127

• Characters

The complete set of Unicode® characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because many
mathematical operations require more than 8 bits of precision, it is recommended that
you do not perform arithmetic with characters if you intend to convert your MATLAB
algorithm to fixed point.

• MATLAB classes. Range computation for MATLAB classes is supported via simulation
mode only.

Automated conversion supports:

• Class properties
• Constructors
• Methods
• Specializations

It does not support class inheritance or packages. For more information, see “Fixed-
Point Code for MATLAB Classes” (Fixed-Point Designer).

• Ability to call functions (see “Resolution of Function Calls for Code Generation” on
page 13-2)

• Subset of MATLAB toolbox functions (see “Functions Supported for Code Acceleration
or C Code Generation” (Fixed-Point Designer)).

• Subset of DSP System Toolbox System objects.

The DSP System Toolbox System objects supported for automated conversion are:

• dsp.ArrayVectorAdder
• dsp.BiquadFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter (Direct Form and Direct Form Transposed only)
• dsp.FIRRateConverter
• dsp.LowerTriangularSolver
• dsp.LUFactor
• dsp.UpperTriangularSolver

14 Fixed-Point Conversion

14-128

• dsp.VariableFractionalDelay
• dsp.Window

MATLAB Language Features Not Supported for Automated
Fixed-Point Conversion
Fixed-Point Designer does not support the following features in automated fixed-point
conversion:

• Anonymous functions
• Cell arrays
• String scalars
• Objects of value classes as entry-point function inputs or outputs
• Function handles
• Java
• Nested functions
• Recursion
• Sparse matrices
• try/catch statements
• varargin, varargout, or generation of fewer input or output arguments than an

entry-point function defines

 MATLAB Language Features Supported for Automated Fixed-Point Conversion

14-129

Inspecting Data Using the Simulation Data Inspector

In this section...
“What Is the Simulation Data Inspector?” on page 14-130
“Import Logged Data” on page 14-130
“Export Logged Data” on page 14-130
“Group Signals” on page 14-131
“Run Options” on page 14-131
“Create Report” on page 14-131
“Comparison Options” on page 14-131
“Enabling Plotting Using the Simulation Data Inspector” on page 14-131
“Save and Load Simulation Data Inspector Sessions” on page 14-132

What Is the Simulation Data Inspector?
The Simulation Data Inspector allows you to view data logged during the fixed-point
conversion process. You can use it to inspect and compare the inputs and outputs to the
floating-point and fixed-point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data
Inspector.

Import Logged Data
Before importing data into the Simulation Data Inspector, you must have previously
logged data to the base workspace or to a MAT-file.

Export Logged Data
The Simulation Data Inspector provides the capability to save data collected by the fixed-
point conversion process to a MAT-file that you can later reload. The format of the MAT-
file is different from the format of a MAT-file created from the base workspace.

14 Fixed-Point Conversion

14-130

Group Signals
You can customize the organization of your logged data in the Simulation Data Inspector
Runs pane. By default, data is first organized by run. You can then organize your data by
logged variable or no hierarchy.

Run Options
You can configure the Simulation Data Inspector to:

• Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the
run list. To append new runs to the top of the list, select Add new runs at top.

• Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run
Options.

Create Report
You can create a report of the runs or comparison plots. Specify the name and location of
the report file. By default, the Simulation Data Inspector overwrites existing files. To
preserve existing reports, select If report exists, increment file name to prevent
overwriting.

Comparison Options
To change how signals are matched when runs are compared, specify the Align by and
Then by parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector
To enable the Simulation Data Inspector in the Fixed-Point Conversion tool, see “Enable
Plotting Using the Simulation Data Inspector” on page 14-67.

To enable the Simulation Data Inspector in the programmatic workflow, see “Enable
Plotting Using the Simulation Data Inspector” on page 15-30.

 Inspecting Data Using the Simulation Data Inspector

14-131

Save and Load Simulation Data Inspector Sessions
If you have data in the Simulation Data Inspector and you want to archive or share the
data to view in the Simulation Data Inspector later, save the Simulation Data Inspector
session. When you save a Simulation Data Inspector session, the MAT-file contains:

• All runs, data, and properties from the Runs and Comparisons panes.
• Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

1 On the Visualize tab, click Open.
2 Browse, select the MAT-file saved from the Simulation Data Inspector, and click

Open.
3 If data in the session is plotted on multiple subplots, on the Format tab, click

Subplots and select the subplot layout.

14 Fixed-Point Conversion

14-132

Custom Plot Functions
The Fixed-Point Conversion tool provides a default time series based plotting function.
The conversion process uses this function at the test numerics step to show the floating-
point and fixed-point results and the difference between them. However, during fixed-
point conversion you might want to visualize the numerical differences in a view that is
more suitable for your application domain. For example, plots that show eye diagrams and
bit error differences are more suitable in the communications domain and histogram
difference plots are more suitable in image processing designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point
Conversion tool facilitates custom plotting by providing access to the raw logged input
and output data before and after fixed-point conversion. You supply a custom plotting
function to visualize the differences between the floating-point and fixed-point results. If
you specify a custom plot function, the fixed-point conversion process calls the function
for each input and output variable, passes in the name of the variable and the function
that uses it, and the results of the floating-point and fixed-point simulations.

Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.

Use this information to:

• Customize plot headings and axes.
• Choose which variables to plot.
• Generate different error metrics for different output variables.

• A cell array to hold the logged floating-point values for the variable.

This cell array contains values observed during floating-point simulation of the
algorithm during the test numerics phase. You might need to reformat this raw data.

• A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the converted
design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and
then set Custom plot function to the name of your plot function.

 Custom Plot Functions

14-133

In the programmatic workflow, set the coder.FixptConfig configuration object
PlotFunction property to the name of your plot function. See “Visualize Differences
Between Floating-Point and Fixed-Point Results” on page 15-31.

14 Fixed-Point Conversion

14-134

Data Type Issues in Generated Code
Within the fixed-point conversion report, you have the option to highlight MATLAB code
that results in double, single, or expensive fixed-point operations. Consider enabling these
checks when trying to achieve a strict single, or fixed-point design.

These checks are disabled by default.

Enable the Highlight Option in the MATLAB Coder App
1 On the Convert to Fixed Point page, to open the Settings dialog box, click the

Settings arrow .
2 Under Plotting and Reporting, set Highlight potential data type issues to Yes.

When conversion is complete, open the fixed-point conversion report to view the
highlighting. Click View report in the Type Validation Output tab.

Enable the Highlight Option at the Command Line
1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');
2 Set the HighlightPotentialDataTypeIssues property of the configuration

object to true.

cfg.HighlightPotentialDataTypeIssues = true;

Stowaway Doubles
When trying to achieve a strict-single or fixed-point design, manual inspection of code can
be time-consuming and error prone. This check highlights all expressions that result in a
double operation.

For a strict-single precision design, specify a standard math library that supports single-
precision implementations. To change the library for a project, during the Generate Code
step, in the project settings dialog box, on the Custom Code tab, set the Standard math
library to C99 (ISO).

 Data Type Issues in Generated Code

14-135

Stowaway Singles
This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations
The expensive fixed-point operations check identifies optimization opportunities for fixed-
point code. It highlights expressions in the MATLAB code that require cumbersome
multiplication or division, expensive rounding, expensive comparison, or multiword
operations. For more information on optimizing generated fixed-point code, see “Tips for
Making Generated Code More Efficient” (Fixed-Point Designer).

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid inputs
to a multiply or divide operation that has word lengths larger than the base integer type
of your processor. Operations with larger word lengths can be handled in software, but
this approach requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses "no
effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method. This check identifies expensive rounding operations in
multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, when comparing an unsigned integer to a signed integer,
one of the inputs must first be cast to the signedness of the other before the comparison
operation can be performed. Consider optimizing the data types of the input arguments
so that a cast is not required in the generated code.

Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or
output data type larger than the largest word size of your processor, the generated code
contains multiword operations. You can avoid multiword operations in the generated code

14 Fixed-Point Conversion

14-136

by specifying local fimath properties for variables. You can also manually specify input
and output word lengths of operations that generate multiword code.

 Data Type Issues in Generated Code

14-137

Automated Fixed-Point Conversion
Using Programmatic Workflow

• “Convert MATLAB Code to Fixed-Point C Code” on page 15-2
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 15-5
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 15-11
• “Detect Overflows” on page 15-21
• “Replace the exp Function with a Lookup Table” on page 15-25
• “Replace a Custom Function with a Lookup Table” on page 15-27
• “Enable Plotting Using the Simulation Data Inspector” on page 15-30
• “Visualize Differences Between Floating-Point and Fixed-Point Results”

on page 15-31

15

Convert MATLAB Code to Fixed-Point C Code
This example shows how to generate fixed-point C code from floating-point MATLAB code
using the programmatic workflow.

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name. For example:

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'fun_with_matlab_test';

Configure the Fixed-Point Configuration Object for Type Proposal

The fixed-point conversion software can propose types based on simulation ranges,
derived ranges, or both.

• For type proposal using only simulation ranges, enable the collection and reporting of
simulation range data. By default, derived range analysis is disabled.

fixptcfg.ComputeSimulationRanges = true;

• For type proposal using only derived ranges:

1 Specify the design range for input parameters. For example:

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);
2 Enable derived range analysis. Disable collection and reporting of simulation

range data.

fixptcfg.ComputeDerivedRanges = true;
fixptcfg.ComputeSimulationRanges = false;

Enable Numerics Testing

Select to run the test file to verify the generated fixed-point MATLAB code.

fixptcfg.TestNumerics = true;

Enable Plotting

Log inputs and outputs for comparison plotting. Select to plot using a custom function or
Simulation Data Inspector. For example, to plot using Simulation Data Inspector:

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-2

fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

Configure Additional Fixed-Point Configuration Object Properties

Configure additional fixed-point configuration object properties as necessary. For
example, define the default fixed-point word length:

fixptcfg.DefaultWordLength = 16;

Set Up the C Code Generation Configuration Object

Create a code configuration object for generation of a C static library, dynamic library, or
executable. Enable the code generation report. For example:

cfg = coder.config('lib');
cfg.GenerateReport = true;

Generate Fixed-Point C Code

Use the codegen function to convert the floating-point MATLAB function to fixed-point C
code. For example:

codegen -float2fixed fixptcfg -config cfg fun_with_matlab

View the Type Proposal Report

Click the link to the type proposal report for the entry-point function.

View the Comparison Plots

If you selected to log inputs and outputs for comparison plots, the conversion process
generates comparison plots.

• If you selected to use Simulation Data Inspector for these plots, the Simulation Data
Inspector opens. Use Simulation Data Inspector to view and compare the floating-
point and fixed-point run information.

• If you selected to use a custom plotting function for these plots, the conversion
process uses the custom function to generate the plots.

 Convert MATLAB Code to Fixed-Point C Code

15-3

View the Generated Fixed-Point MATLAB and Fixed-Point C Code

Click the View Report link that follows the type proposal report. To view the fixed-point
MATLAB code, select the function in the MATLAB Source pane. To view the fixed-point C
code, select the file in the Generated Code pane.

See Also
coder.FixptConfig

Related Examples
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 15-5
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 15-11
• “Enable Plotting Using the Simulation Data Inspector” on page 15-30

More About
• “Automated Fixed-Point Conversion” on page 14-83

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-4

Propose Fixed-Point Data Types Based on Simulation
Ranges

This example shows how to propose fixed-point data types based on simulation range data
using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to

your local working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test

.m
MATLAB script that tests
ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z

 Propose Fixed-Point Data Types Based on Simulation Ranges

15-5

 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

The test script runs the ex_2ndOrder_filter function with three input signals: chirp,
step, and impulse to cover the full intended operating range of the system. The script
then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-6

 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'ex_2ndOrder_filter_test';

Set Up the C Code Generation Configuration Object

Create a code configuration object to generate a C static library. Enable the code
generation report.

cfg = coder.config('lib');
cfg.GenerateReport = true;

Collect Simulation Ranges and Generate Fixed-Point Code

Use the codegen function to convert the floating-point MATLAB function,
ex_2ndOrder_filter, to fixed-point C code. Set the default word length for the fixed-
point data types to 16.

fixptcfg.ComputeSimulationRanges = true;
fixptcfg.DefaultWordLength = 16;

% Derive ranges and generate fixed-point code
codegen -float2fixed fixptcfg -config cfg ex_2ndOrder_filter

codegen analyzes the floating-point code. Because you did not specify the input types for
the ex_2ndOrder_filter function, the conversion process infers types by simulating
the test file. The conversion process then derives ranges for variables in the algorithm. It
uses these derived ranges to propose fixed-point types for these variables. When the
conversion is complete, it generates a type proposal report.

 Propose Fixed-Point Data Types Based on Simulation Ranges

15-7

View Range Information

Click the link to the type proposal report for the ex_2ndOrder_filter function,
ex_2ndOrder_filter_report.html.

The report opens in a web browser.

View Generated Fixed-Point MATLAB Code

codegen generates a fixed-point version of the ex_2ndOrder_filter.m function,
ex_2ndOrder_filter_fixpt.m, and a wrapper function that calls
ex_2ndOrder_filter_fixpt. These files are generated in the codegen
\ex_2ndOrder_filter\fixpt folder in your local working folder.

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-8

function y = ex_2ndOrder_filter_fixpt(x) %#codegen
 fm = get_fimath();

 persistent z
 if isempty(z)
 z = fi(zeros(2,1), 1, 16, 15, fm);
 end
 % [b,a] = butter(2, 0.25)
 b = fi([0.0976310729378175, 0.195262145875635,...
 0.0976310729378175], 0, 16, 18, fm);
 a = fi([1, -0.942809041582063,...
 0.3333333333333333], 1, 16, 14, fm);

 y = fi(zeros(size(x)), 1, 16, 14, fm);
 for i=1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = fi_signed(b(2)*x(i) + z(2)) - a(2) * y(i);
 z(2) = fi_signed(b(3)*x(i)) - a(3) * y(i);
 end
end

function y = fi_signed(a)
 coder.inline('always');
 if isfi(a) && ~(issigned(a))
 nt = numerictype(a);
 new_nt = numerictype(1, nt.WordLength + 1, nt.FractionLength);
 y = fi(a, new_nt, fimath(a));
 else
 y = a;
 end
end

function fm = get_fimath()
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...
 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...
 'MaxSumWordLength', 128);
end

 Propose Fixed-Point Data Types Based on Simulation Ranges

15-9

View Generated Fixed-Point C Code

To view the code generation report for the C code generation, click the View Report link
that follows the type proposal report.

The code generation report opens and displays the generated code for
ex_2ndOrder_filter_fixpt.c.

See Also
codegen | coder.FixptConfig

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 14-5
• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 15-11

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-10

Propose Fixed-Point Data Types Based on Derived
Ranges

This example shows how to propose fixed-point data types based on static ranges using
the codegen function. The advantage of proposing data types based on derived ranges is
that you do not have to provide test files that exercise your algorithm over its full
operating range. Running such test files often takes a very long time so you can save time
by deriving ranges instead.

Note Derived range analysis is not supported for non-scalar variables.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\dti.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the dti.m and dti_test.m files to your local working folder.

Type Name Description
Function code dti.m Entry-point MATLAB function

 Propose Fixed-Point Data Types Based on Derived Ranges

15-11

Type Name Description
Test file dti_test.m MATLAB script that tests

dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
init_val = 1;
gain_val = 1;
limit_upper = 500;
limit_lower = -500;

% variable to hold state between consecutive calls to this block
persistent u_state
if isempty(u_state)
 u_state = init_val+1;
end

% Compute Output
if (u_state > limit_upper)
 y = limit_upper;
 clip_status = -2;
elseif (u_state >= limit_upper)
 y = limit_upper;
 clip_status = -1;
elseif (u_state < limit_lower)
 y = limit_lower;
 clip_status = 2;
elseif (u_state <= limit_lower)
 y = limit_lower;
 clip_status = 1;
else
 y = u_state;
 clip_status = 0;
end

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-12

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

function b = subFunction(a)
b = a*a;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then plots the
input and output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10)

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
 data = x_in(ii);
 % call to the dti function
 init_val = 0;
 gain_val = 1;
 upper_limit = 500;
 lower_limit = -500;

 % call to the design that does DTI
 [y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot'])
subplot(2,1,1)
plot(1:len,x_in)
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

 Propose Fixed-Point Data Types Based on Derived Ranges

15-13

subplot(2,1,2)
plot(1:len,y_out)
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.')

Set Up the Fixed-Point Configuration Object

Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti_test';

Specify Design Ranges

Specify design range information for the dti function input parameter u_in.

fixptcfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

Enable Plotting Using the Simulation Data Inspector

Select to run the test file to verify the generated fixed-point MATLAB code. Log inputs
and outputs for comparison plotting and select to use the Simulation Data Inspector to
plot the results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

Set Up the C Code Generation Configuration Object

Create a code configuration object to generate a C static library. Enable the code
generation report.

cfg = coder.config('lib');
cfg.GenerateReport = true;

Derive Ranges and Generate Fixed-Point Code

Use the codegen function to convert the floating-point MATLAB function, dti, to fixed-
point C code. Set the default word length for the fixed-point data types to 16.

fixptcfg.ComputeDerivedRanges = true;
fixptcfg.ComputeSimulationRanges = false;

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-14

fixptcfg.DefaultWordLength = 16;

% Derive ranges and generate fixed-point code
codegen -float2fixed fixptcfg -config cfg dti

codegen analyzes the floating-point code. Because you did not specify the input types for
the dti function, the conversion process infers types by simulating the test file. The
conversion process then derives ranges for variables in the algorithm. It uses these
derived ranges to propose fixed-point types for these variables. When the conversion is
complete, it generates a type proposal report.

View Derived Range Information

Click the link to the type proposal report for the dti function, dti_report.html.

The report opens in a web browser.

 Propose Fixed-Point Data Types Based on Derived Ranges

15-15

View Generated Fixed-Point MATLAB Code

codegen generates a fixed-point version of the dti function, dti_fxpt.m, and a
wrapper function that calls dti_fxpt. These files are generated in the codegen\dti
\fixpt folder in your local working folder.

function [y, clip_status] = dti_fixpt(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%
% Forward Euler method, also known as Forward Rectangular, or left-hand

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-16

% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
fm = get_fimath();

init_val = fi(1, 0, 1, 0, fm);
gain_val = fi(1, 0, 1, 0, fm);
limit_upper = fi(500, 0, 9, 0, fm);
limit_lower = fi(-500, 1, 10, 0, fm);

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)
 u_state = fi(init_val+fi(1, 0, 1, 0, fm), 1, 16, 6, fm);
end

% Compute Output
if (u_state > limit_upper)
 y = fi(limit_upper, 1, 16, 6, fm);
 clip_status = fi(-2, 1, 16, 13, fm);
elseif (u_state >= limit_upper)
 y = fi(limit_upper, 1, 16, 6, fm);
 clip_status = fi(-1, 1, 16, 13, fm);
elseif (u_state < limit_lower)
 y = fi(limit_lower, 1, 16, 6, fm);
 clip_status = fi(2, 1, 16, 13, fm);
elseif (u_state <= limit_lower)
 y = fi(limit_lower, 1, 16, 6, fm);
 clip_status = fi(1, 1, 16, 13, fm);
else
 y = fi(u_state, 1, 16, 6, fm);
 clip_status = fi(0, 1, 16, 13, fm);
end

% Update State
tprod = fi(gain_val * u_in, 1, 16, 14, fm);
u_state(:) = y + tprod;
end

function fm = get_fimath()
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap', 'ProductMode',...
 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'FullPrecision',...

 Propose Fixed-Point Data Types Based on Derived Ranges

15-17

 'MaxSumWordLength', 128);
end

Compare Floating-Point and Fixed-Point Runs

Because you selected to log inputs and outputs for comparison plots and to use the
Simulation Data Inspector for these plots, the Simulation Data Inspector opens.

You can use the Simulation Data Inspector to view floating-point and fixed-point run
information and compare results. For example, to compare the floating-point and fixed-
point values for the output y, on the Compare tab, select y, and then click Compare
Runs.

The Simulation Data Inspector displays a plot of the baseline floating-point run against
the fixed-point run and the difference between them.

View Generated Fixed-Point C Code

To view the code generation report for the C code generation, click the View Report link
that follows the type proposal report.

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-18

The code generation report opens and displays the generated code for dti_fixpt.c.

See Also
codegen | coder.FixptConfig

 See Also

15-19

Related Examples
• “Convert MATLAB Code to Fixed-Point C Code” on page 14-5
• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page 15-5

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-20

Detect Overflows
This example shows how to detect overflows at the command line. At the numerical
testing stage in the conversion process, the tool simulates the fixed-point code using
scaled doubles. It then reports which expressions in the generated code produce values
that would overflow the fixed-point data type.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer

In a local, writable folder, create a function, overflow.

function y = overflow(b,x,reset)
 if nargin<3, reset = true; end
 persistent z p
 if isempty(z) || reset
 p = 0;
 z = zeros(size(b));
 end
 [y,z,p] = fir_filter(b,x,z,p);
end
function [y,z,p] = fir_filter(b,x,z,p)
 y = zeros(size(x));
 nx = length(x);
 nb = length(b);
 for n = 1:nx
 p=p+1; if p>nb, p=1; end
 z(p) = x(n);
 acc = 0;
 k = p;
 for j=1:nb
 acc = acc + b(j)*z(k);
 k=k-1; if k<1, k=nb; end
 end
 y(n) = acc;
 end
end

 Detect Overflows

15-21

Create a test file, overflow_test.m to exercise the overflow algorithm.

function overflow_test
 % The filter coefficients were computed using the FIR1 function from
 % Signal Processing Toolbox.
 % b = fir1(11,0.25);
 b = [-0.004465461051254
 -0.004324228005260
 +0.012676739550326
 +0.074351188907780
 +0.172173206073645
 +0.249588554524763
 +0.249588554524763
 +0.172173206073645
 +0.074351188907780
 +0.012676739550326
 -0.004324228005260
 -0.004465461051254]';

 % Input signal
 nx = 256;
 t = linspace(0,10*pi,nx)';

 % Impulse
 x_impulse = zeros(nx,1); x_impulse(1) = 1;

 % Max Gain
 % The maximum gain of a filter will occur when the inputs line up with the
 % signs of the filter's impulse response.
 x_max_gain = sign(b)';
 x_max_gain = repmat(x_max_gain,ceil(nx/length(b)),1);
 x_max_gain = x_max_gain(1:nx);

 % Sums of sines
 f0=0.1; f1=2;
 x_sines = sin(2*pi*t*f0) + 0.1*sin(2*pi*t*f1);

 % Chirp
 f_chirp = 1/16; % Target frequency
 x_chirp = sin(pi*f_chirp*t.^2); % Linear chirp

 x = [x_impulse, x_max_gain, x_sines, x_chirp];
 titles = {'Impulse', 'Max gain', 'Sum of sines', 'Chirp'};

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-22

 y = zeros(size(x));

 for i=1:size(x,2)
 reset = true;
 y(:,i) = overflow(b,x(:,i),reset);
 end

 test_plot(1,titles,t,x,y)

end
function test_plot(fig,titles,t,x,y1)
 figure(fig)
 clf
 sub_plot = 1;
 font_size = 10;
 for i=1:size(x,2)
 subplot(4,1,sub_plot)
 sub_plot = sub_plot+1;
 plot(t,x(:,i),'c',t,y1(:,i),'k')
 axis('tight')
 xlabel('t','FontSize',font_size);
 title(titles{i},'FontSize',font_size);
 ax = gca;
 ax.FontSize = 10;
 end
 figure(gcf)
end

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
overflow_test.

fixptcfg.TestBenchName = 'overflow_test';

Set the default word length to 16.

fixptcfg.DefaultWordLength = 16;

Enable overflow detection.

fixptcfg.TestNumerics = true;
fixptcfg.DetectFixptOverflows = true;

 Detect Overflows

15-23

Set the fimath Product mode and Sum mode to KeepLSB. These settings models the
behavior of integer operations in the C language.

fixptcfg.fimath = ...
['fimath(''RoundingMethod'',''Floor'',''OverflowAction'',' ...
'''Wrap'',''ProductMode'',''KeepLSB'',''SumMode'',''KeepLSB'')'];

Create a code generation configuration object to generate a standalone C static library.

cfg = coder.config('lib');

Convert the floating-point MATLAB function, overflow, to fixed-point C code. You do not
need to specify input types for the codegen command because it infers the types from
the test file.

codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase reports an overflow.
Overflow error in expression 'acc + b(j)*z(k)'. Percentage of Current Range = 104%.

Determine if the addition or the multiplication in this expression overflowed. Set the
fimath ProductMode to FullPrecision so that the multiplication will not overflow, and
then run the codegen command again.

fixptcfg.fimath = ['fimath(''RoundingMethod'',''Floor'',''OverflowAction'',' ...
 '''Wrap'',''ProductMode'',''FullPrecision'',''SumMode'',''KeepLSB'')'];
codegen -float2fixed fixptcfg -config cfg overflow

The numerics testing phase still reports an overflow, indicating that it is the addition in
the expression that is overflowing.

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-24

Replace the exp Function with a Lookup Table
This example shows how to replace the exp function with a lookup table approximation in
the generated fixed-point code using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)
 y = exp(x);
end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = my_fcn(x(itr));
end
plot(x, y);

Configure Approximation

Create a function replacement configuration object to approximate the exp function,
using the default settings of linear interpolation and 1000 points in the lookup table.

q = coder.approximation('exp');

 Replace the exp Function with a Lookup Table

15-25

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'my_fcn_test';
fixptcfg.TestNumerics = true;
fixptcfg.DefaultWordLength = 16;
fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg my_fcn

View Generated Fixed-Point Code

To view the generated fixed-point code, click the link to my_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_exp, for the
exp function. The fixed-point conversion process infers the ranges for the function and
then uses an interpolated lookup table to replace the function. By default, the lookup
table uses linear interpolation, 1000 points, and the minimum and maximum values
detected by running the test file.

The generated fixed-point function, my_fcn_fixpt, calls this approximation instead of
calling exp.

function y = my_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not
match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-26

Replace a Custom Function with a Lookup Table
This example shows how to replace a custom function with a lookup table approximation
function using the codegen function.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a MATLAB function, custom_fcn.m. This is the function that you want to replace.

function y = custom_fcn(x)
 y = 1./(1+exp(-x));
end

Create a wrapper function that calls custom_fcn.m.

function y = call_custom_fcn(x)
 y = custom_fcn(x);
end

Create a test file, custom_test.m, that uses call_custom_fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
 y(itr) = call_custom_fcn(x(itr));
end
plot(x, y);

 Replace a Custom Function with a Lookup Table

15-27

Create a function replacement configuration object to approximate custom_fcn. Specify
the function handle of the custom function and set the number of points to use in the
lookup table to 50.

q = coder.approximation('Function','custom_fcn',...
 'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'custom_test';
fixptcfg.TestNumerics = true;
fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg call_custom_fcn

codegen generates fixed-point MATLAB code in call_custom_fcn_fixpt.m.

To view the generated fixed-point code, click the link to call_custom_fcn_fixpt.

The generated code contains a lookup table approximation, replacement_custom_fcn,
for the custom_fcn function. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. The lookup
table uses 50 points as specified. By default, it uses linear interpolation and the minimum
and maximum values detected by running the test file.

The generated fixed-point function, call_custom_fcn_fixpt, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)
 fm = get_fimath();

 y = fi(replacement_custom_fcn(x), 0, 14, 14, fm);
end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-28

match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

 Replace a Custom Function with a Lookup Table

15-29

Enable Plotting Using the Simulation Data Inspector
You can use the Simulation Data Inspector to inspect and compare floating-point and
fixed-point input and output data logged using the codegen function. At the MATLAB
command line:

1 Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti_test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log
inputs and outputs for comparison plotting and select to use the Simulation Data
Inspector to plot the results.

fixptcfg.TestNumerics = true;
fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

3 Generate fixed-point MATLAB code using codegen.

codegen -float2fixed fixptcfg -config cfg dti

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges” on page
15-11.

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-30

Visualize Differences Between Floating-Point and Fixed-
Point Results

This example shows how to configure the codegen function to use a custom plot function
to compare the behavior of the generated fixed-point code against the behavior of the
original floating-point MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion
process uses a time series based plotting function to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion
you might want to visualize the numerical differences in a view that is more suitable for
your application domain. This example shows how to customize plotting and produce
scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

 Visualize Differences Between Floating-Point and Fixed-Point Results

15-31

Type Name Description
Function code myFilter.m Entry-point MATLAB function
Test file myFilterTest.m MATLAB script that tests

myFilter.m
Plotting function plotDiff.m Custom plot function
MAT-file filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;
if isempty(b)
 b = complex(zeros(1,16));
 h = complex(zeros(1,16));
 h(8) = 1;
end

b = [in, b(1:end-1)];
y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;

h = h + update;
h(8) = 1;
ho = h;

end

The myFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
 y = myFilter(d(idx));
end

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-32

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
% i) name
% ii) functionName
% floatVals - cell array of logged original values for the 'varInfo.name' variable
% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.
function plotDiff(varInfo, floatVals, fixedVals)
 varName = varInfo.name;
 fcnName = varInfo.functionName;

 % escape the '_'s because plot titles treat these as subscripts
 escapedVarName = regexprep(varName,'_','_');
 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values
 flatFloatVals = floatVals(1:end);
 flatFixedVals = fixedVals(1:end);

 % build Titles
 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];
 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName
 case 'y'
 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values
 y_vec = flatFloatVals;
 subplot(1, 2, 1);
 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values
 y_vec = flatFixedVals;
 subplot(1, 2, 2);
 plotScatter(x_vec, y_vec, 100, fixedTitle);

 otherwise
 % Plot only output 'y' for this example, skip the rest
 end

 Visualize Differences Between Floating-Point and Fixed-Point Results

15-33

end

function plotScatter(x_vec, y_vec, n, figTitle)
 % plot the last n samples
 x_plot = x_vec(end-n+1:end);
 y_plot = y_vec(end-n+1:end);

 hold on
 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on
 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);
end

Set Up Configuration Object

1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');

2 Specify the test file name and custom plot function name. Enable logging and
numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';
fxptcfg.PlotFunction = 'plotDiff';
fxptcfg.TestNumerics = true;
fxptcfg. LogIOForComparisonPlotting = true;
fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to fixed-point MATLAB code. You
do not need to specify input types for the codegen command because it infers the types
from the test file.

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The conversion process generates fixed-point code using a default word length of 16 and
then runs a fixed-point simulation by running the myFilterTest.m function and calling
the fixed-point version of myFilter.m.

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-34

Because you selected to log inputs and outputs for comparison plots and to use the
custom plotting function, plotDiff.m, for these plots, the conversion process uses this
function to generate the comparison plot.

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;
codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-
point results match the floating-point results.

 Visualize Differences Between Floating-Point and Fixed-Point Results

15-35

15 Automated Fixed-Point Conversion Using Programmatic Workflow

15-36

Single-Precision Conversion

• “Generate Single-Precision C Code at the Command Line” on page 16-2
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 16-7
• “Generate Single-Precision MATLAB Code” on page 16-14
• “Choose a Single-Precision Conversion Workflow” on page 16-23
• “Single-Precision Conversion Best Practices” on page 16-24
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 16-29
• “Combining Integers and Double-Precision Numbers” on page 16-32
• “MATLAB Language Features Supported for Single-Precision Conversion”

on page 16-33

16

Generate Single-Precision C Code at the Command Line
In this section...
“Prerequisites” on page 16-2
“Create a Folder and Copy Relevant Files” on page 16-2
“Determine the Type of the Input Argument” on page 16-4
“Generate and Run Single-Precision MEX to Verify Numerical Behavior” on page 16-5
“Generate Single-Precision C Code” on page 16-5
“View the Generated Single-Precision C Code” on page 16-6
“View Potential Data Type Issues” on page 16-6

This example shows how to generate single-precision C code from double-precision
MATLAB code at the command line.

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a Folder and Copy Relevant Files
1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

16 Single-Precision Conversion

16-2

3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to
your local working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test

.m
MATLAB script that tests
ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function
function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and
postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse.
The script then plots the outputs.

% ex_2ndOrder_filter_test
%

 Generate Single-Precision C Code at the Command Line

16-3

% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Determine the Type of the Input Argument
To determine the type of the input argument x, use coder.getArgTypes to run the test
file ex_2ndOrder_filter_test.m

types = coder.getArgTypes('ex_2ndOrder_filter_test', 'ex_2ndOrder_filter');

The test file runs and displays the outputs of the filter for each of the input signals.
coder.getArgTypes determines that the input type of x is 1x256 double.

16 Single-Precision Conversion

16-4

Generate and Run Single-Precision MEX to Verify Numerical
Behavior
1 Before you generate single-precision C code, generate a single-precision MEX

function that you can use to verify the behavior of the generated single-precision
code. To indicate that you want the single-precision MEX code, use the -singleC
option.

codegen -singleC ex_2ndOrder_filter -args types -report

During MEX generation, the code generator detects single-precision conversion
issues. Before you generate C/C++ code, fix these issues. This example does not have
single-precision conversion issues.

The generated MEX accepts single-precision and double-precision input. You can use
the same test file to run the double-precision MATLAB function and the single-
precision MEX function. You do not have to modify the test file to call the single-
precision MEX function.

2 Run the test file ex_2ndOrder_filter_test.m. This file calls the double-precision
MATLAB function ex_2ndOrder_filter.m.

ex_2ndOrder_filter_test
3 The test file runs and displays the outputs of the filter for each of the input signals.
4 Run the test file ex_2ndOrder_filter_test, replacing calls to the double-

precision ex_2ndOrder_filter function with calls to the single-precision
ex_2ndOrder_filter_mex function.

coder.runTest('ex_2ndOrder_filter_test', 'ex_2ndOrder_filter')
5 The test file runs and displays the outputs of the filter for each of the input signals.

The single-precision MEX function produces the same results as the double-precision
MATLAB function.

Generate Single-Precision C Code
1 Create a code configuration object for generation of a C static library, dynamic

library, or executable.

cfg = coder.config('lib');
2 To generate single-precision C code, call codegen with the -singleC option. Enable

generation of the code generation report.

 Generate Single-Precision C Code at the Command Line

16-5

codegen -config cfg -singleC ex_2ndOrder_filter -args {types{1}} -report

View the Generated Single-Precision C Code
To view the code generation report for the C code generation, click the View Report link.

In the Generated Code pane, click ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

View Potential Data Type Issues
When you generate single-precision code, codegen enables highlighting of potential data
type issues in the code generation report. If codegen cannot remove a double-precision
operation, the report highlights the MATLAB expression that results in the operation.

Click the Code Insights tab. Expand Potential data type issues. The absence of
double-precision operations indicates that no double-precision operations remain.

See Also
codegen | coder.config | coder.getArgTypes | coder.runTest

Related Examples
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 16-7
• “Generate Single-Precision MATLAB Code” on page 16-14

More About
• “Single-Precision Conversion Best Practices” on page 16-24
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 16-29

16 Single-Precision Conversion

16-6

Generate Single-Precision C Code Using the MATLAB
Coder App

In this section...
“Prerequisites” on page 16-7
“Create a Folder and Copy Relevant Files” on page 16-8
“Open the MATLAB Coder App” on page 16-9
“Select the Source Files” on page 16-10
“Enable Single-Precision Conversion” on page 16-10
“Define Input Types” on page 16-11
“Check for Run-Time Issues” on page 16-12
“Generate Single-Precision C Code” on page 16-12
“View the Generated C Code” on page 16-12
“View Potential Data Type Issues” on page 16-13

This example shows how to generate single-precision C code from double-precision
MATLAB code by using the MATLAB Coder app.

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

 Generate Single-Precision C Code Using the MATLAB Coder App

16-7

Create a Folder and Copy Relevant Files
1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))
3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to

your local working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test

.m
MATLAB script that tests
ex_2ndOrder_filter.m

The ex_2ndOrder_filter Function

function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and
postprocessing such as:

• Setting up input values.

16 Single-Precision Conversion

16-8

• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse.
The script then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Open the MATLAB Coder App
1 Navigate to the work folder that contains the file for this example.

 Generate Single-Precision C Code Using the MATLAB Coder App

16-9

2 On the MATLAB Toolstrip Apps tab, under Code Generation, click the app icon.

Select the Source Files
To add the entry-point function ex_2ndOrder_filter to the project, browse to the file
ex_2ndOrder_filter.m, and then click Open. By default, the app saves information
and settings for this project in the current folder in a file named
ex_2ndOrder_filter.prj.

Enable Single-Precision Conversion
1 Set Numeric Conversion to Convert to single precision.

16 Single-Precision Conversion

16-10

2 Click Next to go to the Define Input Types step.

The app screens ex_2ndOrder_filter.m for code violations and code generation
readiness issues. The app does not find issues in ex_2ndOrder_filter.m.

Define Input Types
1 On the Define Input Types page, to add ex_2ndOrder_filter_test as a test file,

browse to ex_2ndOrder_filter_test. Click Open.
2 Click Autodefine Input Types.

 Generate Single-Precision C Code Using the MATLAB Coder App

16-11

The test file runs and displays the outputs of the filter for each of the input signals.
The app determines that the input type of x is double(1x256).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues
To detect and fix single-precision conversion issues, perform the Check for Run-Time
Issues step.

1 On the Check for Run-Time Issues page, the app populates the test file field with
ex_2ndOrder_filter_test, the test file that you used to define the input types.

2 Click Check for Issues.

The app generates a single-precision MEX function from ex_2ndOrder_filter. It
runs the test file ex_2ndOrder_filter_test replacing calls to
ex_2ndOrder_filter with calls to the generated MEX function. If the app finds
issues, it provides warning and error messages. Click a message to highlight the
problematic code in a window where you can edit the code. In this example, the app
does not detect issues.

3 Click Next to go to the Generate Code page.

Generate Single-Precision C Code
1 In the Generate dialog box, set Build type to Static Library.
2 Set Language to C.
3 For other settings, use the default values.
4 To generate the code, click Generate.

MATLAB Coder builds the project and generates a C static library and supporting
files in the default subfolder, codegen/lib/ex_2ndOrder_filter.

View the Generated C Code
The app displays the generated code for ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

16 Single-Precision Conversion

16-12

View Potential Data Type Issues
When you generate single-precision code, the app enables highlighting of potential data
type issues in the code generation report. If the app cannot remove a double-precision
operation, the report highlights the MATLAB expression that results in the operation.

To open the code generation report, click the View Report link.

Click the Code Insights tab. Expand Potential data type issues. The absence of
double-precision operations indicates that no double-precision operations remain.

See Also

Related Examples
• “Generate Single-Precision C Code at the Command Line” on page 16-2

More About
• “Single-Precision Conversion Best Practices” on page 16-24
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 16-29

 See Also

16-13

Generate Single-Precision MATLAB Code
This example shows how to generate single-precision MATLAB code from double-
precision MATLAB code. This example shows the single-precision conversion workflow
that you use when you want to see single-precision MATLAB code or use verification
options. Optionally, you can also generate single-precision C/C++ code.

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• Fixed-Point Designer
• C compiler

See https://www.mathworks.com/support/compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a Folder and Copy Relevant Files
1 Create a local working folder, for example, c:\ex_2ndOrder_filter.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the ex_2ndOrder_filter.m and ex_2ndOrder_filter_test.m files to
your local working folder.

Type Name Description
Function code ex_2ndOrder_filter.m Entry-point MATLAB function
Test file ex_2ndOrder_filter_test

.m
MATLAB script that tests
ex_2ndOrder_filter.m

16 Single-Precision Conversion

16-14

The ex_2ndOrder_filter Function
function y = ex_2ndOrder_filter(x) %#codegen
 persistent z
 if isempty(z)
 z = zeros(2,1);
 end
 % [b,a] = butter(2, 0.25)
 b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
 a = [1, -0.942809041582063, 0.3333333333333333];

 y = zeros(size(x));
 for i = 1:length(x)
 y(i) = b(1)*x(i) + z(1);
 z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
 z(2) = b(3)*x(i) - a(3) * y(i);
 end
end

The ex_2ndOrder_filter_test Script

It is a best practice to create a separate test script for preprocessing and
postprocessing such as:

• Setting up input values.
• Calling the function under test.
• Outputting the test results.

To cover the full intended operating range of the system, the test script runs the
ex_2ndOrder_filter function with three input signals: chirp, step, and impulse.
The script then plots the outputs.

% ex_2ndOrder_filter_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1) = 1;

 Generate Single-Precision MATLAB Code

16-15

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i = 1:size(x,1)
 y(i,:) = ex_2ndOrder_filter(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'}
clf
for i = 1:size(x,1)
 subplot(size(x,1),1,i)
 plot(t,x(i,:),t,y(i,:))
 title(titles{i})
 legend('Input','Output')
end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.')

Set Up the Single-Precision Configuration Object
Create a single-precision configuration object. Specify the test file name. Verify the single-
precision code using the test file. Plot the error between the double-precision code and
single-precision code. Use the default values for the other properties.

scfg = coder.config('single');
scfg.TestBenchName = 'ex_2ndOrder_filter_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

Generate Single-Precision MATLAB Code
To convert the double-precision MATLAB function, ex_2ndOrder_filter, to single-
precision MATLAB code, use the codegen function with the -double2single option.

codegen -double2single scfg ex_2ndOrder_filter

codegen analyzes the double-precision code. The conversion process infers types by
running the test file because you did not specify the input types for the
ex_2ndOrder_filter function. The conversion process selects single-precision types

16 Single-Precision Conversion

16-16

for the double-precision variables. It selects int32 for index variables. When the
conversion is complete, codegen generates a type proposal report.

View the Type Proposal Report
To see the types that the conversion process selected for the variables, open the type
proposal report for the ex_2ndOrder_filter function. Click the link
ex_2ndOrder_filter_report.html.

The report opens in a web browser. The conversion process converted:

• Double-precision variables to single.
• The index i to int32. The conversion process casts index and dimension variables to

int32.

 Generate Single-Precision MATLAB Code

16-17

View Generated Single-Precision MATLAB Code
To view the report for the generation of the single-precision MATLAB code, in the
Command Window:

1 Scroll to the Generate Single-Precision Code step. Click the View report link.
2 In the MATLAB Source pane, click ex_2ndOrder_filter_single.

The code generation report displays the single-precision MATLAB code for
ex_2ndOrder_filter.

16 Single-Precision Conversion

16-18

View Potential Data Type Issues
When you generate single-precision code, codegen enables highlighting of potential data
type issues in code generation reports. If codegen cannot remove a double-precision
operation, the report highlights the MATLAB expression that results in the operation.
Click the Code Insights tab. The absence of potential data type issues indicates that no
double-precision operations remain.

Compare the Double-Precision and Single-Precision Variables
You can see the comparison plots for the input x and output y because you selected to log
inputs and outputs for comparison plots .

 Generate Single-Precision MATLAB Code

16-19

16 Single-Precision Conversion

16-20

Optionally Generate Single-Precision C Code
If you also want to generate single-precision C code, create a code configuration object
for C code generation. Use this configuration object with the -config option of the
codegen function. For example:

 Generate Single-Precision MATLAB Code

16-21

1 Create a code configuration object for generation of a C static library.

cfg = coder.config('lib');
2 Generate the C code. Enable generation of the code generation report.

codegen -double2single scfg -config cfg ex_2ndOrder_filter -report
3 To view the code generation report for the C code generation, click the View Report

link.

In the Generated Code pane, click ex_2ndOrder_filter.c.

• Double-precision variables have type float in the C code.
• The index i is an integer.

When you generate single-precision code, codegen enables highlighting of potential
data type issues in the code generation report. If codegen cannot remove a double-
precision operation, the report highlights the MATLAB expression that results in the
operation.

Click the Code Insights tab. Then, expand Potential data type issues. The absence
of double-precision operations indicates that no double-precision operations remain.

See Also
codegen | coder.SingleConfig | coder.config

Related Examples
• “Generate Single-Precision C Code Using the MATLAB Coder App” on page 16-7
• “Generate Single-Precision C Code at the Command Line” on page 16-2

More About
• “Single-Precision Conversion Best Practices” on page 16-24
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 16-29

16 Single-Precision Conversion

16-22

Choose a Single-Precision Conversion Workflow
The information in the following table helps you to decide which single-precision
workflow to use.

Goal Use
You want to generate single-precision C/C+
+ code in the most direct way using the
codegen function.

codegen with -singleC option. See
“Generate Single-Precision C Code at the
Command Line” on page 16-2.

You want to generate single-precision C/C+
+ code in the most direct way using the
MATLAB Coder app.

The MATLAB Coder app with Numeric
Conversion set to Convert to single
precision. See “Generate Single-
Precision C Code Using the MATLAB Coder
App” on page 16-7.

You want to generate only single-precision
MATLAB code. You want to see the single-
precision MATLAB code or use verification
options.

codegen with the -double2single option
and a coder.SingleConfig object. See
“Generate Single-Precision MATLAB Code”
on page 16-14.

You want to generate single-precision
MATLAB code, and then generate single-
precision C/C++ code from the single-
precision MATLAB code.

codegen with the -double2single option
and a coder.SingleConfig object. Also,
use the -config object with a code
configuration object for the output type that
you want. See “Generate Single-Precision
MATLAB Code” on page 16-14.

 Choose a Single-Precision Conversion Workflow

16-23

Single-Precision Conversion Best Practices
In this section...
“Use Integers for Index Variables” on page 16-24
“Limit Use of assert Statements” on page 16-24
“Initialize MATLAB Class Properties in Constructor” on page 16-24
“Provide a Test File That Calls Your MATLAB Function” on page 16-25
“Prepare Your Code for Code Generation” on page 16-25
“Verify Double-Precision Code Before Single-Precision Conversion” on page 16-25
“Best Practices for Generation of Single-Precision C/C++ Code” on page 16-26
“Best Practices for Generation of Single-Precision MATLAB Code” on page 16-27

Use Integers for Index Variables
In MATLAB code that you want to convert to single precision, it is a best practice to use
integers for index variables. However, if the code does not use integers for index
variables, when possible single-precision conversion using codegen with -
double2single tries to detect the index variables and select int32 types for them.

Limit Use of assert Statements
• Do not use assert statements to define the properties of input arguments.
• Do not use assert statements to test the type of a variable. For example, do not use

assert(isa(a, 'double'))

Initialize MATLAB Class Properties in Constructor
Do not initialize MATLAB class properties in the properties block. Instead, use the
constructor to initialize the class properties.

16 Single-Precision Conversion

16-24

Provide a Test File That Calls Your MATLAB Function
Separate your core algorithm from other code that you use to test and verify the results.
Create a test file that calls your double-precision MATLAB algorithm. You can use the test
file to:

• Automatically define properties of the top-level function inputs.
• Verify that the double-precision algorithm behaves as you expect. The double-precision

behavior is the baseline against which you compare the behavior of the single-
precision versions of your algorithm.

• Compare the behavior of the single-precision version of your algorithm to the double-
precision baseline.

For best results, the test file must exercise the algorithm over its full operating range.

Prepare Your Code for Code Generation
MATLAB code that you want to convert to single precision must comply with code
generation requirements. See “MATLAB Programming for Code Generation”.

To help you identify unsupported functions or constructs in your MATLAB code, add the
%#codegen pragma to the top of your MATLAB file. When you edit your code in the
MATLAB editor, the MATLAB Code Analyzer flags functions and constructs that are not
supported for code generation. See “Check Code with the Code Analyzer” on page 18-
6. When you use the MATLAB Coder app, the app screens your code for code
generation readiness. At the function line, you can use the Code Generation Readiness
Tool. See “Check Code by Using the Code Generation Readiness Tool” on page 18-8.

Verify Double-Precision Code Before Single-Precision
Conversion
Before you begin the single-precision conversion process, verify that you can successfully
generate code from your double-precision MATLAB code. Generate and run a MEX
version of your double-precision MATLAB code so that you can:

• Detect and fix compilation issues.
• Verify that the generated single-precision code behaves the same as the double-

precision MATLAB code.

 Single-Precision Conversion Best Practices

16-25

See “Why Test MEX Functions in MATLAB?” on page 19-2.

Best Practices for Generation of Single-Precision C/C++ Code
When you generate single-precision C/C++ code by using the MATLAB Coder app or
codegen with the -singleC option, follow these best practices:

Use the C99 Standard Math Library

When you generate C/C++ libraries or executables, by default, the code generator uses
the C99 (ISO) standard math library. If you generate single-precision C/C++ code using
the C89/C90 (ANSI) library, the code generator warns you if a function in this library uses
double precision. To avoid this warning, set the standard math library to C99 (ISO). See
“Warnings from Conversion to Single-Precision C/C++ Code” on page 16-29.

Cast Large Double Constant to Integer

For a constant greater than 2^24, in your original double-precision MATLAB function,
cast the constant to an integer type that is large enough for the constant value. For
example:

a = int32(2^24 + 1);

Generate and Run Single-Precision MEX Before Generating Single-Precision C/C+
+ Code

Before you generate single-precision C code, generate and run a single-precision MEX
version of your MATLAB code. When you follow this practice, you can detect and fix
compiler issues. You can verify that the single-precision MEX function has the same
functionality as the MATLAB code.

If you use codegen with -singleC:

1 Generate the single-precision MEX.
2 Call coder.runTest to run your test file, replacing calls to the double-precision

MATLAB code with calls to the single-precision MEX code.

If you use the MATLAB Coder app, perform the Check for Run-Time Issues step with
single-precision conversion enabled.

16 Single-Precision Conversion

16-26

Best Practices for Generation of Single-Precision MATLAB
Code
When you use codegen with the -double2single option to generate single-precision
MATLAB code, follow these best practices:

Use the -args Option to Specify Input Properties

When you generate single-precision MATLAB code, if you specify a test file, you do not
have to specify argument properties with the -args option. In this case, the code
generator runs the test file to determine the properties of the input types. However,
running the test file can slow the code generation. It is a best practice to determine the
input properties one time with coder.getArgTypes. Then, pass the properties to the -
args option. For example:

types = coder.getArgTypes('myfun_test', 'myfun');
scfg = coder.config('single');
codegen -double2single scfg -args types myfun -report

When you repeat the code generation in the same MATLAB session, this practice saves
you time.

Test Numerics and Log I/O Data

When you use the codegen function with the -double2single option to generate
single-precision MATLAB code, enable numerics testing and I/O data logging for
comparison plots. To use numerics testing, you must provide a test file that calls your
MATLAB function. To enable numerics testing and I/O data logging, create a
coder.SingleConfig object. Set the TestBenchName, TestNumerics, and
LogIOForComparisonPlotting properties. For example:

scfg = coder.config('single');
scfg.TestBenchName = 'mytest';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;

 Single-Precision Conversion Best Practices

16-27

See Also

More About
• “Warnings from Conversion to Single-Precision C/C++ Code” on page 16-29

16 Single-Precision Conversion

16-28

Warnings from Conversion to Single-Precision C/C++
Code

When you generate single-precision C/C++ code by using the MATLAB Coder app or
codegen with the -singleC option, you can receive the following warnings.

Function Uses Double-Precision in the C89/C90 Standard
If the standard math library is C89/C90, the conversion process warns you when a
function uses double-precision code in the C89/C90 standard.

Consider the function mysine.

function c = mysine(a)
c = sin(a);
end

Generate single-precision code for mysine using the C89/C90 standard.

x = -pi:0.01:pi;
cfg = coder.config('lib');
cfg.TargetLangStandard = 'C89/C90 (ANSI)';
codegen -singleC -config cfg mysine -args {x} -report

codegen warns that sin uses double-precision in the C89/C90 (ANSI) standard.
Warning: The function sin uses double-precision in the C89/C90 (ANSI) standard. For single-precision
code, consider using the C99 (ISO) standard or use your own function.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the Code
Insights tab. Expand Potential data type issues and then expand Double-precision
operations. The report indicates that mysine has a double-precision operation at line 2 c
= sin(a).

To address this warning, use the default standard math library, C99 (ISO).

• At the command line:

cfg.TargetLangStandard = 'C99 (ISO)';
• In the app, in the project build settings, on the Custom Code tab, set Standard math

library to C99 (ISO).

 Warnings from Conversion to Single-Precision C/C++ Code

16-29

Built-In Function Is Implemented in Double-Precision
Some built-in MATLAB functions are implemented using double-precision operations. The
conversion process warns that the code generated for these functions contains double-
precision operations.

Consider the function geterf that calls the built-in function erf.

function y = geterf(x)
y = erf(x);
end

Generate single-precision code for geterf.

codegen -singleC -config:lib -args {1} geterf -report

codegen warns that erf is implemented in double precision.
Warning: The builtin function erf is implemented in double-precision. Code generated for this
function will contain doubles.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the Code
Insights tab. Expand Potential data type issues and then expand Double-precision
operations. The report indicates that geterf has a double-precision operation at line 2 y
= erf(x) .

To address this warning, rewrite your code so that it does not use the function that is
implemented in double precision.

Built-In Function Returns Double-Precision
If a built-in MATLAB function returns a double-precision output, the conversion process
generates a warning.

Consider the function mysum that calls the built-in function sum.

function y = mysum(x)
y = sum(int32(x));
end

Generate single-precision code formysum.

16 Single-Precision Conversion

16-30

A = 1:10;
codegen -singleC -config:lib -args {A} mysum -report

codegen warns that mysum is implemented in double precision.
Warning: The output of builtin function sum is double-precision and has been cast to
single-precision. The code generated for the builtin function may still contain doubles.

To open the code generation report, click the View Report link.

To see that double-precision operations remain in the converted code, click the Code
Insights tab. Expand Potential data type issues and then expand Double-precision
operations. The report indicates that mysum has a double-precision operation at line 2 y
= sum(int32(x)).

To address this warning, specify that you want the function to return the 'native' class.

(sum(int32(1), 'native')

Using this option causes the function to return the same type as the input.

See Also

More About
• “Single-Precision Conversion Best Practices” on page 16-24

 See Also

16-31

Combining Integers and Double-Precision Numbers
MATLAB supports the combination of integers of the same class and scalar double-
precision numbers. MATLAB does not support the combination of integers and single-
precision numbers. If you use the MATLAB Coder app or codegen with the -singleC
option to generate single-precision C/C++ code, your MATLAB code cannot combine
integers and double-precision numbers. Converting an expression that combines integers
and doubles results in an illegal MATLAB expression. To work around this limitation, cast
the numbers so that the types of the numbers match. Either cast the integer numbers to
double-precision or cast the double-precision numbers to the integer class.

For example, consider the function dut that returns the sum of a and b.

function c = dut(a,b)
c = a + b;
end

Generate single-precision code using codegen with the -singleC option. Specify that
the first argument is double and the second argument is int32.

 codegen -singleC -config:lib dut -args {0, int32(2)} -report

Code generation fails. The message suggests that you cast the operands so that they have
the same types.

Rewrite the code so that it cast a to the type of b.

function c = dut(a,b)
c = int32(a) + b;
end

16 Single-Precision Conversion

16-32

MATLAB Language Features Supported for Single-
Precision Conversion

In this section...
“MATLAB Language Features Supported for Single-Precision Conversion” on page 16-
33
“MATLAB Language Features Not Supported for Single-Precision Conversion” on page
16-34

MATLAB Language Features Supported for Single-Precision
Conversion
Single-precision conversion supports the following MATLAB language features:

• N-dimensional arrays.
• Matrix operations, including deletion of rows and columns.
• Variable-size data (see “Generate Code for Variable-Size Data” on page 20-116).

Comparison plotting does not support variable-size data.
• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for

Code Generation” on page 6-32).
• Complex numbers (see “Code Generation for Complex Data” on page 5-4).
• Numeric classes (see “Supported Variable Types” on page 4-15).
• Program control statements if, switch, for, while, and break.
• Arithmetic, relational, and logical operators.
• Local functions.
• Global variables.
• Persistent variables.
• Structures.
• Characters.

Single-precision conversion does not support the complete set of Unicode characters.
Characters are restricted to 8 bits of precision in generated code. Many mathematical
operations require more than 8 bits of precision. If you intend to convert your

 MATLAB Language Features Supported for Single-Precision Conversion

16-33

MATLAB algorithm to single precision, it is a best practice not to perform arithmetic
with characters.

• MATLAB classes. Single-precision conversion supports:

• Class properties
• Constructors
• Methods
• Specializations

It does not support class inheritance or packages.
• Function calls (see “Resolution of Function Calls for Code Generation” on page 13-2)
• varargin and varargout are supported when you generate single-precision C/C++

code by using the MATLAB Coderapp or codegen with -singleC. They are not
supported when you use codegen with -double2single.

For functions that do not use varargin or varargout, you can control the number of
input or output arguments in the generated entry-point function only if you generate
single-precision C/C++ code by using the MATLAB Coder app or codegen with -
singleC.

MATLAB Language Features Not Supported for Single-
Precision Conversion
Single-precision conversion does not support the following features:

• Anonymous functions
• Cell arrays
• String scalars
• Objects of value classes as entry-point function inputs or outputs
• Function handles
• Java
• Nested functions
• Recursion
• Sparse matrices
• try/catch statements

16 Single-Precision Conversion

16-34

• varargin and varargout, or generation of fewer input or output arguments than an
entry-point function defines

 MATLAB Language Features Supported for Single-Precision Conversion

16-35

Setting Up a MATLAB Coder Project

• “Set Up a MATLAB Coder Project” on page 17-2
• “Specify Properties of Entry-Point Function Inputs Using the App” on page 17-4
• “Automatically Define Input Types by Using the App” on page 17-5
• “Make Dimensions Variable-Size When They Meet Size Threshold” on page 17-6
• “Define Input Parameter by Example by Using the App” on page 17-8
• “Define or Edit Input Parameter Type by Using the App” on page 17-20
• “Define Constant Input Parameters Using the App” on page 17-32
• “Define Inputs Programmatically in the MATLAB File” on page 17-33
• “Add Global Variables by Using the App” on page 17-34
• “Specify Global Variable Type and Initial Value Using the App” on page 17-35
• “Undo and Redo Changes to Type Definitions in the App” on page 17-39
• “Changing Output Type” on page 17-40
• “Code Generation Readiness Screening in the MATLAB Coder App” on page 17-43
• “Slow Operations in MATLAB Coder App” on page 17-45
• “Unable to Open a MATLAB Coder Project” on page 17-46

17

Set Up a MATLAB Coder Project
1 To open the app, on the MATLAB Toolstrip Apps tab, under Code Generation, click

the MATLAB Coder app icon.
2 Create a project or open an existing project. See “Create a Project” on page 17-2

and “Open an Existing Project” on page 17-2.
3 If the app detects code generation readiness issues in your entry-point functions,

address these issues.
4 Define the properties of the entry-point function input types. See “Specify Properties

of Entry-Point Function Inputs Using the App” on page 17-4.
5 Check for run-time issues. Provide code or a test file that the app can use to test your

code. The app generates a MEX function. It runs your test code or test file, replacing
calls to your MATLAB function with calls to the MEX function. This step is optional.
However, it is a best practice to perform this step. You can detect and fix run-time
errors that are harder to diagnose in the generated C code.

6 Configure the build settings. Select the build type, language, and production
hardware. Optionally, modify other build settings. See “Configure Build Settings” on
page 20-28.

You can now generate code.

Create a Project
On the Select Source Files page, specify the MATLAB files from which you want to
generate code. An entry-point function is a function that you call from MATLAB. Do not
add files that have spaces in their names.

The app creates a project that has the name of the first entry-point function.

Open an Existing Project
1

On the app toolbar, click and select Open existing project.
2 Type or select the project.

The app closes other open projects.

17 Setting Up a MATLAB Coder Project

17-2

If the project is a Fixed-Point Converter project, and you have a Fixed-Point Designer
license, the project opens in the Fixed-Point Converter app.

 Set Up a MATLAB Coder Project

17-3

Specify Properties of Entry-Point Function Inputs Using
the App

Why Specify Input Properties?
Because C and C++ are statically typed languages, at compile time, MATLAB Coder must
determine the properties of all variables in the MATLAB files. To infer variable properties
in MATLAB files, MATLAB Coder must identify the properties of the inputs to the primary
function, also known as the top-level or entry-point function. Therefore, if your primary
function has inputs, you must specify the properties of these inputs to MATLAB Coder. If
your primary function has no input parameters, you do not need to specify properties of
inputs to local functions or external functions called by the primary function.

Unless you use the tilde (~) character to specify unused function inputs, you must specify
the same number and order of inputs as the MATLAB function . If you use the tilde
character, the inputs default to real, scalar doubles.

See Also

• “Properties to Specify” on page 20-48

Specify an Input Definition Using the App
Specify an input definition using one of the following methods:

• Autodefine Input Types on page 17-5
• Define Type on page 17-20
• Define by Example on page 17-8
• Define Constant on page 17-32
• “Define Inputs Programmatically in the MATLAB File” on page 17-33

17 Setting Up a MATLAB Coder Project

17-4

Automatically Define Input Types by Using the App
If you specify a test file that calls the project entry-point functions, the MATLAB Coder
app can infer the input argument types by running the test file. If a test file calls an entry-
point function multiple times with different size inputs, the app takes the union of the
inputs. The app infers that the inputs are variable size, with an upper bound equal to the
size of the largest input.

Before using the app to automatically define function input argument types, you must add
at least one entry-point file to your project. You must also specify code that calls your
entry-point functions with the expected input types. It is a best practice to provide a test
file that calls your entry-point functions. The test file can be either a MATLAB function or
a script. The test file must call the entry-point function at least once.

To automatically define input types:

1 On the Define Input Types page, specify a test file. Alternatively, you can enter code
directly.

2 Click Autodefine Input Types.

The app runs the test file and infers the types for entry-point input arguments. The
app displays the inferred types.

Note If you automatically define the input types, the entry-point functions must be in a
writable folder.

If your test file does not call an entry-point function with different size inputs, the
resulting type dimensions are fixed-size. After you define the input types, you can specify
and apply rules for making type dimensions variable-size when they meet a size threshold.
See “Make Dimensions Variable-Size When They Meet Size Threshold” on page 17-6.

 Automatically Define Input Types by Using the App

17-5

Make Dimensions Variable-Size When They Meet Size
Threshold

After you define input types automatically or manually, you can make type dimensions
variable-size when they meet a size threshold.

1 From the tools menu, select Apply variable-sizing rules.

2 In the Variable-sizing rules dialog box, select the rules that you want to apply.

• To make a dimension variable-size with an upper bound, select the Make
dimension variable-size if the size is at least check box. Specify the threshold.
If the size of a dimension of an input type is equal to or greater than this
threshold, the app makes the dimension variable-size. The upper bound is the
original size of the dimension.

• To make a dimension variable-size with no upper bound, select the Make
dimension unbounded if the size is at least check box. Specify the threshold.
If the size of a dimension of an input is equal to or greater than this threshold, the
app makes this dimension unbounded.

3 To apply the rules to the current type definitions, click Apply. If you change type
definitions, the rules do not affect the new definitions unless you apply them.

17 Setting Up a MATLAB Coder Project

17-6

See Also

More About
• “Specify Properties of Entry-Point Function Inputs” on page 20-48
• “Code Generation for Variable-Size Arrays” on page 6-2

 See Also

17-7

Define Input Parameter by Example by Using the App
In this section...
“Define an Input Parameter by Example” on page 17-8
“Specify Input Parameters by Example” on page 17-10
“Specify a String Scalar Input Parameter by Example” on page 17-11
“Specify a Structure Type Input Parameter by Example” on page 17-12
“Specify a Cell Array Type Input Parameter by Example” on page 17-12
“Specify an Enumerated Type Input Parameter by Example” on page 17-14
“Specify an Object Input Type Parameter by Example” on page 17-15
“Specify a Fixed-Point Input Parameter by Example” on page 17-17
“Specify an Input from an Entry-Point Function Output Type” on page 17-17

Define an Input Parameter by Example
1 On the Define Input Types page, click Let me enter input or global types

directly.
2 Click the field to the right of the input parameter that you want to define.

17 Setting Up a MATLAB Coder Project

17-8

3 Select Define by Example.
4 In the field to the right of the parameter, enter a MATLAB expression. The variable

has the class, size, and complexity of the value of the expression.

Alternatively, you can select a variable from the list of workspace variables that
displays.

 Define Input Parameter by Example by Using the App

17-9

Specify Input Parameters by Example
This example shows how to specify a 1-by-4 vector of unsigned 16-bit integers.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

zeros(1,4,'uint16')

The input type is uint16(1x4).
5 Optionally, after you specify the input type, you can specify that the input is variable

size. For example, select the second dimension.

17 Setting Up a MATLAB Coder Project

17-10

6 To specify that the second dimension is variable size with an upper bound of 4,
select :4. Alternatively, to specify that the second dimension is unbounded,
select :Inf.

Alternatively, you can specify that the input is variable size by using the coder.newtype
function. Enter the MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Note To specify that an input is a double-precision scalar, enter 0.

Specify a String Scalar Input Parameter by Example
This example shows how to specify a string scalar type by providing an example string.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

"mystring"

The input parameter is a 1-by-1 string array (string scalar) that contains a 1-by-8
character vector.

5 To make the string variable-size, click the second dimension.

• To specify that the second dimension is unbounded, select :Inf.
• To specify that the second dimension has an upper bound, enter the upper bound,

for example 8. Then, select :8.

 Define Input Parameter by Example by Using the App

17-11

Specify a Structure Type Input Parameter by Example
This example shows how to specify a structure with two fields, a and b. The input type of
a is scalar double. The input type of b is scalar char.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

struct('a', 1, 'b', 'x')

The type of the input parameter is struct(1x1). The type of field a is
double(1x1). The type of field b is char(1x1)

5 For an array of structures, to specify the size of each dimension, click the dimension
and specify the size. For example, enter 4 for the first dimension.

6 To specify that the second dimension is variable size with an upper bound of 4,
select :4. Alternatively, to specify that the second dimension is unbounded
select :Inf.

Alternatively, specify the size of the array of structures in the struct function call. For
example, struct('a', { 1 2}, 'b', {'x', 'y'}) specifies a 1x2 array of
structures with fields a and b. The type of field a is double(1x1). The type of field b is
char(1x1).

To modify the type definition, see “Specify a Structure Input Parameter” on page 17-23.

Specify a Cell Array Type Input Parameter by Example
This example shows how to specify a cell array input by example. When you define a cell
array by example, the app determines whether the cell array is homogeneous or
heterogeneous. See “Code Generation for Cell Arrays” on page 8-2. If you want to control
whether the cell array is homogeneous or heterogeneous, specify the cell array by type.
See “Specify a Cell Array Input Parameter” on page 17-27.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

17 Setting Up a MATLAB Coder Project

17-12

3 Select Define by Example.
4 In the field to the right of the parameter, enter an example cell array.

• If all cell array elements have the same properties, the cell array is homogeneous.
For example, enter:

{1 2 3}

The input is a 1x3 cell array. The type of each element is double(1x1).

The colon inside curly braces{:} indicates that all elements have the same
properties.

• If elements of the cell array have different classes, the cell array is
heterogeneous. For example, enter:

{'a', 1}

The input is a 1x2 cell array. For a heterogeneous cell array, the app lists each
element. The type of the first element is char(1x1). The type of the second
element is double(1x1).

• For some example cell arrays. the classification as homogeneous or heterogeneous
is ambiguous. For these cell arrays, the app uses heuristics to determine whether
the cell array is homogeneous or heterogeneous. For example, for the example
cell array, enter:

{1 [2 3]}

The elements have the same class, but different sizes. The app determines that
the input is a 1x2 heterogeneous cell array. The type of the first element is
double(1x1). The type of the second element is double(1x2).

 Define Input Parameter by Example by Using the App

17-13

However, the example cell array, {1 [2 3]}, can also be a homogeneous cell
array whose elements are 1x:2 double. If you want this cell array to be
homogeneous, do one of the following:

• Specify the cell array input by type. Specify that the input is a homogeneous
cell array. Specify that the elements are 1x:2 double. See “Specify a Cell Array
Input Parameter” on page 17-27.

• Right-click the variable. Select Homogeneous. Specify that the elements are
1x:2 double.

If you use coder.typeof to specify that the example cell array is variable size,
the app makes the cell array homogeneous. For example, for the example input,
enter:

coder.typeof({1 [2 3]}, [1 3], [0 1])

The app determines that the input is a 1x:3 homogeneous cell array whose
elements are 1x:2 double.

To modify the type definition, see “Specify a Cell Array Input Parameter” on page 17-27.

Specify an Enumerated Type Input Parameter by Example
This example shows how to specify that an input uses the enumerated type MyColors.

Suppose that MyColors.m is on the MATLAB path.

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

To specify that an input has the enumerated type MyColors:

17 Setting Up a MATLAB Coder Project

17-14

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.

3 Select Define by Example.
4 In the field to the right of the parameter, enter the MATLAB expression:

MyColors.red

Specify an Object Input Type Parameter by Example
This example shows how to specify the type for an object of a value class myRectangle.

classdef myRectangle
 properties

 Define Input Parameter by Example by Using the App

17-15

 length;
 width;
 end
 methods
 function obj = myRectangle(l,w)
 if nargin > 0
 obj.length = l;
 obj.width = w;
 end
 end
 function area = calcarea(obj)
 area = obj.length * obj.width;
 end
 end
end

1 Define a function that takes an object of the value class as an input. For example:

function z = getarea(r)
%#codegen
z = calcarea(r);
end

2 In MATLAB, define an object rect_obj.

rect_obj = myRectangle(3,4)
3 In the app, on the Select Source Files page, enter getarea for the entry-point

function.
4 On the Define Input Types page, click Let me enter input or global types

directly.
5 Click the field to the right of r.
6 Select Define by Example.
7 In the field to the right of r, enter rect_obj or select it from the list of workspace

variables. The app determines that r is a class with properties length and width.

Alternatively, you can provide a coder.ClassType object for that class. To define a
coder.ClassType object, use coder.typeof. For example:

1 In MATLAB, define a coder.ClassType object that has the same properties as
rect_obj.

t = coder.typeof(rect_obj)

17 Setting Up a MATLAB Coder Project

17-16

2 In the app, provide t as the example.

To change the size or type of a property, click the field to the right of the property.

When you generate code, the properties that you define in the app must be consistent
with the properties in the class definition file. If the class definition file has properties
that your code does not use, your type definition in the app does not have to include those
properties. The code generator removes properties that your code does not use.

See “Specify Objects as Inputs in the MATLAB Coder App” on page 10-37.

Specify a Fixed-Point Input Parameter by Example
To specify fixed-point inputs, Fixed-Point Designer software must be installed.

This example shows how to specify a signed fixed-point type with a word length of eight
bits, and a fraction length of three bits.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select Define by Example.
4 In the field to the right of the parameter, enter:

fi(10, 1, 8, 3)

The app sets the type of input u to fi(1x1). By default, if you do not specify a local
fimath, the app uses the default fimath. See “fimath for Sharing Arithmetic Rules”
(Fixed-Point Designer).

Optionally, modify the fixed-point properties or the size of the input. See “Specify a
Fixed-Point Input Parameter” on page 17-22 and “Define or Edit Input Parameter
Type by Using the App” on page 17-20.

Specify an Input from an Entry-Point Function Output Type
When generating code for multiple entry-point functions, you can use the output type
from one entry-point function as the input type to another entry-point function. For more
information, see “Pass an Entry-Point Function Output as an Input” on page 20-98.

 Define Input Parameter by Example by Using the App

17-17

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define and select
Use Output.

17 Setting Up a MATLAB Coder Project

17-18

3 Select the name of the entry-point function and the corresponding output parameter
from which to define the input type.

 Define Input Parameter by Example by Using the App

17-19

Define or Edit Input Parameter Type by Using the App
In this section...
“Define or Edit an Input Parameter Type” on page 17-20
“Specify a String Scalar Input Parameter” on page 17-21
“Specify an Enumerated Type Input Parameter” on page 17-22
“Specify a Fixed-Point Input Parameter” on page 17-22
“Specify a Structure Input Parameter” on page 17-23
“Specify a Cell Array Input Parameter” on page 17-27

Define or Edit an Input Parameter Type
The following procedure shows you how to define or edit double, single, int64,
int32, int16, int8, uint64, uint32, uint16, uint8, logical, and char types.

For more information about defining other types, see the information in this table.

Input Type Link
A string scalar (1-by-1 string array) “Specify a String Scalar Input Parameter”

on page 17-21
A structure (struct) “Specify a Structure Input Parameter” on

page 17-23
A cell array (cell (Homogeneous) or cell
(Heterogeneous))

“Specify a Cell Array Input Parameter” on
page 17-27

A fixed-point data type (embedded.fi) “Specify a Fixed-Point Input Parameter” on
page 17-22

An input by example (Define by Example) “Define Input Parameter by Example by
Using the App” on page 17-8

A constant (Define Constant) “Define Constant Input Parameters Using
the App” on page 17-32

1 Click the field to the right of the input parameter name.
2 Optionally, for numeric types, to make the parameter a complex type, select the

Complex number check box.

17 Setting Up a MATLAB Coder Project

17-20

3 Select the input type.

The app displays the selected type. It displays and the size options.

4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector,
or a m x n matrix. By default, if you do not select a size option, the app defines
inputs as scalars.

5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.
• Variable size, up to a specified limit, by using the : prefix. For example, to specify

that your input can vary in size up to 10, enter :10.
• Unbounded variable size by entering :Inf.

You can edit the size of each dimension.

Specify a String Scalar Input Parameter
To specify that an input is a string scalar:

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select string. Then select 1x1 scalar.

The type is a 1-by-1 string array (string scalar) that contains a character vector.

 Define or Edit Input Parameter Type by Using the App

17-21

4 To specify the size of the character vector, click the field to the right of the string
array element {1}. Select char. Then, select 1xn vector and enter the size.

5 To make the string variable-size, click the second dimension.

• To specify that the second dimension is unbounded, select :Inf.
• To specify that the second dimension has an upper bound, enter the upper bound,

for example 8. Then, select :8.

Specify an Enumerated Type Input Parameter
To specify that an input uses the enumerated type MyColors:

1 Suppose that the enumeration MyColors is on the MATLAB path.

classdef MyColors < int32
 enumeration
 green(1),
 red(2),
 end
end

2 On the Define Input Types page, click Let me enter input or global types
directly.

3 In the field to the right of the input parameter, enter MyColors.

Specify a Fixed-Point Input Parameter
To specify fixed-point inputs, Fixed-Point Designer software must be installed.

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select embedded.fi.

17 Setting Up a MATLAB Coder Project

17-22

4 Select the size. If you do not specify the size, the size defaults to 1x1.
5 Specify the input parameter numerictype and fimath properties.

If you do not specify a local fimath, the app uses the default fimath. See “Default
fimath Usage to Share Arithmetic Rules” (Fixed-Point Designer).

To modify the numerictype or fimath properties, open the properties dialog box. To
open the properties dialog box, click to the right of the fixed-point type definition.

Optionally, click .

Specify a Structure Input Parameter
When a primary input is a structure, the app treats each field as a separate input.
Therefore, you must specify properties for all fields of a primary structure input in the
order that they appear in the structure definition:

• For each field of an input structure, specify class, size, and complexity.
• For each field that is a fixed-point class, also specify numerictype, and fimath.

Specify Structures by Type

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select struct.

The app displays the selected type, struct. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix.

By default, if you do not select a size option, the app defines inputs as scalars.
5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter

the size. Select from the size options. For example, for size 10:

• To specify fixed size, select 10.
• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

6 Optionally, specify properties for the structure in the generated code. See “Set
Structure Properties” on page 17-24.

 Define or Edit Input Parameter Type by Using the App

17-23

7 Add fields to the structure. Specify the class, size, and complexity of the fields. See
“Add a Field to a Structure” on page 17-26.

Set Structure Properties

1
Click to the right of the structure definition. Optionally, click .

2 In the dialog box, specify properties for the structure in the generated code.

Property Description
C type definition name Name for the structure type in the

generated code.
Type definition is externally defined Default: No — type definition is not

externally defined.

If you select Yes to declare an
externally defined structure, the app
does not generate the definition of the
structure type. You must provide it in a
custom include file.

Dependency: C type definition
name enables this option.

17 Setting Up a MATLAB Coder Project

17-24

Property Description
C type definition header file Name of the header file that contains

the external definition of the structure,
for example, "mystruct.h". Specify
the path to the file using the
Additional include directories
parameter on the project settings
dialog box Custom Code tab.

By default, the generated code contains
#include statements for custom
header files after the standard header
files. If a standard header file refers to
the custom structure type, then the
compilation fails. If you specify the C
type definition header file, the app
includes that header file exactly at the
point where it is required.

Dependency: When Type definition
is externally defined is set to
Yes, this option is enabled.

 Define or Edit Input Parameter Type by Using the App

17-25

Property Description
Data alignment boundary The run-time memory alignment of

structures of this type in bytes.

If you have an Embedded Coder license
and use Code Replacement Libraries
(CRLs), the CRLs provide the ability to
align data objects passed into a
replacement function to a specified
boundary. You can take advantage of
target-specific function
implementations that require aligned
data. By default, the structure is not
aligned on any specific boundary so it
is not matched by CRL functions that
require alignment.

Alignment must be either -1 or a
power of 2 that is no more than 128.

Default: 0

Dependency: When Type definition
is externally defined is set to
Yes, this option is enabled.

Rename a Field in a Structure

Select the name field of the structure that you want to rename. Enter the new name.

Add a Field to a Structure

1
To the right of the structure, click

2 Enter the field name. Specify the class, size, and complexity of the field.

Insert a Field into a Structure

1 Select the structure field below which you want to add another field.
2 Right-click the structure field.

17 Setting Up a MATLAB Coder Project

17-26

3 Select Insert Field Below.

The app adds the field after the field that you selected.
4 Enter the field name. Specify the class, size, and complexity of the field.

Remove a Field from a Structure

1 Right-click the field that you want to remove.
2 Select Remove Field.

Specify a Cell Array Input Parameter
For code generation, cell arrays are homogeneous or heterogeneous. See “Code
Generation for Cell Arrays” on page 8-2. A homogeneous cell array is represented as an
array in the generated code. All elements have the same properties. A heterogeneous cell
array is represented as a structure in the generated code. Elements can have different
properties.

Specify a Homogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Homogeneous).

The app displays the selected type, cell. The app displays the size options.
4 From the list, select whether your input is a scalar, a 1 x n vector, a m x 1 vector,

or a m x n matrix. By default, if you do not select a size option, the app defines
inputs as scalars.

5 If your input is not scalar, enter sizes for each dimension. Click the dimension. Enter
the size. Select from the size options. For example, for size 10:

• To specify fixed size, select 10.
• To specify variable size with an upper bound of 10, select :10.
• To specify unbounded variable size, select :Inf.

Below the cell array variable, a colon inside curly braces {:} indicates that the cell
array elements have the same properties (class, size, and complexity).

 Define or Edit Input Parameter Type by Using the App

17-27

6 To specify the class, size, and complexity of the elements in the cell array, click the
field to the right of {:}.

Specify a Heterogeneous Cell Array

1 On the Define Input Types page, click Let me enter input or global types
directly.

2 Click the field to the right of the input parameter that you want to define.
3 Select cell (Heterogeneous).

The app displays the selected type, cell. The app displays the size options.
4 Specify that your structure is a scalar, 1 x n vector, m x 1 vector, or m x n matrix.

By default, if you do not select a size option, the app defines inputs as scalars.
5 Optionally, if your input is not scalar, enter sizes m and n. A heterogeneous cell array

is fixed size.

The app lists the cell array elements. It uses indexing notation to specify each
element. For example, {1,2} indicates the element in row 1, column 2.

6 Specify the class, size, and complexity for each cell array element.
7 Optionally, add elements. See “Add an Element to a Heterogeneous Cell Array” on

page 17-31
8 Optionally, specify properties for the structure that represents the cell array in the

generated code. See “Set Structure Properties for a Heterogeneous Cell Array” on
page 17-28.

Set Structure Properties for a Heterogeneous Cell Array

A heterogeneous cell array is represented as a structure in the generated code. You can
specify the properties for the structure that represents the cell array.

1 Click to the right of the cell array definition. Optionally click .
2 In the dialog box, specify properties for the structure in the generated code.

Property Description
C type definition name Name for the structure type in the

generated code.

17 Setting Up a MATLAB Coder Project

17-28

Property Description
Type definition is externally defined Default: No — type definition is not

externally defined.

If you select Yes to declare an
externally defined structure, the app
does not generate the definition of the
structure type. You must provide it in a
custom include file.

Dependency: C type definition
name enables this option.

C type definition header file Name of the header file that contains
the external definition of the structure,
for example, "mystruct.h". Specify
the path to the file using the
Additional include directories
parameter on the project settings
dialog box Custom Code tab.

By default, the generated code contains
#include statements for custom
header files after the standard header
files. If a standard header file refers to
the custom structure type, then the
compilation fails. If you specify the C
type definition header file, the app
includes that header file exactly at the
point where it is required.

Dependency: When Type definition
is externally defined is set to
Yes, this option is enabled.

 Define or Edit Input Parameter Type by Using the App

17-29

Property Description
Data alignment boundary The run-time memory alignment of

structures of this type in bytes.

If you have an Embedded Coder license
and use Code Replacement Libraries
(CRLs), the CRLs provide the ability to
align data objects passed into a
replacement function to a specified
boundary. You can take advantage of
target-specific function
implementations that require aligned
data. By default, the structure is not
aligned on any specific boundary so it
is not matched by CRL functions that
require alignment.

Alignment must be either -1 or a
power of 2 that is no more than 128.

Default: 0

Dependency: When Type definition
is externally defined is set to
Yes, this option is enabled.

Change Classification as Homogeneous or Heterogeneous

To change the classification as homogeneous or heterogeneous, right-click the variable.
Select Homogeneous or Heterogeneous.

17 Setting Up a MATLAB Coder Project

17-30

The app clears the definitions of the elements.

Change the Size of the Cell Array

1 In the definition of the cell array, click a dimension. Specify the size.
2 For a homogeneous cell array, specify whether the dimension is variable size and

whether the dimension is bounded or unbounded. Alternatively, right-click the
variable. Select Bounded (fixed-size), Bounded (variable-size), or Unbounded

3 For a heterogeneous cell array, the app adds elements so that the cell array has the
specified size and shape.

Add an Element to a Heterogeneous Cell Array

1 In the definition of the cell array, click a dimension. Specify the size. For example,
enter 1 for the first dimension and 4 for the second dimension.

The app adds elements so that the cell array has the specified size and shape. For
example for a 1x4 heterogeneous cell array, the app lists four elements: {1,1},
{1,2}, {1,3}, and {1,4}.

2 Specify the properties of the new elements.

 Define or Edit Input Parameter Type by Using the App

17-31

Define Constant Input Parameters Using the App
1 On the Define Input Types page, click Let me enter input or global types

directly.
2 Click the field to the right of the input parameter name.
3 Select Define Constant.
4 In the field to the right of the parameter name, enter the value of the constant or a

MATLAB expression that represents the constant.

The app uses the value of the specified MATLAB expression as a compile-time
constant.

17 Setting Up a MATLAB Coder Project

17-32

Define Inputs Programmatically in the MATLAB File
You can use the MATLAB assert function to define properties of entry-point function
inputs in your MATLAB entry-point files.

To instruct the MATLAB Coder app to determine input types from the assert statements in

your code, on the app toolbar, click . Select Determine input types from code
preconditions. If you enable this option:

• The app labels all entry-point function inputs as Deferred. It determines the input
types at compile time.

• In this project, you cannot use other input specification methods to specify input types.

See “Define Input Properties Programmatically in the MATLAB File” on page 20-71.

Note If you enable fixed-point conversion (requires a Fixed-Point Designer license), the
app disables the Determine input types from code preconditions option.

 Define Inputs Programmatically in the MATLAB File

17-33

Add Global Variables by Using the App
To add global variables to the project:

1 On the Define Input Types page, automatically define input types or click Let me
enter input or global types directly.

The app displays a table of entry-point inputs.
2 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent
global variables g1, g2, and so on.

3 Under Global variables, enter a name for the global variable.
4 After adding a global variable, but before generating code, specify its type and initial

value. Otherwise, you must create a variable with the same name in the global
workspace. See “Specify Global Variable Type and Initial Value Using the App” on
page 17-35.

17 Setting Up a MATLAB Coder Project

17-34

Specify Global Variable Type and Initial Value Using the
App

In this section...
“Why Specify a Type Definition for Global Variables?” on page 17-35
“Specify a Global Variable Type” on page 17-35
“Define a Global Variable by Example” on page 17-36
“Define or Edit Global Variable Type” on page 17-36
“Define Global Variable Initial Value” on page 17-37
“Define Global Variable Constant Value” on page 17-38
“Remove Global Variables” on page 17-38

Why Specify a Type Definition for Global Variables?
If you use global variables in your MATLAB algorithm, before building the project, you
must add a global type definition and initial value for each global variable. If you do not
initialize the global data, the app looks for the variable in the MATLAB global workspace.
If the variable does not exist, the app generates an error.

For MEX functions, if you use global data, you must also specify whether to synchronize
this data between MATLAB and the MEX function.

Specify a Global Variable Type
1 Specify the type of each global variable using one of the following methods:

• Define by example on page 17-36
• Define type on page 17-36

2 Define an initial value on page 17-37 for each global variable.

If you do not provide a type definition and initial value for a global variable, create a
variable with the same name and suitable class, size, complexity, and value in the
MATLAB workspace.

 Specify Global Variable Type and Initial Value Using the App

17-35

Define a Global Variable by Example
1 Click the field to the right of the global variable that you want to define.
2 Select Define by Example.
3 In the field to the right of the global name, enter a MATLAB expression that has the

required class, size, and complexity. MATLAB Coder software uses the class, size, and
complexity of the value of this expression as the type for the global variable.

4 Optionally, change the size of the global variable. Click the dimension that you want
to change and enter the size, for example, 10.

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to

specify that your input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define or Edit Global Variable Type
1 Click the field to the right of the global variable that you want to define.
2 Optionally, for numeric types, select Complex to make the parameter a complex type.

By default, inputs are real.
3 Select the type for the global variable. For example, double.

By default, the global variable is a scalar.
4 Optionally, change the size of the global variable. Click the dimension that you want

to change and enter the size, for example, 10.

17 Setting Up a MATLAB Coder Project

17-36

You can specify:

• Fixed size. In this example, select 10.
• Variable size, up to a specified limit, by using the : prefix. In this example, to

specify that your input can vary in size up to 10, select :10.
• Unbounded variable size by selecting :Inf.

Define Global Variable Initial Value
• “Define Initial Value Before Defining Type” on page 17-37
• “Define Initial Value After Defining Type” on page 17-38

Define Initial Value Before Defining Type

1 Click the field to the right of the global variable.
2 Select Define Initial Value.
3 Enter a MATLAB expression. MATLAB Coder software uses the value of the specified

MATLAB expression as the value of the global variable. Because you did not define
the type of the global variable before you defined its initial value, MATLAB Coder
uses the initial value type as the global variable type.

The project shows that the global variable is initialized.

 Specify Global Variable Type and Initial Value Using the App

17-37

If you change the type of a global variable after defining its initial value, you must
redefine the initial value.

Define Initial Value After Defining Type

• Click the type field of a predefined global variable.
• Select Define Initial Value.
• Enter a MATLAB expression. MATLAB Coder software uses the value of the specified

MATLAB expression as the value of the global variable.

The project shows that the global variable is initialized.

Define Global Variable Constant Value
1 Click the field to the right of the global variable.
2 Select Define Constant Value.
3 In the field to the right of the global variable, enter a MATLAB expression.

Remove Global Variables
1 Right-click the global variable.
2 From the menu, select Remove Global.

17 Setting Up a MATLAB Coder Project

17-38

Undo and Redo Changes to Type Definitions in the App
To revert or restore changes to input argument or global variable type definitions, above
the input arguments table, click or .

Alternatively, use the keyboard shortcuts for Undo and Redo. The shortcuts are defined in
your MATLAB preferences. On a Windows platform, the default keyboard shortcuts for
Undo and Redo are Ctrl+Z and Ctrl+Y.

Each undo operation reverts the last change. Each redo operation restores the last
change.

See Also

Related Examples
• “Customize Keyboard Shortcuts” (MATLAB)

 Undo and Redo Changes to Type Definitions in the App

17-39

Changing Output Type
In this section...
“Project Settings” on page 17-40
“Configuration Object Parameters” on page 17-41

MEX functions use a different set of configuration parameters than libraries and
executables use. When you switch the output type between MEX Function and Source
Code, Static Library, Dynamic Library, or C/C++ Executable, verify these
settings.

If you enable any of the following parameters when the output type is MEX Function,
and you want to use the same setting for C/C++ code generation as well, you must enable
it again for C/C++ Static Library, C/C++ Dynamic Library, and C/C++
Executable.

Project Settings
Project Settings Dialog Box
Tab

Parameter Name

Paths Working folder
Build folder
Search paths

Speed Saturate on integer overflow
Memory Enable variable-sizing

Dynamic memory allocation
Stack usage max

Code Appearance Generated file partitioning method
Include comments
MATLAB source code as comments
Reserved names

Debugging Always create a code generation report
Automatically launch a report if one is generated

17 Setting Up a MATLAB Coder Project

17-40

Project Settings Dialog Box
Tab

Parameter Name

Custom Code Source file
Header file
Initialize function
Terminate function
Additional include directories
Additional source files
Additional libraries
Post-code-generation command

Advanced Constant folding timeout
Language
Inline threshold
Inline threshold max
Inline stack limit
Use memcpy for vector assignment
Memcpy threshold (bytes)
Use memset to initialize floats and doubles to 0.0

Configuration Object Parameters
• ConstantFoldingTimeout
• CustomHeaderCode
• CustomInclude
• CustomInitializer
• CustomLibrary
• CustomSource
• CustomSourceCode
• CustomTerminator
• DynamicMemoryAllocation

 Changing Output Type

17-41

• EnableMemcpy
• EnableVariableSizing
• FilePartitionMethod
• GenCodeOnly
• GenerateComments
• GenerateReport
• InitFltsAndDblsToZero
• InlineStackLimit
• InlineThreshold
• InlineThresholdMax
• LaunchReport
• MATLABSourceComments
• MemcpyThreshold
• PostCodeGenCommand
• ReservedNameArray
• SaturateOnIntegerOverflow
• StackUsageMax
• TargetLang

17 Setting Up a MATLAB Coder Project

17-42

Code Generation Readiness Screening in the MATLAB
Coder App

By default, the MATLAB Coder app screens your MATLAB code for features and functions
that code generation does not support. After you enter entry-point functions and click
Next, if the app detects issues, it opens the Review Code Generation Readiness page.

If you click Review Issues, you can use the app editor to fix issues before you generate
code.

If the code generation readiness screening causes slow operations in the app, consider
disabling the screening. To disable code generation readiness screening, on the app

toolbar, click and clear Check code generation readiness.

If you clear Check code generation readiness during or after screening, the app
retains the screening results for the current session. If you fix or introduce code
generation readiness issues in your code, the app does not update the screening results.
To clear screening results after you disable screening, or to update screening results after
you reenable screening, close and reopen the project.

For a fixed-point conversion project, code generation readiness screening identifies
functions that do not have fixed-point support. The app lists these functions on the
Function Replacements tab of the Convert to Fixed Point page where you can specify
function replacement with a custom function or a lookup table. If you disable screening,

 Code Generation Readiness Screening in the MATLAB Coder App

17-43

do not rely on the app to identify functions that you must replace. Manually enter the
names of functions on the Function Replacements tab. Fixed-point conversion requires
a Fixed-Point Designer license.

See Also

More About
• “Slow Operations in MATLAB Coder App” on page 17-45
• “Automated Fixed-Point Conversion” on page 14-83

17 Setting Up a MATLAB Coder Project

17-44

Slow Operations in MATLAB Coder App
By default, the MATLAB Coder app screens your entry-point functions for code generation
readiness. For some large entry-point functions, or functions with many calls, screening
can take a long time. If the screening takes a long time, certain app or MATLAB
operations can be slower than expected or appear to be unresponsive.

To determine if slow operations are due to the code generation readiness screening,
disable the screening.

See Also

More About
• “Code Generation Readiness Screening in the MATLAB Coder App” on page 17-43

 Slow Operations in MATLAB Coder App

17-45

Unable to Open a MATLAB Coder Project
When you open a project from a different release, if necessary, the MATLAB Coder app
updates the project file so that the format is compatible with the release that you are
using. Before the app updates the project file, it creates a backup file with the name
project_name.prj.bak. For example, the backup file name for myproject.prj is
myproject.prj.bak. If the backup file exists, the app inserts an integer between the
prj and bak extensions to make the file name unique. For example, if
myproject.prj.bak exists, the app creates the backup file myproject.prj.2.bak.

If the project file is from a release before R2015a, the app also displays a message about
the project file update and backup. To use the project in a release before R2015a, use the
backup project file instead of the updated project file.

To use a backup project file, remove the extensions that follow the prj extension. For
example, rename myproject.prj.2.bak to myproject.prj. If you use the backup
project file in the release that created it, the project is the same as the original project. If
you use the backup project file in a different release than the one that created it, you can
possibly lose some information. For example, if you open a project file in a release that
does not recognize a setting in the file, that setting is lost. For best results, open the
backup project file in the release in which you created it.

17 Setting Up a MATLAB Coder Project

17-46

Preparing MATLAB Code for C/C++
Code Generation

• “Workflow for Preparing MATLAB Code for Code Generation” on page 18-2
• “Fixing Errors Detected at Design Time” on page 18-4
• “Using the Code Analyzer” on page 18-5
• “Check Code with the Code Analyzer” on page 18-6
• “Check Code by Using the Code Generation Readiness Tool” on page 18-8
• “Code Generation Readiness Tool” on page 18-10
• “Unable to Determine Code Generation Readiness” on page 18-17
• “Generate MEX Functions by Using the MATLAB Coder App” on page 18-18
• “Generate MEX Functions at the Command Line” on page 18-23
• “Fix Errors Detected at Code Generation Time” on page 18-25
• “Design Considerations When Writing MATLAB Code for Code Generation”

on page 18-26
• “Running MEX Functions” on page 18-28
• “Debugging Strategies” on page 18-29
• “Collect and View Line Execution Counts for Your MATLAB Code” on page 18-30

18

Workflow for Preparing MATLAB Code for Code
Generation

18 Preparing MATLAB Code for C/C++ Code Generation

18-2

See Also
• “Set Up a MATLAB Coder Project” on page 17-2
• “Fixing Errors Detected at Design Time” on page 18-4
• “Generate MEX Functions by Using the MATLAB Coder App” on page 18-18
• “Fix Errors Detected at Code Generation Time” on page 18-25
• “Workflow for Testing MEX Functions in MATLAB” on page 19-3
• “C/C++ Code Generation” on page 20-4
• “Accelerate MATLAB Algorithms” on page 25-7

 Workflow for Preparing MATLAB Code for Code Generation

18-3

Fixing Errors Detected at Design Time
Use the code analyzer and the code generation readiness tool to detect issues at design
time. Before generating code, you must fix these issues.

See Also
• “Check Code with the Code Analyzer” on page 18-6
• “Check Code by Using the Code Generation Readiness Tool” on page 18-8
• “Design Considerations When Writing MATLAB Code for Code Generation” on page

18-26
• “Debugging Strategies” on page 18-29

18 Preparing MATLAB Code for C/C++ Code Generation

18-4

Using the Code Analyzer
You use the code analyzer in the MATLAB Editor to check for code violations at design
time, minimizing compilation errors. The code analyzer continuously checks your code as
you enter it. It reports problems and recommends modifications.

To use the code analyzer to identify warnings and errors specific to MATLAB for code
generation, you must add the %#codegen directive (or pragma) to your MATLAB file. A
complete list of code generation analyzer messages is available in the MATLAB Code
Analyzer preferences. For more information, see “Running the Code Analyzer Report”
(MATLAB).

Note The code analyzer might not detect all MATLAB for code generation issues. After
eliminating the errors or warnings that the code analyzer detects, compile your code with
MATLAB Coder to determine if the code has other compliance issues.

 Using the Code Analyzer

18-5

Check Code with the Code Analyzer
The code analyzer checks your code for problems and recommends modifications. You can
use the code analyzer to check your code interactively in the MATLAB Editor while you
work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.
2 In the Preferences dialog box, select Code Analyzer.
3 In the Code Analyzer Preferences pane, verify that Enable integrated warning

and error messages is selected.

The code analyzer provides an indicator in the top right of the editor window. If the
indicator is green, the analyzer did not detect code generation issues.

If the indicator is red, the analyzer has detected errors in your code. If it is orange, it has
detected warning. When the indicator is red or orange, a red or orange marker appears to
the right of the code where the error occurs. Place your pointer over the marker for
information about the error. Click the underlined text in the error message for a more
detailed explanation and suggested actions to fix the error.

18 Preparing MATLAB Code for C/C++ Code Generation

18-6

Before generating code from your MATLAB code, you must fix the errors detected by the
code analyzer.

 Check Code with the Code Analyzer

18-7

Check Code by Using the Code Generation Readiness
Tool

In this section...
“Run Code Generation Readiness Tool at the Command Line” on page 18-8
“Run Code Generation Readiness Tool from the Current Folder Browser” on page 18-8
“Run the Code Generation Readiness Tool Using the MATLAB Coder App” on page 18-
8

Run Code Generation Readiness Tool at the Command Line
1 Navigate to the folder that contains the file that you want to check for code

generation readiness.
2 At the command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename. The tool
provides a code generation readiness score and lists issues that you must fix prior to
code generation.

Run Code Generation Readiness Tool from the Current Folder
Browser
1 In the current folder browser, right-click the file that you want to check for code

generation readiness.
2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file. It provides a code
generation readiness score and lists issues that you must fix prior to code generation.

Run the Code Generation Readiness Tool Using the MATLAB
Coder App
After you add entry-point files to your project, the MATLAB Coder app analyzes the
functions for coding issues and code generation readiness. If the app identifies issues, it
opens the Review Code Generation Readiness page. You can review and fix issues.

18 Preparing MATLAB Code for C/C++ Code Generation

18-8

See “Code Generation Readiness Tool” on page 18-10.

 Check Code by Using the Code Generation Readiness Tool

18-9

Code Generation Readiness Tool
The code generation readiness tool screens MATLAB code for features and functions that
code generation does not support. The tool provides a report that lists the source files
that contain unsupported features and functions. The report also indicates the amount of
work required to make the MATLAB code suitable for code generation. It is possible that
the tool does not detect all code generation issues. Under certain circumstances, it is
possible that the tool can report false errors. Therefore, before you generate C code,
verify that your code is suitable for code generation by generating a MEX function.

18 Preparing MATLAB Code for C/C++ Code Generation

18-10

Summary Tab

The Summary tab provides a Code Generation Readiness Score, which ranges from 1
to 5. A score of 1 indicates that the tool detects issues that require extensive changes to
the MATLAB code to make it suitable for code generation. A score of 5 indicates that the

 Code Generation Readiness Tool

18-11

tool does not detect code generation issues; the code is ready to use with minimal or no
changes.

On this tab, the tool also displays information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor. To learn more
about the issues and how to fix them, use the Code Analyzer.

• Unsupported MATLAB function calls.
• Unsupported MATLAB language features.
• Unsupported data types.

18 Preparing MATLAB Code for C/C++ Code Generation

18-12

Code Structure Tab

If the code that you are checking calls other MATLAB functions, or you are checking
multiple entry-point functions, the tool displays the Code Structure Tab.

 Code Generation Readiness Tool

18-13

This tab displays information about the relative size of each file and how suitable each file
is for code generation.

Code Distribution

The Code Distribution pane displays a pie chart that shows the relative sizes of the files
and how suitable each file is for code generation. During the planning phase of a project,
you can use this information for estimation and scheduling. If the report indicates that
multiple files are not suitable for code generation, consider fixing files that require minor
changes before addressing files with significant issues.

Call Tree

The Call Tree pane displays information about the nesting of function calls. For each
called function, the report provides a Code Generation Readiness score, which ranges
from 1 to 5. A score of 1 indicates that the tool detects issues that require extensive
changes to the MATLAB code to make it suitable for code generation. A score of 5
indicates that the tool does not detect code generation issues. The code is ready to use
with minimal or no changes. The report also lists the number of lines of code in each file.

Show MATLAB Functions

If you select Show MATLAB Functions, the report also lists the MATLAB functions that
your function calls. For each of these MATLAB functions, if code generation supports the
function, the report sets Code Generation Readiness to Yes.

18 Preparing MATLAB Code for C/C++ Code Generation

18-14

 Code Generation Readiness Tool

18-15

See Also

Related Examples
• “Check Code by Using the Code Generation Readiness Tool” on page 18-8

18 Preparing MATLAB Code for C/C++ Code Generation

18-16

Unable to Determine Code Generation Readiness
Sometimes the code generation readiness tool cannot determine whether the entry-point
functions in your project are suitable for code generation. The most likely reason is that
the tool is unable to find the entry-point files. Verify that your current working folder is
set to the folder that contains your entry-point files. If it is not, either make this folder
your current working folder or add the folder containing these files to the MATLAB path.

 Unable to Determine Code Generation Readiness

18-17

Generate MEX Functions by Using the MATLAB Coder
App

In this section...
“Workflow for Generating MEX Functions Using the MATLAB Coder App” on page 18-
18
“Generate a MEX Function Using the MATLAB Coder App” on page 18-18
“Configure Project Settings” on page 18-21
“Build a MATLAB Coder Project” on page 18-21
“See Also” on page 18-22

Workflow for Generating MEX Functions Using the MATLAB
Coder App

Step Action Details
1 Set up the MATLAB Coder project. “Set Up a MATLAB Coder Project” on page

17-2
2 Specify the build configuration parameters.

Set Build type to MEX.
“Configure Project Settings” on page 18-21

3 Build the project. “Build a MATLAB Coder Project” on page 18-
21

Generate a MEX Function Using the MATLAB Coder App
This example shows how to generate a MEX function from MATLAB code using the
MATLAB Coder app.

Create the Entry-Point Function

In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

18 Preparing MATLAB Code for C/C++ Code Generation

18-18

Create the Test File

In the same local writable folder, create a MATLAB file, mcadd_test.m, that calls mcadd
with example inputs. The example inputs are scalars with type int16.

function y = mcadd_test
y = mcadd(int16(2), int16(3));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB Coder
app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function
mcadd.

The app creates a project with the default name mcadd.prj.
2 Click Next to go to the Define Input Types step. The app analyzes the function for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In
this example, because the app does not detect issues, it opens the Define Input
Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify the test file mcadd_test.m that MATLAB Coder uses to automatically define
types for u and v:

1 Enter or select the test file mcadd_test.m.
2 Click Autodefine Input Types.

The test file, mcadd_test.m, calls the entry-point function, mcadd, with the example
input types. MATLAB Coder infers that inputs u and v are int16(1x1).

 Generate MEX Functions by Using the MATLAB Coder App

18-19

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it is
a best practice to perform this step. You can detect and fix run-time errors that are harder
to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues
arrow .

The app populates the test file field with mcadd_test, the test file that you used to
define the input types.

2 Click Check for Issues.

The app generates a MEX function. It runs the test file replacing calls to mcadd with
calls to the MEX function. If the app detects issues during the MEX function
generation or execution, it provides warning and error messages. Click these
messages to navigate to the problematic code and fix the issue. In this example, the
app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate the MEX Function

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to MEX and Language to C. Use the

default values for the other project build configuration settings.
3 Click Generate.

The app indicates that code generation succeeded. It displays the source MATLAB
files and the generated output files on the left side of the page. On the Variables tab,
it displays information about the MATLAB source variables. On the Target Build Log
tab, it displays the build log, including compiler warnings and errors.

MATLAB Coder builds the project and, by default, generates a MEX function,
mcadd_mex, in the current folder. MATLAB Coder also generates other supporting
files in a subfolder called codegen/mex/mcadd. MATLAB Coder uses the name of
the MATLAB function as the root name for the generated files. It creates a platform-
specific extension for the MEX file. See “Naming Conventions” on page 20-86.

18 Preparing MATLAB Code for C/C++ Code Generation

18-20

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to the generated output.

Configure Project Settings
To open the project settings dialog box:

1 To open the Generate dialog box, click the Generate arrow .
2 Click More Settings.

To change a project setting, click the tab that contains the setting that you want to
change. For example, to change the Saturate on integer overflow setting, click the
Speed tab.

MEX functions use a different set of configuration parameters than libraries and
executables. When you change the output type from MEX Function to Source Code
Static Library, Dynamic Library, or Executable, verify these settings. See
“Changing Output Type” on page 17-40.

See Also

• “Using the MATLAB Coder App” on page 20-126
• “How to Disable Inlining Globally Using the MATLAB Coder App” on page 20-136
• “Disabling Run-Time Checks Using the MATLAB Coder App” on page 25-18

Build a MATLAB Coder Project
To build a project using the specified settings, on the Generate Code page, click
Generate. As the MATLAB Coder app builds a project, it displays the build progress.
When the build is complete, the app provides details about the build on the Target Build
Log tab.

If the code generation report is enabled or build errors occur, the app generates a report.
The report provides detailed information about the most recent build, and provides a link
to the report.

 Generate MEX Functions by Using the MATLAB Coder App

18-21

To view the report, click the View report link. The report provides links to your MATLAB
code and generated C/C++ files and compile-time type information for the variables in
your MATLAB code. If build errors occur, the report lists errors and warnings.

See Also
• “Configure Build Settings” on page 20-28

See Also

Related Examples
• “Configure Build Settings” on page 20-28
• “C Code Generation Using the MATLAB Coder App”

18 Preparing MATLAB Code for C/C++ Code Generation

18-22

Generate MEX Functions at the Command Line

Command-line Workflow for Generating MEX Functions

Step Action Details
1 Install prerequisite products. “Installing Prerequisite Products”
2 Set up your file infrastructure. “Paths and File Infrastructure Setup” on page

20-85
3 Fix errors detected by the code analyzer. “Fixing Errors Detected at Design Time” on

page 18-4
4 Specify build configuration parameters. “Specify Build Configuration Parameters” on

page 20-34
5 Specify properties of primary function inputs. “Specify Properties of Entry-Point Function

Inputs” on page 20-48
6 Generate the MEX function using codegen

with suitable command-line options.
codegen

Generate a MEX Function at the Command Line
In this example, you use the codegen function to generate a MEX function from a
MATLAB file that adds two inputs. You use the codegen -args option to specify that both
inputs are int16.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Generate a platform-specific MEX function in the current folder. At the command line,
specify that the two input parameters are int16 using the -args option. By default,
if you do not use the -args option, codegen treats inputs as real, scalar doubles.

codegen mcadd -args {int16(0), int16(0)}

codegen generates a MEX function, mcadd_mex, in the current folder. codegen also
generates other supporting files in a subfolder called codegen/mex/mcadd.codegen
uses the name of the MATLAB function as the root name for the generated files and

 Generate MEX Functions at the Command Line

18-23

creates a platform-specific extension for the MEX file, as described in “Naming
Conventions” on page 20-86.

See Also

Related Examples
• “Specify Properties of Entry-Point Function Inputs” on page 20-48
• “MEX Function Generation at the Command Line”

18 Preparing MATLAB Code for C/C++ Code Generation

18-24

Fix Errors Detected at Code Generation Time
When the code generator detects errors or warnings, it automatically generates an error
report. The error report describes the issues and provides links to the MATLAB code with
errors.

To fix the errors, modify your MATLAB code to use only those MATLAB features that are
supported for code generation. For more information, see “Programming Considerations
for Code Generation”. Choose a debugging strategy for detecting and correcting code
generation errors in your MATLAB code. For more information, see “Debugging
Strategies” on page 18-29.

When code generation is complete, the software generates a MEX function that you can
use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code generator
determines that these functions should be extrinsic or you declare them to be extrinsic, it
attempts to compile these functions. See “Resolution of Function Calls for Code
Generation” on page 13-2. To get detailed diagnostics, add the %#codegen directive to
each external function that you want codegen to compile.

See Also
• “Code Generation Reports” on page 21-9
• “Why Test MEX Functions in MATLAB?” on page 19-2
• “When to Generate Code from MATLAB Algorithms” on page 2-2
• “Debugging Strategies” on page 18-29
• “Declaring MATLAB Functions as Extrinsic Functions” on page 13-10

 Fix Errors Detected at Code Generation Time

18-25

Design Considerations When Writing MATLAB Code for
Code Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use,
MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that varies
in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense of
time to manage the memory. With static memory, you get best speed, but with higher
memory usage. Most MATLAB code takes advantage of the dynamic sizing features in
MATLAB, therefore dynamic memory allocation typically enables you to generate code
from existing MATLAB code without modifying it much. Dynamic memory allocation
also allows some programs to compile even when upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is
suitable for applications where there is a limited amount of available memory, such as
embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough to
meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C or /C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 64-bit platforms is not a good compiler for
performance.

18 Preparing MATLAB Code for C/C++ Code Generation

18-26

• Consider disabling run-time checks.

By default, the code generated for your MATLAB code contains memory integrity
checks and responsiveness checks. Generally, these checks result in more
generated code and slower MEX function execution. Disabling run-time checks
usually results in streamlined generated code and faster MEX function execution.
Disable these checks only if you have verified that array bounds and dimension
checking is unnecessary.

See Also
• “Programming Considerations for Code Generation”
• “Data Definition”
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Control Run-Time Checks” on page 25-17

 Design Considerations When Writing MATLAB Code for Code Generation

18-27

Running MEX Functions
When you call a MEX function, pass it the same inputs that you use for the original
MATLAB algorithm. Do not pass coder.Constant or any of the coder.Type classes to a
MEX function. You can use these classes with only the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses for all the
toolboxes that the MEX function requires. For example, if you generate a MEX function
from a MATLAB algorithm that uses a Computer Vision System Toolbox function or
System object, to run the MEX function, you must have a Computer Vision System
Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new version, rebuild
the MEX functions.

Debugging MEX Functions
To debug your MEX functions, use the disp function to inspect the contents of your MEX
function variables. You cannot use save to debug MEX function variables because code
generation does not support it. Code generation does not support declaration of save as
extrinsic.

18 Preparing MATLAB Code for C/C++ Code Generation

18-28

Debugging Strategies
Before you perform code verification, choose a debugging strategy for detecting and
correcting noncompliant code in your MATLAB applications, especially if they consist of
many MATLAB files that call each other's functions. The following table describes two
general strategies, each of which has advantages and disadvantages.

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification

1 Verify that your lowest-
level (leaf) functions are
compliant.

2 Work your way up the
function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient
• Unlikely to cause

errors
• Easy to isolate

code generation
syntax violations

Requires application tests that
work from the bottom up

Top-down
verification

1 Declare functions called
by the top-level function
to be extrinsic so that
MATLAB Coder does not
compile them. See
“Declaring MATLAB
Functions as Extrinsic
Functions” on page 13-
10.

2 Verify that your top-level
function is compliant.

3 Work your way down the
function hierarchy
incrementally by
removing extrinsic
declarations one by one
to compile and verify
each function, ending
with the leaf functions.

You retain your top-
level tests

Introduces extraneous code
that you must remove after
code verification, including:

• Extrinsic declarations
• Additional assignment

statements as required to
convert opaque values
returned by extrinsic
functions to nonopaque
values (see “Working with
mxArrays” on page 13-16).

 Debugging Strategies

18-29

Collect and View Line Execution Counts for Your MATLAB
Code

When you perform the Check for Run-Time Issues step in the MATLAB Coder app, you
must provide a test that calls your entry-point functions with representative data. The
Check for Run-Time Issues step generates a MEX function from your MATLAB
functions and runs the test, replacing calls to the MATLAB functions with calls to the
MEX function. When running the MEX function, the app counts executions of the MEX
code that corresponds to a line of MATLAB code. These line execution counts help you to
see how well your test exercises your MATLAB code. You can identify dead code and
sections of code that require further testing.

To see the line execution counts, after the Check for Run-Time Issues step finishes the
test, click View MATLAB line execution counts.

In the app editor, the app displays a color coded bar to the left of your MATLAB code.

18 Preparing MATLAB Code for C/C++ Code Generation

18-30

This table describes the color coding.

 Collect and View Line Execution Counts for Your MATLAB Code

18-31

Color Indicates
Green One of the following situations:

• The entry-point function executes multiple times and the code
executes more than one time.

• The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code
executes one time.

Red Code does not execute.

When you place your pointer over the bar, the color highlighting extends over the code.
For each section of code, the app displays the number of times that the section executes.

18 Preparing MATLAB Code for C/C++ Code Generation

18-32

Collection of line execution counts is on by default. Turn it off only after you have verified
that you have adequate test file coverage. Turning off line execution counts can speed up
the Check for Run-Time Issues step. To turn off collection of line executions counts, in
the Check for Run-Time Issues dialog box, clear the Collect MATLAB line execution
counts check box.

If you check for run-time issues multiple times, the line execution counts accumulate. To
set the counts to zero, click Reset line execution counts.

 Collect and View Line Execution Counts for Your MATLAB Code

18-33

See Also

Related Examples
• “Check for Run-Time Issues by Using the App” on page 19-6

More About
• “Why Test MEX Functions in MATLAB?” on page 19-2

18 Preparing MATLAB Code for C/C++ Code Generation

18-34

Testing MEX Functions in MATLAB

• “Why Test MEX Functions in MATLAB?” on page 19-2
• “Workflow for Testing MEX Functions in MATLAB” on page 19-3
• “Running MEX Functions” on page 19-5
• “Check for Run-Time Issues by Using the App” on page 19-6
• “Verify MEX Functions in the MATLAB Coder App” on page 19-8
• “Verify MEX Functions at the Command Line” on page 19-9
• “Debug Run-Time Errors” on page 19-10
• “Using MEX Functions That MATLAB Coder Generates” on page 19-13

19

Why Test MEX Functions in MATLAB?
Before generating C/C++ code for your MATLAB code, it is a best practice to test the
MEX function to verify that it provides the same functionality as the original MATLAB
code. To do this testing, run the MEX function using the same inputs as you used to run
the original MATLAB code and compare the results. For more information about how to
test a MEX function using the MATLAB Coder app, see “Check for Run-Time Issues by
Using the App” on page 19-6 and “Verify MEX Functions in the MATLAB Coder App” on
page 19-8. For more information about how to test a MEX function at the command
line, see “Verify MEX Functions at the Command Line” on page 19-9.

Running the MEX function in MATLAB before generating code enables you to detect and
fix run-time errors that are much harder to diagnose in the generated code. If you
encounter run-time errors in your MATLAB functions, fix them before generating code.
See “Fix Errors Detected at Code Generation Time” on page 18-25 and “Debug Run-Time
Errors” on page 19-10.

When you run your MEX function in MATLAB, by default, the following run-time checks
execute:

• Memory integrity checks. These checks perform array bounds checking, dimension
checking, and detect violations of memory integrity in code generated for MATLAB
functions. If a violation is detected, MATLAB stops execution and provides a diagnostic
message.

• Responsiveness checks in code generated for MATLAB functions. These checks enable
periodic checks for Ctrl+C breaks in code generated for MATLAB functions, allowing
you to terminate execution with Ctrl+C.

For more information, see “Control Run-Time Checks” on page 25-17.

19 Testing MEX Functions in MATLAB

19-2

Workflow for Testing MEX Functions in MATLAB

See Also
• “Set Up a MATLAB Coder Project” on page 17-2

 Workflow for Testing MEX Functions in MATLAB

19-3

• “Workflow for Preparing MATLAB Code for Code Generation” on page 18-2
• “Why Test MEX Functions in MATLAB?” on page 19-2
• “Debug Run-Time Errors” on page 19-10
• “C/C++ Code Generation” on page 20-4
• “Accelerate MATLAB Algorithms” on page 25-7

19 Testing MEX Functions in MATLAB

19-4

Running MEX Functions
When you call a MEX function, pass it the same inputs that you use for the original
MATLAB algorithm. Do not pass coder.Constant or any of the coder.Type classes to a
MEX function. You can use these classes with only the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses for all the
toolboxes that the MEX function requires. For example, if you generate a MEX function
from a MATLAB algorithm that uses a Computer Vision System Toolbox function or
System object, to run the MEX function, you must have a Computer Vision System
Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new version, rebuild
the MEX functions.

Debugging MEX Functions
To debug your MEX functions, use the disp function to inspect the contents of your MEX
function variables. You cannot use save to debug MEX function variables because code
generation does not support it. Code generation does not support declaration of save as
extrinsic.

 Running MEX Functions

19-5

Check for Run-Time Issues by Using the App
Before you generate standalone C/C++ code for your MATLAB code, it is a best practice
to generate a MEX function from your entry-point functions. Running the MEX function
helps you to detect and fix run-time errors that are harder to diagnose in the generated
code. It also helps you to verify that the MEX provides the same functionality as the
original MATLAB code.

In the MATLAB Coder app, to generate and run the MEX function for your MATLAB code,
perform the Check for Run-Time Issues step.

1 Write a function or script that calls your entry-point functions. You can use the same
test file (or files) that you use to automatically define input types in the Define Input
Types step.

2 Complete the Select Source Files and Define Input Types steps. On the Define
Input Types page, click Next to go to Check for Run-Time Issues step.

3 Specify the test file. In the previous step, if you automatically generated the input
types, the app populates the dialog box with that test file. Instead of a test file, you
can enter code that calls your entry-point functions. However, it is a best practice to
provide a test file.

4 Click Check for Issues. The app generates a MEX function from your MATLAB
function. It runs the test that you specified, substituting calls to your MATLAB entry-
point functions with calls to the generated MEX function. The app reports MEX
generation or build errors on the Errors tab. The app reports MEX run-time errors
on the Test Output tab.

5 If the app reports errors, to edit the MATLAB code, click View errors.
6 After you fix issues, to rerun the test, click Check for Issues.

Collect MATLAB Line Execution Counts
When the app runs the MEX function, it counts executions of the MEX code that
corresponds to a line of MATLAB code. If the app does not detect issues, you can view
these line execution counts. The line execution counts help you to see how well your test
exercises your MATLAB code. You can identify dead code and sections of code that
require further testing. See “Collect and View Line Execution Counts for Your MATLAB
Code” on page 18-30.

19 Testing MEX Functions in MATLAB

19-6

Disable JIT Compilation for Parallel Loops
By default, to speed up generation of the MEX function, the app tries to use just-in-time
(JIT) compilation. JIT compilation is incompatible with certain code generation features
and options such as custom code and use of the OpenMP library. If the app cannot use JIT
compilation, it generates a C/C++ MEX function instead. If your code uses parfor and
the Enable OpenMP library if possible setting is Yes, the app uses JIT compilation and
treats the parfor-loops as for-loops. If you want the Check for Run-Time Issues step
to run for-loops in parallel, disable JIT compilation:

1 On the Check for Run-Time Issues page, click Settings.
2 On the All Settings tab, set Use JIT compilation in Check for Run-Time Issues

to No.

See Also

More About
• “Why Test MEX Functions in MATLAB?” on page 19-2
• “C Code Generation Using the MATLAB Coder App”
• “Fix Errors Detected at Code Generation Time” on page 18-25
• “Collect and View Line Execution Counts for Your MATLAB Code” on page 18-30
• “Control Run-Time Checks” on page 25-17
• “Verify MEX Functions at the Command Line” on page 19-9

 See Also

19-7

Verify MEX Functions in the MATLAB Coder App
In the MATLAB Coder app, after you generate a MEX function, you can verify that the
generated MEX function has the same functionality as the original MATLAB entry-point
function. Provide a test file that calls the original MATLAB entry-point function. The test
file can be a MATLAB function or script. The test file must be in the same folder as the
original entry-point function.

1 On the Generate Code page, click Verify Code.
2 Type or select the test file name.
3 To run the test file without replacing calls to the original MATLAB function with calls

to the MEX function, for Run using, select MATLAB code. Click Run Generated
Code.

4 To run the test file, replacing calls to the original MATLAB function with calls to the
MEX function, for Run using, select Generated code. Click Run Generated Code.

5 Compare the results of running the original MATLAB function with the results of
running the MEX function.

See Also
codegen | coder.runTest

More About
• “Why Test MEX Functions in MATLAB?” on page 19-2
• “Verify MEX Functions at the Command Line” on page 19-9
• “Unit Test Generated Code with MATLAB Coder” on page 21-23

19 Testing MEX Functions in MATLAB

19-8

Verify MEX Functions at the Command Line
If you have a test file that calls your original MATLAB function, you can use
coder.runTest to verify the MEX function at the command line. coder.runTest runs
the test file replacing calls to the original MATLAB function with calls to the generated
MEX function. For example, here is a call to coder.runTest for the test file
myfunction_test and the function myfunction

coder.runTest('myfunction_test', 'myfunction')

If errors occur during the run with coder.runTest, call stack information is available
for debugging.

Alternatively, you can use the codegen -test option.

codegen myfunction -test 'myfunction_test'

The test file can be a MATLAB function, script, or class-based unit test.

See Also
codegen | coder.runTest

More About
• “Why Test MEX Functions in MATLAB?” on page 19-2
• “Check for Run-Time Issues by Using the App” on page 19-6
• “Unit Test Generated Code with MATLAB Coder” on page 21-23

 Verify MEX Functions at the Command Line

19-9

Debug Run-Time Errors
In this section...
“Viewing Errors in the Run-Time Stack” on page 19-10
“Handling Run-Time Errors” on page 19-11

If you encounter run-time errors in your MATLAB functions, the run-time stack appears in
the MATLAB command window. Use the error message and stack information to learn
more about the source of the error, and then either fix the issue or add error-handling
code. For more information, see “Viewing Errors in the Run-Time Stack” on page 19-
10“Handling Run-Time Errors” on page 19-11.

Viewing Errors in the Run-Time Stack
About the Run-Time Stack

The run-time stack is enabled by default for MEX code generation from MATLAB. To learn
more about the source of the error, use the error message and the following stack
information:

• The name of the function that generated the error
• The line number of the attempted operation
• The sequence of function calls that led up to the execution of the function and the line

at which each of these function calls occurred

Example Run-Time Stack Trace

This example shows the run-time stack trace for MEX function mlstack_mex:

mlstack_mex(-1)

Index exceeds matrix dimensions. Index
value -1 exceeds valid range [1-4] of
array x.

Error in mlstack>mayfail (line 31)
y = x(u);

Error in mlstack>subfcn1 (line 5)
switch (mayfail(u))

19 Testing MEX Functions in MATLAB

19-10

Error in mlstack (line 2)
y = subfcn1(u);

The stack trace provides the following information:

• The type of error.

??? Index exceeds matrix dimensions.
Index value -1 exceeds valid range [1-4] of array x.

• Where the error occurred.

Error in ==>mlstack>mayfail at 31
y = x(u);

• The function call sequence prior to the failure.

Error in ==> mlstack>subfcn1 at 5
switch (mayfail(u))

Error in ==> mlstack at 2
y = subfcn1(u);

When to Use the Run-Time Stack

To help you find the source of run-time errors, the run-time stack is useful during
debugging. However, when the stack is enabled, the generated code contains instructions
for maintaining the run-time stack, which might slow the run time. Consider disabling the
run-time stack for faster run time.

Disable the Run-Time Stack

You can disable the run-time stack by disabling the memory integrity checks as described
in “How to Disable Run-Time Checks” on page 25-18.

Caution Before disabling the memory integrity checks, verify that all array bounds and
dimension checking is unnecessary.

Handling Run-Time Errors
The code generator propagates error IDs. If you throw an error or warning in your
MATLAB code, use the try-catch statement in your test bench code to examine the

 Debug Run-Time Errors

19-11

error information and attempt to recover, or clean up and abort. For example, for the
function in “Example Run-Time Stack Trace” on page 19-10, create a test script
containing:

try
 mlstack_mex(u)
catch
 % Add your error handling code here
end

For more information, see “The try/catch Statement” (MATLAB).

19 Testing MEX Functions in MATLAB

19-12

Using MEX Functions That MATLAB Coder Generates
When you specify MEX for the output (build) type, MATLAB Coder generates a binary
MATLAB executable (MEX) version of your MATLAB function. You can call the MEX
function from MATLAB. See “Call MEX File Functions” (MATLAB).

How you use the MEX function depends on your goal.

Goal See
Accelerate your MATLAB function. “MATLAB Algorithm Acceleration”
Test generated function for functionality
and run-time issues.

“Why Test MEX Functions in MATLAB?” on
page 19-2

Debug your MEX function. “Debug Run-Time Errors” on page 19-10

 Using MEX Functions That MATLAB Coder Generates

19-13

Generating C/C++ Code from
MATLAB Code

• “Code Generation Workflow” on page 20-3
• “C/C++ Code Generation” on page 20-4
• “Generating C/C++ Static Libraries from MATLAB Code” on page 20-6
• “Generating C/C++ Dynamically Linked Libraries from MATLAB Code”

on page 20-10
• “Generating Standalone C/C++ Executables from MATLAB Code” on page 20-15
• “Configure Build Settings” on page 20-28
• “Specify Data Types Used in Generated Code” on page 20-40
• “Change the Standard Math Library” on page 20-41
• “Share Build Configuration Settings” on page 20-42
• “Convert MATLAB Coder Project to MATLAB Script” on page 20-44
• “Preserve Variable Names in Generated Code” on page 20-46
• “Specify Properties of Entry-Point Function Inputs” on page 20-48
• “Specify Cell Array Inputs at the Command Line” on page 20-59
• “Constant Input Checking in MEX Functions” on page 20-66
• “Define Input Properties Programmatically in the MATLAB File” on page 20-71
• “Speed Up Compilation by Generating Only Code” on page 20-83
• “Disable Creation of the Code Generation Report” on page 20-84
• “Paths and File Infrastructure Setup” on page 20-85
• “Generate Code for Multiple Entry-Point Functions” on page 20-92
• “Pass an Entry-Point Function Output as an Input” on page 20-98
• “Generate Code for Global Data” on page 20-102
• “Specify Global Cell Arrays at the Command Line” on page 20-113
• “Generate Code for Enumerations” on page 20-115

20

• “Generate Code for Variable-Size Data” on page 20-116
• “How MATLAB Coder Partitions Generated Code” on page 20-126
• “Requirements for Signed Integer Representation” on page 20-138
• “Build Process Customization” on page 20-139
• “Run-time Stack Overflow” on page 20-168
• “Pass Structure Arguments by Reference or by Value in Generated Code”

on page 20-169
• “Name the C Structure Type to Use With a Global Structure Variable” on page 20-178
• “Generate Code for an LED Control Function That Uses Enumerated Types”

on page 20-181
• “Generate Code That Uses N-Dimensional Indexing” on page 20-185
• “Edge Detection on Images” on page 20-190
• “C Code Generation for a MATLAB Kalman Filtering Algorithm” on page 20-195
• “Portfolio Optimization (Black Litterman Approach)” on page 20-207
• “Working with Persistent Variables” on page 20-219
• “Working with Structure Arrays” on page 20-222
• “Adding a Custom Toolchain” on page 20-225

20 Generating C/C++ Code from MATLAB Code

20-2

Code Generation Workflow

See Also
• “Set Up a MATLAB Coder Project” on page 17-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 18-2
• “Workflow for Testing MEX Functions in MATLAB” on page 19-3
• “Configure Build Settings” on page 20-28
• “C/C++ Code Generation” on page 20-4

 Code Generation Workflow

20-3

C/C++ Code Generation
Using MATLAB Coder, you can generate platform-specific MEX functions, C/C++ static
and dynamic libraries, and C/C++ executable programs. If you specify C++, MATLAB
Coder wraps the C code into .cpp files so that you can use a C++ compiler and interface
with external C++ applications. It does not generate C++ classes.

To learn how to generate... See...
C/C++ static libraries from your MATLAB
code

“Generating C/C++ Static Libraries from
MATLAB Code” on page 20-6

C/C++ dynamic libraries from your
MATLAB code

“Generating C/C++ Dynamically Linked
Libraries from MATLAB Code” on page 20-
10

C/C++ executables from your MATLAB
code

“Generating Standalone C/C++
Executables from MATLAB Code” on page
20-15

MEX functions from your MATLAB code “Generate MEX Functions by Using the
MATLAB Coder App” on page 18-18

If errors occur, MATLAB Coder does not generate code, but produces an error report and
provides a link to this report. For more information, see “Code Generation Reports” on
page 21-9.

Specify Custom Files to Build
In addition to your MATLAB file, you can specify the following types of custom files to
include in the build for standalone C/C++ code generation.

File Extension Description
.c Custom C file
.cpp Custom C++ file
.h Custom header file
.o , .obj Custom object file
.a , .lib, .so, .dylib Library

20 Generating C/C++ Code from MATLAB Code

20-4

File Extension Description
.tmf Template makefile for custom MATLAB

Coder builds

 C/C++ Code Generation

20-5

Generating C/C++ Static Libraries from MATLAB Code
In this section...
“Generate a C Static Library Using the MATLAB Coder App” on page 20-6
“Generate a C Static Library at the Command Line” on page 20-8

Generate a C Static Library Using the MATLAB Coder App
This example shows how to generate a C static library from MATLAB code using the
MATLAB Coder app.

In this example, you create a MATLAB function that adds two numbers. You use the app to
create a MATLAB Coder project and generate a C static library for the MATLAB code.

Create the Entry-Point Function

In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

Create the Test File

In the same local writable folder, create a MATLAB file, mcadd_test.m, that calls mcadd
with example inputs. The example inputs are scalars with type int16.

function y = mcadd_test
y = mcadd(int16(2), int16(3));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB Coder
app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function
mcadd.

The app creates a project with the default name mcadd.prj in the current folder.

20 Generating C/C++ Code from MATLAB Code

20-6

2 Click Next to go to the Define Input Types step. The app analyzes the function for
coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In
this example, because the app does not detect issues, it opens the Define Input
Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify the test file mcadd_test.m that MATLAB Coder can use to automatically define
types for u and v:

1 Enter or select the test file mcadd_test.m.
2 Click Autodefine Input Types.

The test file, mcadd_test.m, calls the entry-point function, mcadd with the example
input types. MATLAB Coder infers that inputs u and v are int16(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it is
a best practice to perform this step. You can detect and fix run-time errors that are harder
to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues
arrow .

The app populates the test file field with mcadd_test, the test file that you used to
define the input types.

2 Click Check for Issues.

The app generates a MEX function. It runs the test file replacing calls to mcadd with
calls to the MEX function. If the app detects issues during the MEX function
generation or execution, it provides warning and error messages. Click these

 Generating C/C++ Static Libraries from MATLAB Code

20-7

messages to navigate to the problematic code and fix the issue. In this example, the
app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate C Code

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Static Library (.lib) and

Language to C. Use the default values for the other project build configuration
settings.

3 Click Generate.

The app indicates that code generation succeeded. It displays the source MATLAB
files and generated output files on the left side of the page. On the Variables tab, it
displays information about the MATLAB source variables. On the Target Build Log
tab, it displays the build log, including compiler warnings and errors. By default, in
the code window, the app displays the C source code file, mcadd.c. To view a
different file, in the Source Code or Output Files pane, click the file name.

MATLAB Coder generates a standalone C static library mcadd in the codegen\lib
\mcadd folder. It generates the minimal set of #include statements for header files
required by the selected code replacement library.

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to generated output.

Generate a C Static Library at the Command Line
This example shows how to generate a C static library from MATLAB code at the
command line using the codegen function.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

20 Generating C/C++ Code from MATLAB Code

20-8

2 Using the config:lib option, generate C library files. Using the -args option,
specify that the first input is a 1-by-4 vector of unsigned 16-bit integers and that the
second input is a double-precision scalar.

codegen -config:lib mcadd -args {zeros(1,4,'uint16'),0}

MATLAB Coder generates a C static library with the default name, mcadd, and
supporting files in the default folder, codegen/lib/mcadd. It generates the minimal
set of #include statements for header files required by the selected code
replacement library.

 Generating C/C++ Static Libraries from MATLAB Code

20-9

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code

In this section...
“Dynamic Libraries Generated by MATLAB Coder” on page 20-10
“Generate a C Dynamically Linked Library Using the MATLAB Coder App” on page 20-
10
“Generate a C Dynamic Library at the Command Line” on page 20-13

Dynamic Libraries Generated by MATLAB Coder
By default, when MATLAB Coder generates a dynamic library (DLL):

• The DLL is suitable for the platform that you are working on.
• The DLL uses the release version of the C run-time library.
• The DLL linkage conforms to the target language, by default, C. If you set the target

language to C++, the linkage conforms to C++.
• When the target language is C, the generated header files explicitly declare the

exported functions to be extern "C" to simplify integration of the DLL into C++
applications.

• When an executable that uses the DLL runs, the DLL must be on the system path so
that the executable can access it.

If you generate a DLL that uses dynamically allocated variable-size data, MATLAB Coder
provides exported utility functions to interact with this data in the generated code. For
more information, see “Utility Functions for Creating emxArray Data Structures” on page
6-19.

Generate a C Dynamically Linked Library Using the MATLAB
Coder App
This example shows how to generate a C DLL from MATLAB code using the MATLAB
Coder app.

20 Generating C/C++ Code from MATLAB Code

20-10

Create the Entry-Point Functions

Write two MATLAB functions, ep1 and ep2. ep1 takes one input, a single scalar. ep2
takes two inputs that are double scalars. In a local writable folder:

1 Create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

2 Create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

Create the Test File

In the folder that contains ep1.m and ep2.m, create a MATLAB file, ep_test.m, that
calls ep1 and ep2 with example inputs.

function [y, y1] = ep_test
y = ep1(single(2));
y1 = ep2(double(3), double(4));

Open the MATLAB Coder App

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB Coder
app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function
ep1.

The app creates a project with the default name ep1.prj in the current folder.
2 To add ep2 to the list of entry-point functions, click Add Entry-Point Function.

Type or select the name of the entry-point function ep2.
3 Click Next to go to the Define Input Types step. The app analyzes the functions for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In
this example, because the app does not detect issues, it opens the Define Input
Types page.

 Generating C/C++ Dynamically Linked Libraries from MATLAB Code

20-11

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify a test file that MATLAB Coder can use to automatically define types:

1 Enter or select the test file ep_test.m.
2 Click Autodefine Input Types.

The test file, eps_test.m, calls the entry-point functions ep1 and ep2 with the
example input types. MATLAB Coder infers that for ep1, input u is single(1x1).
For ep2, u and v are double(1x1).

3 Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it is
a best practice to perform this step. You can detect and fix run-time errors that are harder
to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues
arrow .

The app populates the test file field with ep_test, the test file that you used to
define the input types.

2 Click Check for Issues.

The app generates a MEX function named ep1_mex for ep1 and ep2. It runs the test
file ep_test replacing calls to ep1 and ep2 with calls to the MEX function. If the app
detects issues during the MEX function generation or execution, it provides warning
and error messages. Click these messages to navigate to the problematic code and fix
the issue. In this example, the app does not detect issues.

3 Click Next to go to the Generate Code step.

20 Generating C/C++ Code from MATLAB Code

20-12

Generate C Code

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Dynamic Library and Language to

C. Use the default values for the other project build configuration settings.
3 Click Generate.

The app indicates that code generation succeeded. It displays the source MATLAB
files and generated output files on the left side of the page. On the Variables tab, it
displays information about the MATLAB source variables. On the Target Build Log
tab, it displays the build log, including compiler warnings and errors. By default, in
the code window, the app displays the C source code file, ep1.c. To view a different
file, in the Source Code or Output Files pane, click the file name.

On Microsoft® Windows systems, MATLAB Coder generates a C dynamic library,
ep1.dll, and supporting files, in the default folder, codegen\dll\ep1. It generates
the minimal set of #include statements for header files required by the selected
code replacement library. On Linux®, it generates a shared object (.so) file. On Mac, it
generates a dynamic library (.dylib) file. The DLL linkage conforms to the target
language, in this example, C. If you set the target language to C++, the linkage
conforms to C++. MATLAB Coder generates a standalone C static library mcadd in
the codegen\lib\mcadd folder.

4 To view the code generation report, click View Report.
5 Click Next to open the Finish Workflow page.

Review the Finish Workflow Page

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to generated output.

Generate a C Dynamic Library at the Command Line
This example shows how to generate a C dynamic library from MATLAB code at the
command line using the codegen function.

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and ep2 takes two
inputs, both double scalars. In a local writable folder, create a MATLAB file, ep1.m,
that contains:

 Generating C/C++ Dynamically Linked Libraries from MATLAB Code

20-13

function y = ep1(u) %#codegen
y = u;

In the same local writable folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

2 Generate the C dynamic library.

codegen -config:dll ep1 -args single(0) ep2 -args {0,0}

On Microsoft Windows systems, codegen generates a C dynamic library, ep1.dll,
and supporting files, in the default folder, codegen/dll/ep1. It generates the
minimal set of #include statements for header files required by the selected code
replacement library. On Linux, it generates a shared object (.so) file. On Mac, it
generates a dynamic library (.dylib) file. The DLL linkage conforms to the target
language, in this example, C. If you set the target language to C++, the linkage
conforms to C++.

Note The default target language is C. To change the target language to C++, see
“Specify a Language for Code Generation” on page 20-30.

20 Generating C/C++ Code from MATLAB Code

20-14

Generating Standalone C/C++ Executables from MATLAB
Code

In this section...
“Generate a C Executable Using the MATLAB Coder App” on page 20-15
“Generate a C Executable at the Command Line” on page 20-24
“Specifying main Functions for C/C++ Executables” on page 20-25
“Specify main Functions” on page 20-26

Generate a C Executable Using the MATLAB Coder App
This example shows how to generate a C executable from MATLAB code using the
MATLAB Coder app. In this example, you generate an executable for a MATLAB function
that generates a random scalar value. Using the app, you:

1 Generate a an example C main function that calls the generated library function.
2 Copy and modify the generated main.c and main.h.
3 Modify the project settings so that the app can find the modified main.c and

main.h.
4 Generate the executable.

Create the Entry-Point Function

In a local writable folder, create a MATLAB function, coderand, that generates a random
scalar value from the standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen
r = rand();

Create the Test File

In the same local writable folder, create a MATLAB file, coderand_test.m, that calls
coderand.

function y = coderand_test()
y = coderand();

 Generating Standalone C/C++ Executables from MATLAB Code

20-15

Open the MATLAB Coder app

On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB Coder
app icon.

The app opens the Select Source Files page.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function
coderand.

The app creates a project with the default name coderand.prj in the current folder.
2 Click Next to go to the Define Input Types step. The app analyzes the function for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In
this example, because the app does not detect issues, it opens the Define Input
Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

In this example, the function coderand does not have inputs.

Click Next to go to the Check for Run-Time Issues step.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it is
a best practice to perform this step. You can detect and fix run-time errors that are harder
to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues
arrow .

Select or enter the test file coderand_test.

20 Generating C/C++ Code from MATLAB Code

20-16

2 Click Check for Issues.

The app generates a MEX function for coderand. It runs the test file replacing calls
to coderand with calls to the MEX function. If the app detects issues during the
MEX function generation or execution, it provides warning and error messages. Click
these messages to navigate to the problematic code and fix the issue. In this example,
the app does not detect issues.

3 Click Next to go to the Generate Code step.

Generate a C main Function

When you generate an executable, you must provide a C/C++ function. By default, when
you generate C/C++ source code, static libraries, dynamically linked libraries, or
executables, MATLAB Coder generates a main function. This generated main function is a
template that you modify for your application. See “Incorporate Generated Code Using an
Example Main Function” on page 24-15. After you copy and modify the generated main
function, you can use it for generation of the C/C++ executable. Alternatively, you can
write your own main function.

Before you generate the executable for coderand, generate a main function that calls
coderand.

1 To open the Generate dialog box, click the Generate arrow .
2 In the Generate dialog box, set Build type to Source Code and Language to C.

Use the default values for the other project build configuration settings.
3 Click More Settings.
4 On the All Settings tab, under Advanced, verify that Generate example main is

set to Generate, but do not compile, an example main function. Click
Close.

5 Click Generate.

MATLAB Coder generates a main.c file and a main.h file. The app indicates that
code generation succeeded.

6 Click Next to open the Finish Workflow page.

On the Finish Workflow page, under Generated Output, you see that main.c is in
the subfolder coderand\codegen\lib\coderand\examples.

 Generating Standalone C/C++ Executables from MATLAB Code

20-17

Copy the Generated Example Main Files

Because subsequent code generation can overwrite the generated example files, before
you modify these files, copy them to a writable folder outside of the codegen folder. For
this example, copy main.c and main.h from the subfolder coderand\codegen\lib
\coderand\examples to a writable folder, for example, c:\myfiles.

Modify the Generated Example Main Files

1 In the folder that contains a copy of the example main files, open main.c.

Generated main.c

/***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */
/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */
/* */
/* After you copy the file, and before you deploy it, you must make the */
/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/
/* Include Files */
#include "rt_nonfinite.h"
#include "coderand.h"
#include "main.h"
#include "coderand_terminate.h"
#include "coderand_initialize.h"

20 Generating C/C++ Code from MATLAB Code

20-18

/* Function Declarations */
static void main_coderand(void);

/* Function Definitions */

/*
 * Arguments : void
 * Return Type : void
 */
static void main_coderand(void)
{
 double r;

 /* Call the entry-point 'coderand'. */
 r = coderand();
}

/*
 * Arguments : int argc
 * const char * const argv[]
 * Return Type : int
 */
int main(int argc, const char * const argv[])
{
 (void)argc;
 (void)argv;

 /* Initialize the application.
 You do not need to do this more than one time. */
 coderand_initialize();

 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_coderand();

 /* Terminate the application.
 You do not need to do this more than one time. */
 coderand_terminate();
 return 0;
}

/*
 * File trailer for main.c
 *

 Generating Standalone C/C++ Executables from MATLAB Code

20-19

 * [EOF]
 */

2 Modify main.c so that it prints the results of a coderand call:

• In main_coderand, delete the line

double r;

• In main_coderand, replace

r = coderand()

with

printf("coderand=%g\n", coderand());

• For this example, main does not have arguments. In main, delete the lines:

(void)argc;
(void)argv;

Change the definition of main to

int main()

Modified main.c

/* Include Files */
#include "rt_nonfinite.h"
#include "coderand.h"
#include "main.h"
#include "coderand_terminate.h"
#include "coderand_initialize.h"

/* Function Declarations */
static void main_coderand(void);

/* Function Definitions */

/*
 * Arguments : void
 * Return Type : void
 */
static void main_coderand(void)
{
 /* Call the entry-point 'coderand'. */

20 Generating C/C++ Code from MATLAB Code

20-20

 printf("coderand=%g\n", coderand());
}

/*
 * Arguments : int argc
 * const char * const argv[]
 * Return Type : int
 */
int main()
{

 /* Initialize the application.
 You do not need to do this more than one time. */
 coderand_initialize();

 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_coderand();

 /* Terminate the application.
 You do not need to do this more than one time. */
 coderand_terminate();
 return 0;
}

/*
 * File trailer for main.c
 *
 * [EOF]
 */

3 Open main.h

Generated main.h

***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */

 Generating Standalone C/C++ Executables from MATLAB Code

20-21

/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */
/* */
/* After you copy the file, and before you deploy it, you must make the */
/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/
#ifndef __MAIN_H__
#define __MAIN_H__

/* Include Files */

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "rtwtypes.h"
#include "coderand_types.h"

/* Function Declarations */
extern int main(int argc, const char * const argv[]);

#endif

/*
 * File trailer for main.h
 *
 * [EOF]
 */

4 Modify main.h:

• Add stdio to the include files:

#include <stdio.h>

• Change the declaration of main to

extern int main()

20 Generating C/C++ Code from MATLAB Code

20-22

Modified main.h

#ifndef __MAIN_H__
#define __MAIN_H__

/* Include Files */

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "rtwtypes.h"
#include "coderand_types.h"

/* Function Declarations */
extern int main();

#endif

/*
 * File trailer for main.h
 *
 * [EOF]
 */

Generate the Executable

1
To open the Generate Code page, expand the workflow steps and click
Generate

2 To open the Generate dialog box, click the Generate arrow .
3 Set Build type to Executable (.exe).
4 Click More Settings.
5 On the Custom Code tab, in Additional source files, enter main.c
6 On the Custom Code tab, in Additional include directories, enter the location of

the modified main.c and main.h files. For example, c:\myfiles. Click Close.
7 To generate the executable, click Generate.

The app indicates that code generation succeeded.

 Generating Standalone C/C++ Executables from MATLAB Code

20-23

8 Click Next to go to the Finish Workflow step.
9 Under Generated Output, you can see the location of the generated executable

coderand.exe.

Run the Executable

To run the executable in MATLAB on a Windows platform:

system('coderand')

Generate a C Executable at the Command Line
In this example, you create a MATLAB function that generates a random scalar value and
a main C function that calls this MATLAB function. You then specify types for the function
input parameters, specify the main function, and generate a C executable for the MATLAB
code.

1 Write a MATLAB function, coderand, that generates a random scalar value from the
standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_initialize.h"
#include "coderand_terminate.h"

int main()
{
 coderand_initialize();

 printf("coderand=%g\n", coderand());

 coderand_terminate();

 return 0;
}

20 Generating C/C++ Code from MATLAB Code

20-24

Note In this example, because the default file partitioning method is to generate one
file for each MATLAB file, you include "coderand_initialize.h" and
"coderand_terminate.h". If your file partitioning method is set to generate one
file for all functions, do not include "coderand_initialize.h" and
"coderand_terminate.h".

3 Configure your code generation parameters to include the main C function and then
generate the C executable:

cfg = coder.config('exe');
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg coderand

codegen generates a C executable, coderand.exe, in the current folder. It
generates supporting files in the default folder, codegen/exe/coderand. codegen
generates the minimal set of #include statements for header files required by the
selected code replacement library.

Specifying main Functions for C/C++ Executables
When you generate an executable, you must provide a main function. For a C executable,
provide a C file, main.c. For a C++ executable, provide a C++ file, main.cpp. Verify
that the folder containing the main function has only one main file. Otherwise, main.c
takes precedence over main.cpp, which causes an error when generating C++ code. You
can specify the main file from the project settings dialog box, the command line, or the
Code Generation dialog box.

By default, when you generate C/C++ source code, static libraries, dynamically linked
libraries, or executables, MATLAB Coder generates a main function. This generated main
function is a template that you modify for your application. See “Incorporate Generated
Code Using an Example Main Function” on page 24-15. After you copy and modify the
generated main function, you can use it for generation of the C/C++ executable.
Alternatively, you can write your own main function.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder generates an initialize function and a terminate function.

• If your file partitioning method is set to generate one file for each MATLAB file, you
must include the initialize and terminate header functions in main.c. Otherwise, do
not include them in main.c.

 Generating Standalone C/C++ Executables from MATLAB Code

20-25

• You must call these functions along with the C/C++ function. For more information,
see “Calling Initialize and Terminate Functions” on page 24-9.

Specify main Functions
Specifying main Functions Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the Custom Code tab, set:

a Additional source files to the name of the C/C++ source file that contains the
main function. For example, main.c. For more information, see “Specifying
main Functions for C/C++ Executables” on page 20-25.

b Additional include directories to the location of main.c. For example, c:
\myfiles.

Specifying main Functions at the Command Line

Set the CustomSource and CustomInclude properties of the code generation
configuration object (see “Working with Configuration Objects” on page 20-36). The
CustomInclude property indicates the location of C/C++ files specified by
CustomSource.

1 Create a configuration object for an executable:

cfg = coder.config('exe');
2 Set the CustomSource property to the name of the C/C++ source file that contains

the main function. (For more information, see “Specifying main Functions for C/C++
Executables” on page 20-25.) For example:

cfg.CustomSource = 'main.c';
3 Set the CustomInclude property to the location of main.c. For example:

cfg.CustomInclude = 'c:\myfiles';
4 Generate the C/C++ executable using the command-line options. For example, if

myFunction takes one input parameter of type double:

codegen -config cfg myMFunction -args {0}

20 Generating C/C++ Code from MATLAB Code

20-26

MATLAB Coder compiles and links the main function with the C/C++ code that it
generates from myMFunction.m.

 Generating Standalone C/C++ Executables from MATLAB Code

20-27

Configure Build Settings
In this section...
“Specify Build Type” on page 20-28
“Specify a Language for Code Generation” on page 20-30
“Specify Output File Name” on page 20-32
“Specify Output File Locations” on page 20-32
“Parameter Specification Methods” on page 20-34
“Specify Build Configuration Parameters” on page 20-34

Specify Build Type
Build Types

MATLAB Coder can generate code for the following output types:

• MEX function
• Standalone C/C++ code
• Standalone C/C++ code and compile it to a static library
• Standalone C/C++ code and compile it to a dynamically linked library
• Standalone C/C++ code and compile it to an executable

Note When you generate an executable, you must provide a C/C++ file that contains
the main function, as described in “Specifying main Functions for C/C++
Executables” on page 20-25.

Location of Generated Files

By default, MATLAB Coder generates files in output folders based on your output type.
For more information, see “Generated Files and Locations” on page 20-132.

Note Each time MATLAB Coder generates the same type of output for the same code or
project, it removes the files from the previous build. If you want to preserve files from a
build, copy them to a different location before starting another build.

20 Generating C/C++ Code from MATLAB Code

20-28

Specify the Build Type Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to one of the following.

• Source Code
• MEX
• Static Library
• Dynamic Library
• Executable

If you select Source Code, MATLAB Coder does not invoke the make command or
generate compiled object code. When you iterate between modifying MATLAB code and
generating C/C++ code and you want to inspect the generated code, this option can save
you time. This option is equivalent to Static Library with the Generate code only
box selected.

Code generation uses a different set of configuration parameters for MEX functions than
it uses for the other build types. When you switch the output type between MEX
Function and Source, Static Library, Dynamic Library, or Executable, verify
these settings. For more information, see “Changing Output Type” on page 17-40.

Specifying the Build Type at the Command Line

Call codegen with the -config option. For example, suppose that you have a primary
function foo that takes no input parameters. The following table shows how to specify
different output types when compiling foo. If a primary function has input parameters,
you must specify these inputs. For more information, see “Specify Properties of Entry-
Point Function Inputs” on page 20-48.

Note C is the default language for code generation with MATLAB Coder. To generate C+
+ code, see “Specify a Language for Code Generation” on page 20-30.

To Generate: Use This Command:
MEX function using the default
code generation options

codegen foo

 Configure Build Settings

20-29

To Generate: Use This Command:
MEX function specifying code
generation options

cfg = coder.config('mex');
% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to a library using the
default code generation options

codegen -config:lib foo

Standalone C/C++ code and
compile it to a library specifying
code generation options

cfg = coder.config('lib');
% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to an executable using
the default code generation
options and specifying the
main.c file at the command line

codegen -config:exe main.c foo

Note You must specify a main function for generating a C/C++
executable. See “Specifying main Functions for C/C++
Executables” on page 20-25

Standalone C/C++ code and
compile it to an executable
specifying code generation
options

cfg = coder.config('exe');
% Set configuration parameters, for example,
% specify main file
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg foo

Note You must specify a main function for generating a C/C++
executable. See “Specifying main Functions for C/C++
Executables” on page 20-25

Specify a Language for Code Generation
• “Specify the Language Using the MATLAB Coder App” on page 20-31

20 Generating C/C++ Code from MATLAB Code

20-30

• “Specifying the Language Using the Command-Line Interface” on page 20-31

MATLAB Coder can generate C or C++ libraries and executables. C is the default
language. You can specify a language explicitly from the project settings dialog box or at
the command line.

Specify the Language Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Language to C or C++.

Note If you specify C++, MATLAB Coder wraps the C code into .cpp files. You can
use a C++ compiler and interface with external C++ applications. MATLAB Coder
does not generate C++ classes.

Specifying the Language Using the Command-Line Interface

1 Select a suitable compiler for your target language.
2 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');
3 Set the TargetLang property to 'C' or 'C++'. For example:

cfg.TargetLang = 'C++';

Note If you specify C++, MATLAB Coder wraps the C code into .cpp files. You can
then use a C++ compiler and interface with external C++ applications. MATLAB Coder
does not generate C++ classes.

See Also

• “Working with Configuration Objects” on page 20-36
• “Setting Up the C or C++ Compiler”

 Configure Build Settings

20-31

Specify Output File Name
Specify Output File Name Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 In the Output file name field, enter the file name.

Note Do not put spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the output file name
is:

• fcn1 for C/C++ libraries and executables.
• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder project_folder/codegen/
target/fcn1:

• project_folder is your current project folder
• target is:

• mex for MEX functions
• lib for static C/C++ libraries
• dll for dynamic C/C++ libraries
• exe for C/C++ executables

Command-Line Alternative

Use the codegen function -o option.

Specify Output File Locations
Specify Output File Location Using the MATLAB Coder App

The output file location must not contain:

20 Generating C/C++ Code from MATLAB Code

20-32

• Spaces (Spaces can lead to code generation failures in certain operating system
configurations).

• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese characters.

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to Source Code, Static Library, Dynamic Library, or
Executable (depending on your requirements).

3 Click More Settings.
4 Click the Paths tab.

The default setting for the Build folder field is A subfolder of the project
folder. By default, MATLAB Coder generates files in the folder project_folder/
codegen/target/fcn1:

• fcn1 is the name of the alphabetically first entry-point file.
• target is:

• mex for MEX functions
• lib for static C/C++ libraries
• dll for dynamically linked C/C++ libraries
• exe for C/C++ executables

5 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the MATLAB_working_folder/codegen/
target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name field,
provide the path to the folder.

Command-Line Alternative

Use the codegen function -d option.

 Configure Build Settings

20-33

Parameter Specification Methods
If you are using Use Details
The MATLAB Coder app The project settings dialog box. “Specify Build Configuration

Parameters MATLAB Coder
App” on page 20-34

codegen at the command line
and want to specify a few
parameters

Configuration objects “Specify Build Configuration
Parameters at the Command
Line Using Configuration
Objects” on page 20-35codegen in build scripts

codegen at the command line
and want to specify many
parameters

Configuration object dialog
boxes

“Specifying Build Configuration
Parameters at the Command
Line Using Dialog Boxes” on
page 20-39

Specify Build Configuration Parameters
• “Specify Build Configuration Parameters MATLAB Coder App” on page 20-34
• “Specify Build Configuration Parameters at the Command Line Using Configuration

Objects” on page 20-35
• “Specifying Build Configuration Parameters at the Command Line Using Dialog Boxes”

on page 20-39

You can specify build configuration parameters from the MATLAB Coder project settings
dialog box, the command line, or configuration object dialog boxes.

Specify Build Configuration Parameters MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to Source Code, Static Library, Dynamic Library, or
Executable (depending on your requirements).

3 Click More Settings.

The project settings dialog box provides the set of configuration parameters
applicable to the output type that you select. Code generation uses a different set of
configuration parameters for MEX functions than it uses for the other build types.

20 Generating C/C++ Code from MATLAB Code

20-34

When you switch the output type between MEX Function and Source Code,
Static Library, Dynamic Library, or Executable, verify these settings. See
“Changing Output Type” on page 17-40.

4 Modify the parameters as required. For more information about parameters on a tab,
click Help.

Changes to the parameter settings take place immediately.

Specify Build Configuration Parameters at the Command Line Using
Configuration Objects
Types of Configuration Objects

The codegen function uses configuration objects to customize your environment for code
generation. The following table lists the available configuration objects.

Configuration Object Description
coder.CodeConfig If no Embedded Coder license is available or you disable

use of the Embedded Coder license, specifies parameters
for C/C++ library or executable generation.

For more information, see the class reference
information for coder.CodeConfig.

coder.EmbeddedCodeConfig If an Embedded Coder license is available, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference
information for coder.EmbeddedCodeConfig.

coder.HardwareImplementation Specifies parameters of the target hardware
implementation. If not specified, codegen generates
code that is compatible with the MATLAB host computer.

For more information, see the class reference
information for coder.HardwareImplementation.

coder.MexCodeConfig Specifies parameters for MEX code generation.

For more information, see the class reference
information for coder.MexCodeConfig.

 Configure Build Settings

20-35

Working with Configuration Objects

To use configuration objects to customize your environment for code generation:

1 In the MATLAB workspace, define configuration object variables, as described in
“Creating Configuration Objects” on page 20-36.

For example, to generate a configuration object for C static library generation:

cfg = coder.config('lib');
% Returns a coder.CodeConfig object if no
% Embedded Coder license available.
% Otherwise, returns a coder.EmbeddedCodeConfig object.

2 Modify the parameters of the configuration object as required, using one of these
methods:

• Interactive commands, as described in “Specify Build Configuration Parameters at
the Command Line Using Configuration Objects” on page 20-35

• Dialog boxes, as described in “Specifying Build Configuration Parameters at the
Command Line Using Dialog Boxes” on page 20-39

3 Call the codegen function with the -config option. Specify the configuration object
as its argument.

The -config option instructs codegen to generate code for the target, based on the
configuration property values. In the following example, codegen generates a C
static library from a MATLAB function, foo, based on the parameters of a code
generation configuration object, cfg, defined in the first step:

codegen -config cfg foo

The -config option specifies the type of output that you want to build — in this case,
a C static library. For more information, see codegen.

Creating Configuration Objects

You can define a configuration object in the MATLAB workspace.

To Create... Use a Command Such As...
MEX configuration object
coder.MexCodeConfig

cfg = coder.config('mex');

20 Generating C/C++ Code from MATLAB Code

20-36

To Create... Use a Command Such As...
Code generation configuration object
for generating a standalone C/C++
library or executable
coder.CodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note If an Embedded Coder license is available, creates a
coder.EmbeddedCodeConfig object.

If you use concurrent licenses, to disable the check out of an
Embedded Coder license, use one of the following
commands:

cfg = coder.config('lib', 'ecoder', false)

cfg = coder.config('dll', 'ecoder', false)

cfg = coder.config('exe', 'ecoder', false)

Code generation configuration object
for generating a standalone C/C++
library or executable for an
embedded target
coder.EmbeddedCodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note Requires an Embedded Coder license; otherwise
creates a coder.CodeConfig object.

Hardware implementation
configuration object
coder.HardwareImplementation

hwcfg = coder.HardwareImplementation

Each configuration object comes with a set of parameters, initialized to default values.
You can change these settings, as described in “Modifying Configuration Objects at the
Command Line Using Dot Notation” on page 20-38.

 Configure Build Settings

20-37

Modifying Configuration Objects at the Command Line Using Dot Notation

You can use dot notation to modify the value of one configuration object parameter at a
time. Use this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object properties:

• To specify a main function during C/C++ code generation:

cfg = coder.config('exe');
cfg.CustomInclude = 'c:\myfiles';
cfg.CustomSource = 'main.c';
codegen -config cfg foo

• To automatically generate and launch code generation reports after generating a C/C+
+ static library:

cfg = coder.config('lib');
cfg.GenerateReport= true;
cfg.LaunchReport = true;
codegen -config cfg foo

Saving Configuration Objects

Configuration objects do not automatically persist between MATLAB sessions. Use one of
the following methods to preserve your settings:

Save a configuration object to a MAT-file and then load the MAT-file at your next
session

For example, assume that you create and customize a MEX configuration object mexcfg
in the MATLAB workspace. To save the configuration object, at the MATLAB prompt,
enter:

save mexcfg.mat mexcfg

The save command saves mexcfg to the file mexcfg.mat in the current folder.

To restore mexcfg in a new MATLAB session, at the MATLAB prompt, enter:

load mexcfg.mat

The load command loads the objects defined in mexcfg.mat to the MATLAB workspace.

20 Generating C/C++ Code from MATLAB Code

20-38

Write a script that creates the configuration object and sets its properties.

You can rerun the script whenever you need to use the configuration object again.

Specifying Build Configuration Parameters at the Command Line Using Dialog
Boxes

1 Create a configuration object as described in “Creating Configuration Objects” on
page 20-36.

For example, to create a coder.MexCodeConfig configuration object for MEX code
generation:

mexcfg = coder.config('mex');
2 Open the property dialog box using one of these methods:

• In the MATLAB workspace, double-click the configuration object variable.
• At the MATLAB prompt, issue the open command, passing it the configuration

object variable, as in this example:

open mexcfg
3 In the dialog box, modify configuration parameters as required, then click Apply.
4 Call the codegen function with the -config option. Specify the configuration object

as its argument:

codegen -config mexcfg foo

The -config option specifies the type of output that you want to build. For more
information, see codegen.

 Configure Build Settings

20-39

Specify Data Types Used in Generated Code
In this section...
“Specify Data Type Using the MATLAB Coder App” on page 20-40
“Specify Data Type at the Command Line” on page 20-40

MATLAB Coder can use built-in C data types or predefined types from rtwtypes.h in
generated code. By default, when the generated code declares variables, it uses built-in C
types.

You can explicitly specify the data types used in generated code in the project settings
dialog box or at the command line.

Specify Data Type Using the MATLAB Coder App
1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 To use built-in C types, on the Code Appearance tab, set Data Type Replacement

to Use built-in C data types in the generated code. To use predefined
types from rtwtypes.h, set Data Type Replacement to Use MathWorks
typedefs in the generated code.

Specify Data Type at the Command Line
1 Create a configuration object for code generation. Use coder.config with

arguments 'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');
2 To use built-in C types, set the DataTypeReplacement property to 'CBuiltIn'.

cfg.DataTypeReplacement = 'CBuiltIn';

To use predefined types from rtwtypes.h, set the DataTypeReplacement property
to 'CoderTypedefs'.

20 Generating C/C++ Code from MATLAB Code

20-40

Change the Standard Math Library
For calls to math operations, the code generator uses the standard math library that you
specify in the build settings. The default standard math library depends on the language
that you select. For C, it is C99 (ISO). For C++, it is C++03 (ISO).

You can change the standard math library to one of these libraries.

Library Name Language Support Standard
C89/C90 (ANSI) C, C++ ISO/IEC 9899:1990
C99 (ISO) C, C++ ISO/IEC 9899:1999
C++03 (ISO) C++ ISO/IEC 14882:2003

The C++03 (ISO) math library is available only if the language is C++.

To change the library:

• In the project build settings, on the Custom Code tab, set the Standard math
library parameter.

• In a code configuration object, set the TargetLangStandard parameter.

Verify that your compiler supports the library that you want to use. If you select a library
that your compiler does not support, compiler errors can occur.

See Also

More About
• “Specify Build Configuration Parameters MATLAB Coder App” on page 20-34
• “Specify Build Configuration Parameters at the Command Line Using Configuration

Objects” on page 20-35

 Change the Standard Math Library

20-41

Share Build Configuration Settings
To share build configuration settings between multiple projects or between the project
and command-line workflow, you can export settings to and import settings from a code
generation configuration object.

Export Settings
To export the current project settings to a code generation configuration object stored in
the base workspace:

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to Source Code, Static Library, Dynamic Library), or
Executable (depending on your requirements).

3 Click More Settings.
4 Click Import/Export Settings.
5 In the Variable name field, specify a name for the configuration object.
6 Click Export to Variable.

MATLAB Coder saves the project settings information in a configuration object with
the specified name in the base workspace.

Project Output Type Configuration Object
MEX Function coder.MexCodeConfig
C/C++ Static Library Without an Embedded Coder license:

coder.CodeConfig
With an Embedded Coder license:
coder.EmbeddedCodeConfig

C/C++ Dynamic Library
C/C++ Executable

You can then either import these settings into another project or use the
configuration object with the codegen function -config option to generate code at
the command line.

20 Generating C/C++ Code from MATLAB Code

20-42

Import Settings
To import the settings saved in a code generation configuration object stored in the base
workspace:

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to Source Code, Static Library, Dynamic Library, or
Executable (depending on your requirements).

3 Click More Settings.
4 Click Import/Export Settings.
5 In the Variable name field, specify the name of the configuration object.
6 Click Import from Variable.

See Also
• “Configure Build Settings” on page 20-28
• coder.config
• “Convert MATLAB Coder Project to MATLAB Script” on page 20-44

 Share Build Configuration Settings

20-43

Convert MATLAB Coder Project to MATLAB Script
After you define input types, you can convert a MATLAB Coder project to the equivalent
script of MATLAB commands. The script reproduces the project in a configuration object
and runs the codegen command. You can:

• Move from a project workflow to a command-line workflow.
• Save the project as a text file that you can share.

You can convert a project using the MATLAB Coder app or the command-line interface.

Project to script conversion does not support entry-point function inputs that are value
classes.

Convert a Project Using the MATLAB Coder App
1

On the app toolbar, click , and then select Convert to script.
2 Specify the script name and click Save.

Convert a Project Using the Command-Line Interface
To convert a project to a script using the command-line interface, use the -tocode option
of the coder command. The project file must be on the search path.

For example, to convert the project, myproject.prj to the script named myscript.m
use this command:

coder -tocode myproject -script myscript.m

The coder command overwrites a file that has the same name as the script. If you omit
the -script option, the coder command writes the script to the Command Window.

For more information about the -tocode option, see coder.

Run the Script
1 Make sure that the entry-point functions that are arguments to codegen in the script

are on the search path.

20 Generating C/C++ Code from MATLAB Code

20-44

2 Run the script. For example:

 myscript

The following variables appear in the base workspace.

Variable For
cfg Configuration object
ARGS Types of input arguments, if the project has

entry-point function inputs
ARG Types of cell array elements, if the project

has cell array inputs. A script can reuse
ARG for different cell array elements

GLOBALS Types and initial values of global variables,
if the project has global variables

cfg, ARGS, ARG, and GLOBALS appear in the workspace only after you run the script. The
type of configuration object depends on the project output type.

Project Output Type Configuration Object
MEX Function coder.MexCodeConfig
C/C++ Static Library Without an Embedded Coder license:

coder.CodeConfig
With an Embedded Coder license:
coder.EmbeddedCodeConfig

C/C++ Dynamic Library
C/C++ Executable

You can import the settings from the configuration object cfg into a project. See “Share
Build Configuration Settings” on page 20-42.

For a project that includes fixed-point conversion, project to script conversion generates a
pair of scripts for fixed-point conversion and fixed-point code generation. For an example,
see “Convert Fixed-Point Conversion Project to MATLAB Scripts” on page 14-105.

P

 Convert MATLAB Coder Project to MATLAB Script

20-45

Preserve Variable Names in Generated Code
If code readability is more important than reduced memory usage, specify that you want
the code generator to preserve your variable names rather than reuse them in the
generated code.

By default, when possible, variables share names and memory in the generated code. The
code generator reuses your variable names for other variables or reuses other variable
names for your variables. For example, for code such as:

if (s>0)
 myvar1 = 0;
 ...
else
 myvar2 = 0;
 ...
end

the generated code can look like this code:

 if (s > 0.0) {
 myvar2 = 0.0;
 ...
 } else {
 myvar2 = 0.0;
 ...
 }

When the code generator preserves your variable names, the generated code can look
like this code:

 if (s > 0.0) {
 myvar1 = 0.0;
 ...
 } else {
 myvar2 = 0.0;
 ...
 }

To specify that you want the code generator to preserve your variable names:

• In a code generation configuration object, set the PreserveVariableNames
parameter to 'UserNames'.

20 Generating C/C++ Code from MATLAB Code

20-46

• In the MATLAB Coder app, set Preserve variable names to User names.

Preservation of variable names does not prevent an optimization from removing them
from the generated code or prevent the C/C++ compiler from reusing them in the
generated binary code.

See Also

More About
• “Reuse Large Arrays and Structures” on page 27-60
• “Configure Build Settings” on page 20-28

 See Also

20-47

Specify Properties of Entry-Point Function Inputs

In this section...
“Why You Must Specify Input Properties” on page 20-48
“Properties to Specify” on page 20-48
“Rules for Specifying Properties of Primary Inputs” on page 20-52
“Methods for Defining Properties of Primary Inputs” on page 20-52
“Define Input Properties by Example at the Command Line” on page 20-53
“Specify Constant Inputs at the Command Line” on page 20-56
“Specify Variable-Size Inputs at the Command Line” on page 20-57

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must determine the
properties of all variables in the MATLAB files at compile time. To infer variable
properties in MATLAB files, MATLAB Coder must be able to identify the properties of the
inputs to the primary function, also known as the top-level or entry-point function.
Therefore, if your primary function has inputs, you must specify the properties of these
inputs, to MATLAB Coder. If your primary function has no input parameters, MATLAB
Coder can compile your MATLAB file without modification. You do not need to specify
properties of inputs to local functions or external functions called by the primary function.

If you use the tilde (~) character to specify unused function inputs:

• In MATLAB Coder projects, if you want a different type to appear in the generated
code, specify the type. Otherwise, the inputs default to real, scalar doubles.

• When generating code with codegen, you must specify the type of these inputs using
the -args option.

Properties to Specify
If your primary function has inputs, you must specify the following properties for each
input.

20 Generating C/C++ Code from MATLAB Code

20-48

For Specify properties
 Class Size Complexity numerictype fimath
Fixed-point
inputs
Each field in a
structure input

Specify properties for each field according to its class

When a primary input is a structure, the code generator treats each field as a
separate input. Therefore, you must specify properties for all fields of a primary
structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.
• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs

Default Property Values

MATLAB Coder assigns the following default values for properties of primary function
inputs.

Property Default
class double
size scalar
complexity real
numerictype No default
fimath MATLAB default fimath object

Specifying Default Values for Structure Fields

In most cases, when you do not explicitly specify values for properties, MATLAB Coder
uses defaults except for structure fields. The only way to name a field in a structure is to
set at least one of its properties. Therefore, you might need to specify default values for
properties of structure fields. For examples, see “Specifying Class and Size of Scalar
Structure” on page 20-81 and “Specifying Class and Size of Structure Array” on page
20-82.

 Specify Properties of Entry-Point Function Inputs

20-49

Specifying Default fimath Values for MEX Functions

MEX functions generated with MATLAB Coder use the default fimath value in effect at
compile time. If you do not specify a default fimath value, MATLAB Coder uses the
MATLAB default fimath. The MATLAB factory default has the following properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
CastBeforeSum: true

For more information, see “fimath for Sharing Arithmetic Rules” (Fixed-Point Designer).

When running MEX functions that depend on the default fimath value, do not change
this value during your MATLAB session. Otherwise, you receive a run-time warning,
alerting you to a mismatch between the compile-time and run-time fimath values.

For example, suppose that you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath object.
Therefore, test relies on the default fimath object in effect at compile time. At the
MATLAB prompt, generate the MEX function text_mex to use the factory setting of the
MATLAB default fimath:

codegen test
% codegen generates a MEX function, test_mex,
% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 15

20 Generating C/C++ Code from MATLAB Code

20-50

Now create a local MATLAB fimath value. so you no longer use the default setting:

F = fimath('RoundingMethod','Floor');

Finally, clear the MEX function from memory and rerun it:

clear test_mex
test_mex

The mismatch is detected and causes an error:

??? This function was generated with a different default
fimath than the current default.

Error in ==> test_mex

Supported Classes

The following table presents the class names supported by MATLAB Coder.

Class Name Description
logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array
uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
int64 64-bit signed integer array
uint64 64–bit unsigned integer array
single Single-precision floating-point or fixed-point

number array
double Double-precision floating-point or fixed-point

number array
struct Structure array

 Specify Properties of Entry-Point Function Inputs

20-51

Class Name Description
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules:

• The order of elements in the cell array must correspond to the order in which inputs
appear in the primary function signature. For example, the first element in the cell
array defines the properties of the first primary function input.

• To generate fewer arguments than those arguments that occur in the MATLAB
function, specify properties for only the number of arguments that you want in the
generated function.

• If the MATLAB function has input arguments, to generate a function that has no input
arguments, pass an empty cell array to -args.

• For each primary function input whose class is fixed point (fi), specify the input
numerictype and fimath properties.

• For each primary function input whose class is struct, specify the properties of each
of its fields in the order that they appear in the structure definition.

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages
“Specify Properties of
Entry-Point Function
Inputs Using the App”
on page 17-4

• If you are working in a MATLAB
Coder project, easy to use

• Does not alter original MATLAB
code

• MATLAB Coder saves the
definitions in the project file

• Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

20 Generating C/C++ Code from MATLAB Code

20-52

Method Advantages Disadvantages
“Define Input
Properties by Example
at the Command Line”
on page 20-53

Note If you define
input properties
programmatically in the
MATLAB file, you
cannot use this method

• Easy to use
• Does not alter original MATLAB

code
• Designed for prototyping a

function that has a few primary
inputs

• Must be specified at the
command line every time you
invoke codegen (unless you use
a script)

• Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

“Define Input
Properties
Programmatically in the
MATLAB File” on page
20-71

• Integrated with MATLAB code; no
need to redefine properties each
time you invoke MATLAB Coder

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying memory-
intensive inputs such as large
structures

• Uses complex syntax
• MATLAB Coder project files do

not currently recognize
properties defined
programmatically. If you are
using a project, you must reenter
the input types in the project.

Define Input Properties by Example at the Command Line
• “Command-Line Option -args” on page 20-53
• “Rules for Using the -args Option” on page 20-54
• “Specifying Properties of Primary Inputs by Example at the Command Line”

on page 20-54
• “Specifying Properties of Primary Fixed-Point Inputs by Example at the Command

Line” on page 20-55

Command-Line Option -args

The codegen function provides a command-line option -args for specifying the
properties of primary (entry-point) function inputs as a cell array of example values or
types. The cell array can be a variable or literal array of constant values. Using this
option, you specify the properties of inputs at the same time as you generate code for the
MATLAB function with codegen.

 Specify Properties of Entry-Point Function Inputs

20-53

You can pass the output type from one entry-point function as the input to another. See
“Pass an Entry-Point Function Output as an Input” on page 20-98. For information about
specifying cell array inputs, see “Specify Cell Array Inputs at the Command Line” on page
20-59.

If you have a test function or script that calls the entry-point MATLAB function with the
required types, you can use coder.getArgTypes to determine the types of the function
inputs. coder.getArgTypes returns a cell array of coder.Type objects that you can
pass to codegen using the -args option. See “Specifying General Properties of Primary
Inputs” on page 20-78 for codegen.

Rules for Using the -args Option

When using the -args command-line option to define properties by example, follow these
rules:

• The order of elements in the cell array must correspond to the order in which inputs
appear in the primary function signature. For example, the first element in the cell
array defines the properties of the first primary function input.

• To generate fewer arguments than those arguments that occur in the MATLAB
function, specify properties for only the number of arguments that you want in the
generated function.

• If the MATLAB function has input arguments, to generate a function that has no input
arguments, pass an empty cell array to -args.

• For each primary function input whose class is fixed point (fi), specify the input
numerictype and fimath properties.

• For each primary function input whose class is struct, specify the properties of each
of its fields in the order that they appear in the structure definition.

Specifying Properties of Primary Inputs by Example at the Command Line

Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)
%#codegen
y = u + v;

The following examples show how to specify different properties of the primary inputs u
and v by example at the command line:

20 Generating C/C++ Code from MATLAB Code

20-54

• Use a literal cell array of constants to specify that both inputs are real scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned 16-bit, 1-by-4
vector and input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are real,
unsigned 8-bit integer vectors:

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
codegen mcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by Example at the Command
Line

To generate a MEX function or C/C++ code for fixed-point MATLAB code, you must install
Fixed-Point Designer software.

Consider a MATLAB function that calculates the square root of a fixed-point number:

%#codegen
function y = sqrtfi(x)
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example, follow these
steps:

1 Define the numerictype properties for x, for example:

T = numerictype('WordLength',32,...
 'FractionLength',23,...
 'Signed',true);

2 Define the fimath properties for x, for example:

F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,...
 'SumFractionLength',23,...
 'ProductMode','SpecifyPrecision',...
 'ProductWordLength',32,...
 'ProductFractionLength',23);

 Specify Properties of Entry-Point Function Inputs

20-55

3 Create a fixed-point variable with the numerictype and fimath properties that you
defined, for example:

myeg = { fi(4.0,T,F) };
4 Compile the function sqrtfi using the codegen command, passing the variable

myeg as the argument to the -args option, for example:

codegen sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
If you know that your primary inputs do not change at run time, you can reduce overhead
in the generated code by specifying that the primary inputs are constant values. Constant
inputs are commonly used for flags that control how an algorithm executes and values
that specify the sizes or types of data.

To specify that inputs are constants, use the -args command-line option with a
coder.Constant object. To specify that an input is a constant with the size, class,
complexity, and value of constant_input, use the following syntax:

-args {coder.Constant(constant_input)}

Calling Functions with Constant Inputs

The code generator compiles constant function inputs into the generated code. In the
generated C or C++ code, function signatures do not contain the constant inputs. By
default, MEX function signatures contain the constant inputs. When you call a MEX
function, you must provide values that match the compile-time values. You can control
whether a MEX function signature includes constant inputs and whether the MEX
function checks the values that you provide for constant inputs. See “Constant Input
Checking in MEX Functions” on page 20-66.

Specifying a Structure as a Constant Input

Suppose that you define a structure tmp in the MATLAB workspace to specify the
dimensions of a matrix:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define matrix y:

function y = rowcol(u,p) %#codegen
y = zeros(p.rows,p.cols) + u;

20 Generating C/C++ Code from MATLAB Code

20-56

The following example shows how to specify that primary input u is a double scalar
variable and primary input p is a constant structure:

codegen rowcol -args {0,coder.Constant(tmp)}

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB supports
bounded and unbounded variable-size data for code generation. Bounded variable-size
data has fixed upper bounds. This data can be allocated statically on the stack or
dynamically on the heap. Unbounded variable-size data does not have fixed upper bounds.
This data must be allocated on the heap. You can define inputs to have one or more
variable-size dimensions — and specify their upper bounds — using the -args option and
coder.typeof function:

-args {coder.typeof(example_value, size_vector, variable_dims)}

Specifies a variable-size input with:

• Same class and complexity as example_value
• Same size and upper bounds as size_vector
• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size vector for
dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the following
exceptions:

• If the dimension is 1 or 0, which are fixed.
• If the dimension is unbounded, which is always variable size.

For more information, see coder.typeof and “Generate Code for Variable-Size Data” on
page 20-116.

Specifying a Variable-Size Vector Input

1 Write a function that computes the average of every n elements of a vector A and
stores them in a vector B:

function B = nway(A,n) %#codegen
% Compute average of every N elements of A and put them in B.

 Specify Properties of Entry-Point Function Inputs

20-57

coder.extrinsic('error');
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))
 B = ones(1,numel(A)/n);
 k = 1;
 for i = 1 : numel(A)/n
 B(i) = mean(A(k + (0:n-1)));
 k = k + n;
 end
else
 B = zeros(1,0);
 error('n <= 0 or does not divide number of elements evenly');
end

2 Specify the first input A as a vector of double values. Its first dimension stays fixed in
size and its second dimension can grow to an upper bound of 100. Specify the second
input n as a double scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}
3 As an alternative, assign the coder.typeof expression to a MATLAB variable, then

pass the variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)
codegen -report nway -args {vareg, 0}

See Also

More About
• “Define String Scalar Inputs” on page 5-15
• “Specify Objects as Inputs at the Command Line” on page 10-33
• “Specify Cell Array Inputs at the Command Line” on page 20-59
• “Specify Number of Entry-Point Function Input or Output Arguments to Generate”

on page 12-3
• “Pass an Entry-Point Function Output as an Input” on page 20-98

20 Generating C/C++ Code from MATLAB Code

20-58

Specify Cell Array Inputs at the Command Line
To specify cell array inputs at the command line, use the same methods that you use for
other types of inputs. You can:

• Provide an example cell array input to the -args option of the codegen command.
• Provide a coder.CellType object to the -args option of the codegen command. To

create a coder.CellType object, use coder.typeof.
• Use coder.Constant to specify a constant cell array input.

For code generation, cell arrays are classified as homogeneous or heterogeneous. See
“Code Generation for Cell Arrays” on page 8-2. When you provide an example cell array
to codegen or coder.typeof, the function determines whether the cell array type is
homogeneous or heterogeneous. If the cell array elements have the same class and size,
coder.typeof returns a homogeneous cell array type. If the elements have different
classes, coder.typeof returns a heterogeneous cell array type. For some cell arrays, the
classification as homogeneous or heterogeneous is ambiguous. For example, the type for
{1 [2 3]} can be a 1x2 heterogeneous type. The first element is double and the second
element is 1x2 double. The type can also be a 1x3 homogeneous type in which the
elements have class double and size 1x:2. For these ambiguous cases, coder.typeof
uses heuristics to classify the type as homogeneous or heterogeneous. If you want a
different classification, use the coder.CellType makeHomogeneous or
makeHeterogeneous methods. The makeHomogeneous method makes a homogeneous
copy of a type. The makeHeterogeneous method makes a heterogeneous copy of a type.

The makeHomogeneous and makeHeterogeneous methods permanently assign the
classification as homogeneous and heterogeneous, respectively. You cannot later use one
of these methods to create a copy that has a different classification.

If you have a test file, you can use coder.getArgTypes to determine input types. In the
output cell array of types, for cell array inputs, coder.getArgTypes returns a
coder.CellType object. If you want a different classification (homogeneous or
heterogeneous), use the makeHomogeneous or makeHeterogeneous methods.

Specify Cell Array Inputs by Example
To specify a cell array input by example, provide an example cell array in the -args
option of the codegen command.

For example:

 Specify Cell Array Inputs at the Command Line

20-59

• To specify a 1x3 cell array whose elements have class double:

codegen myfunction -args {{1 2 3}} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second

element has class double:

codegen myfunction -args {{'a', 1}} -report

The input argument is a 1x2 heterogeneous cell array whose first element is 1x1 char
and whose second element is 1x1 double.

Specify the Type of the Cell Array Input
To specify the type of a cell array input, use coder.typeof to create a
coder.CellType object. Pass the coder.CellType object to the -args option of the
codegen command.

For example:

• To specify a 1x3 cell array whose elements have class double:

t = coder.typeof({1 2 3});
codegen myfunction -args {t} -report

The input argument is a 1x3 homogeneous cell array whose elements are 1x1 double.
• To specify a 1x2 cell array whose first element has class char and whose second

element has class double:

t = coder.typeof({'a', 1});
codegen myfunction -args {t}

The input argument is a 1x2 heterogeneous cell array whose first element is a 1x1
char and whose second element is a 1x1 double.

You can also use the advanced function coder.newtype to create a coder.CellType
object.

20 Generating C/C++ Code from MATLAB Code

20-60

Make a Homogeneous Copy of a Type
If coder.typeof returns a heterogeneous cell array type, but you want a homogeneous
type, use the makeHomogeneous method to make a homogeneous copy of the type.

The following code creates a heterogeneous type.

t = coder.typeof({1 [2 3]})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 double
 f1: 1x2 double

To make a homogeneous copy of the type, use:

t = makeHomogeneous(t)

t =

coder.CellType
 1×2 locked homogeneous cell
 base: 1×:2 double

Alternatively, use this notation:

t = makeHomogeneous(coder.typeof({1 [2 3]}))

t =

coder.CellType
 1×2 locked homogeneous cell
 base: 1×:2 double

The classification as homogeneous is locked (permanent). You cannot later use the
makeHeterogeneous method to make a heterogeneous copy of the type.

If the elements of a type have different classes, such as char and double, you cannot use
makeHomogeneous to make a homogeneous copy of the type.

If you use coder.cstructname to specify a name for the structure type that represents
a type in the generated code, you cannot create a homogeneous copy of the type.

 Specify Cell Array Inputs at the Command Line

20-61

Make a Heterogeneous Copy of a Type
If coder.typeof returns a homogeneous cell array type, but you want a heterogeneous
type, use the makeHeterogeneous method to make a heterogeneous copy of the type.

The following code creates a homogeneous type.

t = coder.typeof({1 2 3})

t =

coder.CellType
 1x3 homogeneous cell
 base: 1x1 double

To make the type heterogeneous, use:

t = makeHeterogeneous(t)

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 double

Alternatively, use this notation:

t = makeHeterogeneous(coder.typeof({1 2 3}))

t =

coder.CellType
 1×3 locked heterogeneous cell
 f1: 1×1 double
 f2: 1×1 double
 f3: 1×1 double

The classification as heterogeneous is locked (permanent). You cannot later use the
makeHomogeneous method to make a homogeneous copy of the type.

If a type is variable size, you cannot use makeHeterogeneous to make a heterogeneous
copy of it.

20 Generating C/C++ Code from MATLAB Code

20-62

Specify Variable-Size Cell Array Inputs
You can specify variable-size cell array inputs in the following ways:

• In the coder.typeof call.

For example, to specify a variable-size cell array whose first dimension is fixed and
whose second dimension has an upper bound of 5:

t = coder.typeof({1}, [1 5], [0 1])

t =

coder.CellType
 1x:5 homogeneous cell
 base: 1x1 double

For elements with the same classes, but different sizes, you can the use
coder.typeof size and variable dimensions arguments to create a variable-size
homogeneous cell array type. For example, the following code does not use the size
and variable dimensions arguments. This code creates a type for a heterogeneous cell
array.

t = coder.typeof({1 [2 3]})

t =

coder.CellType
 1x2 heterogeneous cell
 f0: 1x1 double
 f1: 1x2 double

The following code, that uses the size and dimensions arguments, creates a type for a
variable-size homogeneous type cell array:

t = coder.typeof({1 [2 3]}, [1 5], [0 1])

t =

coder.CellType
 1×:5 locked homogeneous cell
 base: 1×:2 double

• Use coder.resize.

 Specify Cell Array Inputs at the Command Line

20-63

For example, to specify a variable-size cell array whose first dimension is fixed and
whose second dimension has an upper bound of 5:

t = coder.typeof({1});
t = coder.resize(t, [1 5], [0,1])

t =

coder.CellType
 1x5 homogeneous cell
 base: 1x1 double

You cannot use coder.resize with a heterogeneous cell array type.

Specify Type Name for Heterogeneous Cell Array Inputs
A heterogeneous cell array is represented in the generated code as a structure. To specify
the name of the structure type in the generated code, use coder.cstructname.

For example, to specify the name myname for the cell array type in the generated code:

t = coder.typeof({'a', 1})
t = coder.cstructname(t, 'myname')

t =

coder.CellType
 1×2 locked heterogeneous cell myname
 f1: 1×1 char
 f2: 1×1 double

If you use coder.cstructname with a homogeneous cell array type,
coder.cstructname returns a heterogeneous copy of the type. However, it is a best
practice to use the makeHeterogeneous method of the coder.CellType object to
make a heterogeneous copy of a homogeneous cell array type. Then, you can use
coder.cstructname with the heterogeneous copy of the type.

Specify Constant Cell Array Inputs
To specify that a cell array input is constant, use the coder.Constant function with the
-args option of the codegen command. For example:

codegen myfunction -args {coder.Constant({'red', 1 'green', 2, 'blue', 3})} -report

20 Generating C/C++ Code from MATLAB Code

20-64

The input is a 1x6 heterogeneous cell array. The sizes and classes of the elements are:

• 1x3 char
• 1x1 double
• 1x5 char
• 1x1 double
• 1x4 char
• 1x1 double

See Also
coder.CellType | coder.getArgTypes | coder.newtype | coder.resize |
coder.typeof

Related Examples
• “Define Input Properties by Example at the Command Line” on page 20-53
• “Specify Constant Inputs at the Command Line” on page 20-56

More About
• “Code Generation for Cell Arrays” on page 8-2

 See Also

20-65

Constant Input Checking in MEX Functions
When you specify a constant input argument for generation of a MEX function, by default
the generated MEX function signature includes this argument. When you call the MEX
function, it checks that the value that you provide for the constant argument is the value
specified at code generation time.

To generate a MEX function that does not check constant input values or that does not
include constant input arguments, modify the constant input checking configuration
parameter:

• If you use the MATLAB Coder app:

1 On the Generate Code page, set Build type to MEX.
2 Click More Settings.
3 On the All Settings tab, set Constant Inputs to one of the values in the table.

• If you use codegen, in a MEX configuration object, set the ConstantInputs property
to one of the values in the table.

20 Generating C/C++ Code from MATLAB Code

20-66

Constant Inputs (App) ConstantInputs
(Configuration Object)

Description

Check values at run time 'CheckValues' This value is the default value.

When you call the MEX
function, it checks that the
value you provide for a constant
input argument is the value
specified at code generation
time.

You can call the MEX function
and the original MATLAB
function with the same
arguments. Therefore, you can
use the same test file for both
functions.

Checking the values can add to
the execution time of the MEX
function.

Ignore input value 'IgnoreValues' When you call the MEX
function, it ignores the value
that you provide for a constant
input argument. It uses the
value specified at code
generation time.

You can use the same test file
without the overhead of
checking the constant argument
values.

 Constant Input Checking in MEX Functions

20-67

Constant Inputs (App) ConstantInputs
(Configuration Object)

Description

Remove from MEX
signature

'Remove' The code generator removes
constant input arguments from
the MEX function signature.
When you call the MEX
function, you do not provide a
value for a constant input
argument.

This option is for backward
compatibility.

Control Whether a MEX Function Checks the Value of a
Constant Input
This example shows how to use the ConstantInputs parameter to control whether a
MEX function checks the value of a constant input argument.

Write a function myadd that returns the sum of its inputs.

function c = myadd(a,b)
c = a + b;
end

Create a configuration object for MEX code generation.

mexcfg = coder.config('mex');

Look at the value of the constant input checking configuration parameter,
ConstantInputs.

mexcfg.ConstantInputs

ans =

 'CheckValues'

20 Generating C/C++ Code from MATLAB Code

20-68

It has the default value, CheckValues.

Generate a MEX function myadd_mex. Specify that the first argument is a double scalar
and that the second argument is a constant with value 3.

codegen myadd -config mexcfg -args {1, coder.Constant(3)}

Call myadd_mex. You must provide the input 3 for the second argument.

myadd_mex(1,3)

ans =

 4

Modify ConstantInputs so that the MEX function does not check that the input value
matches the value specified at code generation time.

mexcfg.ConstantInputs = 'IgnoreValues';

Generate myadd_mex.

codegen myadd -config mexcfg -args {1, coder.Constant(3)}

Call myadd_mex with a constant input value other than 3, for example, 5.

myadd_mex(1,5)

ans =

 4

The MEX function ignores the input value 5. It uses the value 3, which is the value that
you specified for the constant argument b when you generated myadd_mex.

Modify ConstantInputs so that the MEX function signature does not include the
constant input argument.

mexcfg.ConstantInputs = 'Remove';

Generate myadd_mex.

 Constant Input Checking in MEX Functions

20-69

codegen myadd -config mexcfg -args {1, coder.Constant(3)}

Call myadd_mex. Provide the value 1 for a. Do not provide a value for the constant
argument b.

myadd_mex(1)

ans =

 4

See Also
coder.MexCodeConfig

More About
• “Specify Properties of Entry-Point Function Inputs” on page 20-48
• “Configure Build Settings” on page 20-28

20 Generating C/C++ Code from MATLAB Code

20-70

Define Input Properties Programmatically in the MATLAB
File

For code generation, you can use the MATLAB assert function to define properties of
primary function inputs directly in your MATLAB file.

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying the class,
size, and complexity of primary function inputs.

When specifying input properties using the assert function, use one of the following
methods. Use the exact syntax that is provided; do not modify it.

• “Specify Any Class” on page 20-71
• “Specify fi Class” on page 20-72
• “Specify Structure Class” on page 20-72
• “Specify Cell Array Class” on page 20-73
• “Specify Fixed Size” on page 20-73
• “Specify Scalar Size” on page 20-73
• “Specify Upper Bounds for Variable-Size Inputs” on page 20-74
• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 20-74
• “Specify Size of Individual Dimensions” on page 20-75
• “Specify Real Input” on page 20-75
• “Specify Complex Input” on page 20-75
• “Specify numerictype of Fixed-Point Input” on page 20-76
• “Specify fimath of Fixed-Point Input” on page 20-76
• “Specify Multiple Properties of Input” on page 20-77

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For example, to set
the class of input U to a 32-bit signed integer, call:

 Define Input Properties Programmatically in the MATLAB File

20-71

...
assert(isa(U,'int32'));
...

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric object). For
example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

...
assert(isa(U,'embedded.fi'));
...

You must specify both the fi class and the numerictype. See “Specify numerictype of
Fixed-Point Input” on page 20-76. You can also set the fimath properties, see “Specify
fimath of Fixed-Point Input” on page 20-76. If you do not set the fimath properties,
codegen uses the MATLAB default fimath value.

Specify Structure Class

assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For example, to
set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

20 Generating C/C++ Code from MATLAB Code

20-72

If you set the class of an input parameter to struct, you must specify the properties of
all fields in the order that they appear in the structure definition.

Specify Cell Array Class

assert(iscell(param))
assert(isa(param, 'cell'))

Sets the input parameter param to the MATLAB class cell (cell array). For example, to
set the class of input C to a cell, call:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

To specify the properties of cell array elements, see “Specifying Properties of Cell Arrays”
on page 20-79.

Specify Fixed Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size that dimensions dims specifies. For example,
to set the size of input U to a 3-by-2 matrix, call:

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input U to scalar, call:

...
assert(isscalar(U));
...

 Define Input Properties Programmatically in the MATLAB File

20-73

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));
assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set the upper-
bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));
assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-bound
size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input parameter.
• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-

bound Nk.
• To specify a fixed-size dimension, set the lower and upper bound of a dimension to the

same value.
• Bounds must be nonnegative.

To fix the size of the first dimension of input U to 3 and set the second dimension as
variable size with upper bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));

20 Generating C/C++ Code from MATLAB Code

20-74

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions and all dimensions simultaneously. You can also
specify individual dimensions instead of specifying all dimensions simultaneously. The
following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Sets the upper-bound size of dimension k of input parameter param. To set the upper-
bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U is complex,
call:

...
assert(~isreal(U));
...

 Define Input Properties Programmatically in the MATLAB File

20-75

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the numerictype
object T. For example, to specify the numerictype property of fixed-point input U as a
signed numerictype object T with 32-bit word length and 30-bit fraction length, use the
following code:

%#codegen
...
% Define the numerictype object.
T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specifying the numerictype for a variable does not automatically specify that the
variable is fixed point. You must specify both the fi class and the numerictype.

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath object F. For
example, to specify the fimath property of fixed-point input U so that it saturates on
integer overflow, use the following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

If you do not specify the fimath properties using assert, codegen uses the MATLAB
default fimath value.

20 Generating C/C++ Code from MATLAB Code

20-76

Specify Multiple Properties of Input

assert (function1 (params) &&
 function2 (params) &&
 function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single assert
function call. For example, the following code specifies that input U is a double, complex,
3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') &&
 ~isreal(U) &&
 all(size(U) == [3 3]) &&
 isa(V,'uint16'));
...

Rules for Using assert Function
When using the assert function to specify the properties of primary function inputs,
follow these rules:

• Call assert functions at the beginning of the primary function, before control-flow
operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for, while,
and switch statements.

• For a fixed-point input, you must specify both the fi class and the numerictype. See
“Specify numerictype of Fixed-Point Input” on page 20-76. You can also set the
fimath properties. See “Specify fimath of Fixed-Point Input” on page 20-76. If you do
not set the fimath properties, codegen uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the class, size,
and complexity of all fields in the order that they appear in the structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the lower-
bound size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to the upper-
bound Nk.

 Define Input Properties Programmatically in the MATLAB File

20-77

• To specify a fixed-size dimension, set the lower and upper bound of a dimension to
the same value.

• Bounds must be nonnegative.
• If you specify individual dimensions, the following rules apply:

• You must specify the size of each dimension at least once.
• The last dimension specification takes precedence over earlier specifications.

Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram takes two inputs:
pennywhistle and win. The code specifies the following properties for these inputs.

Input Property Value
pennywhistle class int16

size 220500-by-1 vector
complexity real (by default)

win class double
size 1024-by-1 vector
complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs inside
assert commands:

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

20 Generating C/C++ Code from MATLAB Code

20-78

assert(isa(win, 'double') && all(size(win) == [nfft 1]));
...

Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Designer software.

In the following example, the primary MATLAB function mcsqrtfi takes one fixed-point
input x. The code specifies the following properties for this input.

Property Value
class fi
numerictype numerictype object T, as specified in the primary

function
fimath fimath object F, as specified in the primary function
size scalar
complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...
 'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...
 'SumWordLength',32,'SumFractionLength',23,...
 'ProductMode','SpecifyPrecision',...
 'ProductWordLength',32,'ProductFractionLength',23);
assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

You must specify both the fi class and the numerictype.

Specifying Properties of Cell Arrays
To specify the MATLAB class cell (cell array), use one of the following syntaxes:

assert(iscell(param))
assert(isa(param, 'cell'))

 Define Input Properties Programmatically in the MATLAB File

20-79

For example, to set the class of input C to cell, use:

...
assert(iscell(C));
...

or

...
assert(isa(C, 'cell'));
...

You can also specify the size of the cell array and the properties of the cell array
elements. The number of elements that you specify determines whether the cell array is
homogeneous or heterogeneous. See “Code Generation for Cell Arrays” on page 8-2.

If you specify the properties of the first element only, the cell array is homogeneous. For
example, the following code specifies that C is a 1x3 homogeneous cell array whose
elements are 1x1 double.

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1 3]));
assert(isa(C{1}, 'double'));
...

If you specify the properties of the first element only, but also assign a structure type
name to the cell array, the cell array is heterogeneous. Each element has the properties of
the first element. For example, the following code specifies that C is a 1x3 heterogeneous
cell array. Each element is a 1x1 double.

...
assert(isa(C, 'cell'));
assert(all(size(C) == [1 3]));
assert(isa(C{1}, 'double'));
coder.cstructname(C, 'myname');
...

If you specify the properties of each element, the cell array is heterogeneous. For
example, the following code specifies a 1x2 heterogeneous cell array whose first element
is 1x1 char and whose second element is 1x3 double.

...
assert(isa(C, 'cell'));

20 Generating C/C++ Code from MATLAB Code

20-80

assert(all(size(C) == [1 2]));
assert(isa(C{1}, 'char'));
assert(all(size(C{2}) == [1 3]));
assert(isa(C{2}, 'double'));
...

If you specify more than one element, you cannot specify that the cell array is variable
size, even if all elements have the same properties. For example, the following code
specifies a variable-size cell array. Because the code specifies the properties of the first
and second elements, code generation fails.

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1 2]));
assert(isa(C{1}, 'double'));
assert(isa(C{2}, 'double'));
...

In the previous example, if you specify the first element only, you can specify that the cell
array is variable-size. For example:

...
assert(isa(C, 'cell'));
assert(all(size(C) <= [1 2]));
assert(isa(C{1}, 'double'));
...

Specifying Class and Size of Scalar Structure
Suppose that you defineS as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

The following code specifies the properties of the function input S and its fields:

function y = fcn(S) %#codegen

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));

 Define Input Properties Programmatically in the MATLAB File

20-81

assert(isa(S.i,'int8');
...

In most cases, when you do not explicitly specify values for properties, MATLAB Coder
uses defaults—except for structure fields. The only way to name a field in a structure is to
set at least one of its properties. At a minimum, you must specify the class of a structure
field.

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array for specifying
the properties of each field. For example, assume that you have defined S as the following
1-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S by using
the first element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [1 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its properties. At a
minimum, you must specify the class of all fields.

20 Generating C/C++ Code from MATLAB Code

20-82

Speed Up Compilation by Generating Only Code
To speed up compilation, you can generate only code. When you generate only code,
MATLAB Coder does not invoke the make command or generate compiled object code.
When you iterate between modifying MATLAB code and generating C/C++ code, and you
want to inspect the generated code, using this option saves time.

To select this option in the MATLAB Coder app:

1 On the Generate Code page, click the Generate arrow to open the Generate
dialog box.

2 Set Build Type to Static Library, Dynamic Library, or Executable.
3 Select the Generate code only check box.

To set this option at the command line, use the codegen -c option. For example, to
generate only code for a function foo:

codegen -c foo

See Also
codegen

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 27-82

 Speed Up Compilation by Generating Only Code

20-83

Disable Creation of the Code Generation Report
If you disable creation of the code generation report, you can speed up code generation,
unless an error occurs. If an error occurs, the code generator creates a report even if you
disabled creation of the report.

To disable creation of the code generation report:

• In the MATLAB Coder app, in the project build settings, on the Debugging tab, clear
the Always create a code generation report check box.

• At the command line, when you generate code, do not use the -report option. If you
specify a code configuration object, make sure that the GenerateReport property is
set to false.

By default, creation of the code generation report is disabled.

See Also

More About
• “Configure Build Settings” on page 20-28
• “Code Generation Reports” on page 21-9

20 Generating C/C++ Code from MATLAB Code

20-84

Paths and File Infrastructure Setup
In this section...
“Compile Path Search Order” on page 20-85
“Specify Folders to Search for Custom Code” on page 20-85
“Naming Conventions” on page 20-86

Compile Path Search Order
MATLAB Coder resolves MATLAB functions by searching first on the code generation
path and then on the MATLAB path. The code generation path contains the current folder
and the code generation libraries. By default, unless MATLAB Coder determines that a
function should be extrinsic or you explicitly declare the function to be extrinsic, MATLAB
Coder tries to compile and generate code for functions it finds on the path. MATLAB
Coder does not compile extrinsic functions, but rather dispatches them to MATLAB for
execution. See “Resolution of Function Calls for Code Generation” on page 13-2.

Specify Folders to Search for Custom Code
If you want to integrate custom code — such as source, header, and library files — with
the generated code, you can specify additional folder to search. The following table
describes how to specify these search paths. The path should not contain:

• Spaces (Spaces can lead to code generation failures in certain operating system
configurations)

• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese characters

 Paths and File Infrastructure Setup

20-85

To specify additional
folders

Do this

Using the MATLAB Coder
app

1 To open the Generate dialog box, on the Generate Code
page, click the Generate arrow .

2 Click More Settings.
3 On the Paths tab, in the Search paths field, either

browse to add a folder to the search path or enter the full
path. The search path must not contain spaces.

At the command line Use the codegen function -I option.

Naming Conventions
MATLAB Coder enforces naming conventions for MATLAB functions and generated files.

• “Reserved Prefixes” on page 20-86
• “Reserved Keywords” on page 20-86
• “Conventions for Naming Generated Files” on page 20-90

Reserved Prefixes

MATLAB Coder reserves the prefix eml for global C/C++ functions and variables in
generated code. For example, MATLAB for code generation run-time library function
names begin with the prefix emlrt, such as emlrtCallMATLAB. To avoid naming
conflicts, do not name C/C++ functions or primary MATLAB functions with the prefix
eml.

Reserved Keywords

• “C Reserved Keywords” on page 20-87
• “C++ Reserved Keywords” on page 20-87
• “Reserved Keywords for Code Generation” on page 20-88
• “MATLAB Coder Code Replacement Library Keywords” on page 20-89

MATLAB Coder software reserves certain words for its own use as keywords of the
generated code language. MATLAB Coder keywords on page 20-88 are reserved for use
internal to MATLAB Coder software and should not be used in MATLAB code as
identifiers or function names. C reserved keywords on page 20-87 should also not be

20 Generating C/C++ Code from MATLAB Code

20-86

used in MATLAB code as identifiers or function names. If your MATLAB code contains
reserved keywords that the code generator cannot rename, the code generation build
does not complete and an error message is displayed. To address this error, modify your
code to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in addition, your
MATLAB code must not contain the “C++ Reserved Keywords” on page 20-87.

C Reserved Keywords

assert extern setjmp string
auto fenv short struct
break float signal switch
case for signed tgmath
char goto sizeof threads
const if static time
complex int stdalign typedef
continue inttypes stdarg uchar
ctype iso646 stdatomic union
default limits stdbool unsigned
do locale stddef void
double long stdint volatile
else math stdio wchar
enum register stdlib wctype
errno return stdnoreturn while

C++ Reserved Keywords

algorithm cstddef iostream sstream
any cstdint istream stack
array cstdio iterator static_cast
atomic cstdlib limits stdexcept
bitset cstring list streambuf

 Paths and File Infrastructure Setup

20-87

cassert ctgmath locale string_view
catch ctime map strstream
ccomplex cuchar memory system_error
cctype cwchar memory_resource template
cerrno cwctype mutable this
cfenv delete mutex thread
cfloat deque namespace throw
chrono dynamic_cast new try
cinttypes exception numeric tuple
ciso646 execution operator typeid
class explicit optional type_traits
climits export ostream typeindex
clocale filesystem private typeinfo
cmath foreward_list protected typename
codecvt friend public unordered_map
complex fstream queue unordered_set
condition_variable functional random using
const_cast future ratio utility
csetjmp initializer_list regex valarray
csignal inline reinterpret_cast vector
cstdalign iomanip scoped_allocator virtual
cstdarg ios set wchar_t
cstdbool iosfwd shared_mutex

Reserved Keywords for Code Generation

abs fortran localZCE rtNaN
asm HAVESTDIO localZCSV SeedFileBuffer
bool id_t matrix SeedFileBufferLen
boolean_T int_T MODEL single

20 Generating C/C++ Code from MATLAB Code

20-88

byte_T int8_T MT TID01EQ
char_T int16_T NCSTATES time_T
cint8_T int32_T NULL true
cint16_T int64_T NUMST TRUE
cint32_T INTEGER_CODE pointer_T uint_T
creal_T LINK_DATA_BUFFER_SIZ

E
PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T
creal64_T localB real_T uint32_T
cuint8_T localC real32_T uint64_T
cuint16_T localDWork real64_T UNUSED_PARAMETER
cuint32_T localP RT USE_RTMODEL
ERT localX RT_MALLOC VCAST_FLUSH_DATA
false localXdis rtInf vector
FALSE localXdot rtMinusInf

MATLAB Coder Code Replacement Library Keywords

The list of code replacement library (CRL) reserved keywords for your development
environment varies depending on which CRLs currently are registered. Beyond the
default ANSI, ISO, and GNU® CRLs provided with MATLAB Coder software, additional
CRLs might be registered and available for use if you have installed other products that
provide CRLs (for example, a target product), or if you have used Embedded Coder APIs
to create and register custom CRLs.

To generate a list of reserved keywords for the CRLs currently registered in your
environment, use the following MATLAB function:

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers()

This function returns a cell array of character vectors that contain CRL keywords.
Specifying the return argument is optional.

Note To list the CRLs currently registered in your environment, use the MATLAB
command crviewer.

 Paths and File Infrastructure Setup

20-89

To generate a list of reserved keywords for the CRL that you are using to generate code,
call the function passing the name of the CRL as displayed in the Code replacement
library menu on the Code Generation > Interface pane of the Configuration
Parameters dialog box. For example,
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

Here is a partial example of the function output:
>> crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

crl_ids =

 'exp10'
 'exp10f'
 'acosf'
 'acoshf'
 'asinf'
 'asinhf'
 'atanf'
 'atanhf'
...
 'rt_lu_cplx'
 'rt_lu_cplx_sgl'
 'rt_lu_real'
 'rt_lu_real_sgl'
 'rt_mod_boolean'
 'rt_rem_boolean'
 'strcpy'
 'utAssert'

Note Some of the returned keywords appear with the suffix $N, for example,
'rt_atan2$N'. $N expands into the suffix _snf only if nonfinite numbers are supported.
For example, 'rt_atan2$N' represents 'rt_atan2_snf' if nonfinite numbers are
supported and 'rt_atan2' if nonfinite numbers are not supported. As a precaution, you
should treat both forms of the keyword as reserved.

Conventions for Naming Generated Files

The following table describes how MATLAB Coder names generated files. MATLAB Coder
follows MATLAB conventions by providing platform-specific extensions for MEX files.

20 Generating C/C++ Code from MATLAB Code

20-90

Platform MEX File
Extension

MATLAB Coder
Extension for
Static Library

MATLAB Coder
Extension for
Shared Library

MATLAB Coder
Executable
Extension

Linux (64-bit) .mexa64 .a .so None
Mac (64-bit) .mexmaci64 .a .dylib None
Windows (64-bit) .mexw64 .lib .dll

Also, generates
an import library
with a .lib
extension that is
required for
linking against
the .dll.

.exe

 Paths and File Infrastructure Setup

20-91

Generate Code for Multiple Entry-Point Functions
In this section...
“Generating Code for Multiple Entry-Point Functions” on page 20-92
“Call a Single Entry-Point Function from a MEX Function” on page 20-93
“Generate Code for More Than One Entry-Point Function Using the MATLAB Coder App”
on page 20-94

An entry-point function is a top-level MATLAB function from which you generate code. For
many applications, you may only need to generate code for a single entry-point function.
You can also generate C/C++ code from multiple entry-point functions at the same time.
By using multiple entry-point functions, you can:

• Generate multi-functional C/C++ libraries that contain larger levels of functionality
than if you were to generate independent libraries for each entry-point function.

• Generate code that shares code more efficiently when multiple entry-point functions
rely on the same subfunctions.

• Generate library functions that can communicate using shared memory, for example,
when they use the same global variables.

As a best practice, generate a MEX function to validate entry-point interactions in
MATLAB before generating a C/C++ library.

Generating Code for Multiple Entry-Point Functions
To generate code for more than one entry-point function, use the syntax from the
codegen reference page. By default, for MEX code generation, codegen:

• Generates a MEX function in the current folder. Only a single MEX function is
generated when you specify multiple entry-point functions. To call a single entry-point
function from a generated MEX function, see “Call a Single Entry-Point Function from
a MEX Function” on page 20-93.

• Names the MEX function name_mex. name is the name of the first entry-point function
from an alphabetical order.

• Stores generated files in the subfolder codegen/mex/subfolder. subfolder is the
name of the first entry-point function from a left-to-right order (as they are entered
after the codegen command).

20 Generating C/C++ Code from MATLAB Code

20-92

You can specify the output file name and subfolder name using the -o option:

codegen -o myOutputFileName fun1 fun2

In this case, codegen generates a MEX function named myOutputFileName in the
current folder and stores generated files in the subfolder codegen/mex/
myOutputFileName.

Example: Generating Code for Two Entry-Point Functions

Generate a MEX function for two entry-point functions, ep1 and ep2. Function ep1 takes
one input and ep2 takes two inputs. Using the -o option, name the generated MEX
function sharedmex:

codegen -o mySharedMex ep1 -args {single(0)} ep2 -args {0,zeros(1,1024)}

codegen generates a MEX function named mySharedMex.mex in the current folder and
stores generated files in the subfolder codegen/mex/mySharedMex.

To generate and compile standalone library code, use the -config:lib option.

codegen -config:lib -o mySharedLib ep1 -args single(0) ep2 -args {0,zeros(1,1024)}

The codegen command generates the C/C++ library code in the codegen/lib/
mySharedLib folder.

To use the output type from one entry-point function as the input type to another, see
“Pass an Entry-Point Function Output as an Input” on page 20-98. For information on
viewing entry-point functions in the code generation report, see “Code Generation
Reports” on page 21-9.

Call a Single Entry-Point Function from a MEX Function
Suppose that you have a MEX function myMex generated from multiple entry-point
functions, fun1, fun2, …, funN. You can call a single entry-point function, fun_i, by
using this syntax:

myMex('fun_i',param1,..,paramM)

Here the MATLAB function signature for fun_i is fun_i(param1,..,paramM).

For example, consider the MEX function, mySharedMex, that has entry-point functions
ep1 and ep2. To call ep1 with an input parameter u, enter:

 Generate Code for Multiple Entry-Point Functions

20-93

mySharedMex('ep1',u)

To call ep2 with input parameters v and x, enter:

mySharedMex('ep2',v,x)

Generate Code for More Than One Entry-Point Function Using
the MATLAB Coder App
This example shows how to generate code for multiple entry-point functions using the
MATLAB Coder app.

Create the Entry-Point Functions

1 In a local writable folder, create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

2 In the same local writable folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

Create the Test File

In the folder that contains ep1.m and ep2.m, create a MATLAB file, ep_test.m, that
calls ep1 and ep2 with example inputs.

function [y, y1] = ep_test
y = ep1(single(2));
y1 = ep2(double(3), double(4));

Open the MATLAB Coder App

On the MATLAB toolstrip Apps tab, under Code Generation, click the MATLAB Coder
app icon.

Specify Source Files

1 On the Select Source Files page, type or select the name of the entry-point function
ep1.

20 Generating C/C++ Code from MATLAB Code

20-94

The app creates a project with the default name ep1.prj in the current folder. To
avoid code generation errors, you must store the project file and all entry-point
MATLAB function files in the same folder.

2 To add ep2 to the list of entry-point functions, click Add Entry-Point Function.
Type or select the name of the entry-point function ep2.

3 To go to the Define Input Types step, click Next. The app analyzes the functions for
coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In
this example, because the app does not detect issues, it opens the Define Input
Types page.

Define Input Types

Because C uses static typing, at compile time, MATLAB Coder must determine the
properties of all variables in the MATLAB files. You must specify the properties of all
entry-point function inputs. From the properties of the entry-point function inputs,
MATLAB Coder can infer the properties of all variables in the MATLAB files.

Specify a test file that MATLAB Coder can use to automatically define types:

1 Enter or select the test file ep_test.m.
2 Click Autodefine Input Types.

The test file, ep_test.m, calls the entry-point functions ep1 and ep2 with the
example input types. MATLAB Coder infers that for ep1, input u is single(1x1).
For ep2, u and v are double(1x1).

3 To go to the Check for Run-Time Issues step, click Next.

Check for Run-Time Issues

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it is
a best practice to perform this step. You can detect and fix run-time errors that are harder
to diagnose in the generated C code.

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues
arrow .

The app populates the test file field with ep_test, the test file that you used to
define the input types.

 Generate Code for Multiple Entry-Point Functions

20-95

2 Click Check for Issues.

The app generates a MEX function named ep1_mex for ep1 and ep2. It runs the test
file ep_test replacing calls to ep1 and ep2 with calls to the MEX function. If the app
detects issues during the MEX function generation or execution, it provides warning
and error messages. To navigate to the problematic code and fix the issue, click these
messages. In this example, the app does not detect issues.

3 To go to the Generate Code step, click Next.

Generate MEX Function

1 To open the Generate dialog box, click the Generate arrow .
2 Set Build type to MEX.
3 Verify that the Output file name is ep1_mex. By default, the app uses the name of

the alphabetically first entry-point function.
4 Click Generate.

MATLAB Coder builds the project. It generates a MEX function, ep1_mex, in the
current folder. MATLAB Coder also generates other supporting files in a subfolder
called codegen/mex/ep1_mex. MATLAB Coder uses the name of the MATLAB
function as the root name for the generated files. It creates a platform-specific
extension for the MEX file, as described in “Naming Conventions” on page 20-86.

You can now test your MEX function in MATLAB. See “Call a Single Entry-Point
Function from a MEX Function” on page 20-93.

If you generate a static library for ep1 and ep2, MATLAB Coder builds the project
and generates a C library, ep1, and supporting files in the default folder,
codegen/lib/ep1.

See Also
codegen | coder.OutputType

More About
• “Pass an Entry-Point Function Output as an Input” on page 20-98
• “Specify Properties of Entry-Point Function Inputs” on page 20-48

20 Generating C/C++ Code from MATLAB Code

20-96

• “Call a Generated C Static Library Function from C Code” on page 24-4

 See Also

20-97

Pass an Entry-Point Function Output as an Input
When you generate code for multiple entry-point functions, you must specify the input
types for each function. Using coder.OutputType, you can pass the output type of one
function as the input type to another function. For example, to use the type of the second
output from a function foo1 as the input type to a function foo2, enter:

codegen foo1 -args {7, 42} foo2 -args {coder.OutputType('foo1',2)}

You can also use coder.OutputType to facilitate the process of partitioning,
componentizing, or extending your code base. For example, when your MATLAB code
uses or accepts a complicated, aggregate data type, consider creating a separate
constructor function that creates that data type. Then, generate code for multiple entry-
point functions, using coder.OutputType to pass the output type from the constructor
to your other entry-point functions.

For more information on using multiple entry-point functions, see “Generate Code for
Multiple Entry-Point Functions” on page 20-92.

Pass an Entry-Point Function Output as an Input to Another
Entry-Point Function
The coder.OutputType function provides a way to chain together entry-point functions
that use the same data types. Use coder.OutputType to:

• Simplify the input type specification process. When an existing entry-point function
creates or defines a data type, you can reuse that definition for the input to a different
entry-point function.

• Synchronize and align data between entry-point functions. When you use
coder.OutputType to pass a data type, there is only a single source for the type
definition, and that definition is used by both functions.

To understand these advantages, compare two cases where you generate code with and
without using coder.OutputType.

Example: Reuse a Nested Structure Output Type as an Input Type

Suppose that you have a complicated data type that is important to your code base. You
have multiple entry-point functions that rely on this data type for input, output, and
internal computation. You require the interfaces between the generated function code to
use the same type definition.

20 Generating C/C++ Code from MATLAB Code

20-98

For the purposes of this example, suppose that the data type is a nested structure, with a
variable-size array stored in the lowest-level property. You want to name this structure
type squiggle in the generated code. In MATLAB, you write a constructing function for
the data type called myConstuctor:

function [out] = myConstructor(a, b)
% create a variable-sized array with upper bounds of 100-by-100
coder.varsize('myStruct.f1.f2.f3.f4', [100 100], [1 1]);
% define the nested structure type
myStruct = struct('f1', struct('f2', struct('f3', struct('f4', zeros(a,b)))));
% specify the name of the structure and one of its fields
coder.cstructname(myStruct.f1.f2.f3,'squiggle_f3');
coder.cstructname(myStruct,'squiggle');
out = myStruct;

You write a second function, useConstructor, that takes the squiggle type as input,
performs addition, and pushes additional columns on to the end of the data.

function x = useConstructor(x, n)
xz = x.f1.f2.f3.f4;
b = zeros(size(xz,1),1);
for i = 1:n
 xz = [(xz + pi), b];
end
x.f1.f2.f3.f4 = xz;

To generate code for myConstructor and useConstructor and treat them as multiple
entry-point functions, you must specify the input types for both functions. Specify the
input types for myConstructor by using two integers. For useConstructor, specify the
input type as the output type from myConstructor by using coder.OutputType:

v = coder.OutputType('myConstructor');
codegen myConstructor -args {5,1} useConstructor -args {v,3} -report -config:lib

In the generated code, the function interfaces are aligned. The two entry-point functions
use the same type definition for squiggle. You can use the generated code for the
constructor to create an input type for the generated code for useConstructor.

Example: Manually Define an Input Type Without Using coder.OutputType

If you do not use coder.OutputType to define the input type for useConstructor, you
must specify the input type by using coder.typeof and coder.StructType class
properties:

 Pass an Entry-Point Function Output as an Input

20-99

% MATLAB type definition for squiggle
myStruct = struct('f1', struct('f2', struct('f3', struct('f4', zeros(2)))));
t = coder.typeof(myStruct);
t.Fields.f1.Fields.f2.Fields.f3.Fields.f4 = coder.typeof(zeros(2), [100 100], [1 1]);
t.Fields.f1.Fields.f2.Fields.f3.TypeName = 'squiggle_f3';
t.TypeName = 'squiggle';

To generate static library code, enter:

codegen myConstructor -args {5,1} useConstructor -args {t,3} -report -config:lib

As in the first example, the function interfaces are aligned. However, creating and
maintaining the type definition for squiggle is labor-intensive. Changes that you make
to the type definition must be replicated in two places: the myConstructor function and
the current workspace variable t. These changes can fall out of synchronization,
particularly when working with complicated type definitions. Use coder.OutputType to
assist in your development process.

Use coder.OutputType to Facilitate Code Componentization
If your MATLAB code uses large, complicated, or aggregate type definitions, you can
separate your code into different entry-point function components (such as a constructor
and an operator) and use coder.OutputType to pass the type definition between them.
The coder.OutputType function enables you to ensure a matching interface between
the different entry-point functions.

Example: Create a Constructor and Use coder.OutputType to Pass the Output
Type

Consider the function useSparse that performs an operation on a sparse matrix input.

function out = useSparse(in)
%#codegen
out = in*2;

If you generate code for useSparse, you must manually construct the appropriate input
type in C/C++. To automate and simplify the type construction, write a constructor for
the sparse matrix.

function A = makeSparse(i,j,v,m,n)
%#codegen
A = sparse(i,j,v,m,n);

20 Generating C/C++ Code from MATLAB Code

20-100

To generate code, use coder.OutputType to pass the output from the constructor as the
input to useSparse. Define your input argument as a 3-by-5 matrix.

t = coder.OutputType('makeSparse');
S = round(rand(3,5));
[m,n] = size(S);
[i,j,v] = find(S);
i = coder.typeof(i,[inf 1]); % allow number of nonzero entries to vary
codegen makeSparse -args {i,i,i,m,n} useSparse -args {t} -report

Using the generated C/C++ code, you can call makeSparse to generate the input to
useSparse. The coder.OutputType function makes it easy to create and align the
interface for separate entry-point functions that belong to a common code base.

See Also
coder.OutputType | coder.StructType | coder.cstructname | coder.typeof |
coder.varsize

More About
• “Generate Code for Multiple Entry-Point Functions” on page 20-92
• “Specify Properties of Entry-Point Function Inputs” on page 20-48
• “Code Generation for Sparse Matrices” on page 5-18

 See Also

20-101

Generate Code for Global Data
In this section...
“Workflow” on page 20-102
“Declare Global Variables” on page 20-102
“Define Global Data” on page 20-103
“Synchronizing Global Data with MATLAB” on page 20-104
“Define Constant Global Data” on page 20-108
“Global Data Limitations for Generated Code” on page 20-111

Workflow
To generate C/C++ code from MATLAB code that uses global data:

1 Declare the variables as global in your code.
2 Before using the global data, define and initialize it.

For more information, see “Define Global Data” on page 20-103.
3 Generate code using the MATLAB Coder app or using codegen.

If you use global data, you must also specify whether you want to synchronize this data
between MATLAB and the generated MEX function. For more information, see
“Synchronizing Global Data with MATLAB” on page 20-104.

Declare Global Variables
When using global data, you must first declare the global variables in your MATLAB code.
Consider the use_globals function that uses two global variables AR and B:

function y = use_globals(u)
%#codegen
% Turn off inlining to make
% generated code easier to read
coder.inline('never');
% Declare AR and B as global variables
global AR;
global B;

20 Generating C/C++ Code from MATLAB Code

20-102

AR(1) = u + B(1);
y = AR * 2;

Define Global Data
You can define global data in the MATLAB global workspace, in a MATLAB Coder project,
or at the command line. If you do not initialize global data in the project or at the
command line, MATLAB Coder looks for the variable in the MATLAB global workspace. If
the variable does not exist, MATLAB Coder generates an error.

Defining Global Data in the MATLAB Global Workspace

To generate a MEX function for the use_globals function described in “Declare Global
Variables” on page 20-102 using codegen:

1 In the MATLAB workspace, define and initialize the global data. At the MATLAB
prompt, enter:

global AR B;
AR = ones(4);
B = [1 2 3];

2 Generate a MEX file.

codegen use_globals -args {0}
% Use the -args option to specify that the input u
% is a real, scalar, double
% By default, codegen generates a MEX function,
% use_globals_mex, in the current folder

Defining Global Data Using the MATLAB Coder App

1 On the Define Input Types page, automatically define input types or click Let me
enter input or global types directly.

The app displays a table of entry-point inputs.
2 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent
global variables g1, g2, and so on.

3 Under Global variables, enter a name for the global variable.

 Generate Code for Global Data

20-103

4 Click the field to the right of the global variables name. Specify the type and initial
value of the global variable. See “Specify Global Variable Type and Initial Value Using
the App” on page 17-35.

If you do not specify the type, you must create a variable with the same name in the
global workspace.

Defining Global Data at the Command Line

To define global data at the command line, use the codegen -globals option. For
example, to compile the use_globals function described in “Declare Global Variables”
on page 20-102, specify two global inputs AR and B at the command line. Use the -args
option to specify that the input u is a real, scalar double. By default, codegen generates a
MEX function, use_globals_mex, in the current folder.

codegen -globals {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using the format -
globals {'g', {type, initial_value}}. For cell arrays, you must use this format.
See “Specify Global Cell Arrays at the Command Line” on page 20-113.

Defining Variable-Size Global Data

To provide initial values for variable-size global data, specify the type and initial value
with the -globals flag using the format -globals {'g', {type,
initial_value}}. For example, to specify a global variable g1 that has an initial value
[1 1] and upper bound [2 2], enter:

codegen foo -globals {'g1', {coder.typeof(0, [2 2],1),[1 1]}}

For a detailed explanation of the syntax, see coder.typeof.

Synchronizing Global Data with MATLAB
Why Synchronize Global Data?

The generated MEX function and MATLAB each have their own copies of global data. To
make these copies consistent, you must synchronize their global data whenever the two
interact. If you do not synchronize the data, their global variables might differ. The level
of interaction determines when to synchronize global data. For more information, see
“When to Synchronize Global Data” on page 20-105.

20 Generating C/C++ Code from MATLAB Code

20-104

When global data is constant, you cannot synchronize the global data with MATLAB. By
default, the MEX function tests for consistency between the compile-time constant global
values and the MATLAB values at function entry and after extrinsic function calls. If the
MATLAB values differ from the compile-time constant global values, the MEX function
ends with an error. For information about controlling when the MEX function tests for
consistency between the compile-time constant global values and the MATLAB values, see
“Consistency Between MATLAB and Constant Global Data” on page 20-110.

When to Synchronize Global Data

By default, synchronization between the MEX function's global data and MATLAB occurs
at MEX function entry and exit and for extrinsic calls. Use this synchronization method
for maximum consistency between the MEX function and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.
• Disable synchronization when the global data does not interact.
• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options to use. To
learn how to set these options, see “How to Synchronize Global Data” on page 20-106.

 Generate Code for Global Data

20-105

Global Data Synchronization Options

If you want to Set the global data
synchronization
mode to:

Synchronize before and
after extrinsic calls?

Have maximum consistency when
all extrinsic calls modify global
data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Have maximum consistency when
most extrinsic calls modify global
data, but a few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the
coder.extrinsic -
sync:off option to turn off
synchronization for the
extrinsic calls that do not
change global data.

Have maximum consistency when
most extrinsic calls do not modify
global data, but a few do.

At MEX-function
entry and exit

Yes. Use the
coder.extrinsic -sync:on
option to synchronize only the
calls that modify global data.

Maximize performance when
synchronizing global data, and
none of your extrinsic calls
modify global data.

At MEX-function
entry and exit

No.

Communicate between generated
MEX functions only. No
interaction between MATLAB and
MEX function global data.

Disabled No.

How to Synchronize Global Data

To control global data synchronization, set the global data synchronization mode and
select whether to synchronize extrinsic functions. For guidelines on which options to use,
see “When to Synchronize Global Data” on page 20-105.

You can control the global data synchronization mode from the project settings dialog
box, the command line, or a MEX configuration dialog box. You control the
synchronization of data with extrinsic functions using the coder.extrinsic -sync:on
and -sync:off options.

20 Generating C/C++ Code from MATLAB Code

20-106

Controlling the Global Data Synchronization Mode Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to MEX.
3 Click More Settings.
4 On the Memory tab, set Global data synchronization mode to At MEX-function

entry and exit or Disabled, as applicable.

Controlling the Global Data Synchronization Mode from the Command Line

1 In the MATLAB workspace, define the code generation configuration object. At the
MATLAB command line, enter:

mexcfg = coder.config('mex');
2 At the MATLAB command line, set the GlobalDataSyncMethod property to

SyncAtEntryAndExits or NoSync, as applicable. For example:

mexcfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';
3 When compiling your code, use the mexcfg configuration object. For example, to

generate a MEX function for function foo that has no inputs:

codegen -config mexcfg foo

Controlling Synchronization for Extrinsic Function Calls

To control whether synchronization between MATLAB and MEX function global data
occurs before and after you call an extrinsic function, use the coder.extrinsic-
sync:on and -sync:off options.

By default, global data is:

• Synchronized before and after each extrinsic call, if the global data synchronization
mode is At MEX-function entry, exit and extrinsic calls. If you are sure
that certain extrinsic calls do not change global data, turn off synchronization for
these calls using the -sync:off option. For example, if functions foo1 and foo2 do
not change global data, turn off synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');
• Not synchronized, if the global data synchronization mode is At MEX-function

entry and exit. If the code has a few extrinsic calls that change global data, turn

 Generate Code for Global Data

20-107

on synchronization for these calls using the -sync:on option. For example, if
functions foo1 and foo2 change global data, turn on synchronization for these
functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');
• Not synchronized, if the global data synchronization mode is Disabled. When

synchronization is disabled, you cannot use the -sync:on option to control the
synchronization for specific extrinsic calls.

Clear Global Data

Because MEX functions and MATLAB each have their own copies of global data, you must
clear both copies to ensure that consecutive MEX runs produce the same results. The
clear global command removes only the copy of the global data in the MATLAB
workspace. To remove both copies of the data, use the clear global and clear mex
commands together. The clear all command also removes both copies.

Define Constant Global Data
If you know that the value of a global variable does not change at run time, you can
reduce overhead in the generated code by specifying that the global variable has a
constant value. You cannot write to the constant global variable.

Define Constant Global Data Using the MATLAB Coder App

• On the Define Input Types page, automatically define input types or click Let me
enter input or global types directly.

The app displays a table of entry-point inputs.

1 To add a global variable, click Add global.

By default, the app names the first global variable in a project g, and subsequent
global variables g1, g2, and so on.

2 Under Global Variables, enter a name for the global variable.
3 Click the field to the right of the global variable name.
4 Select Define Constant Value.

20 Generating C/C++ Code from MATLAB Code

20-108

5 In the field to the right of the global variable, enter a MATLAB expression.

Define Constant Global Data at the Command Line

To specify that a global variable is constant using the codegen command, use the -
globals option with the coder.Constant class.

 Generate Code for Global Data

20-109

1 Define a configuration object for the code generation output type that you want. For
example, define a configuration object for MEX code generation:

cfg = coder.config('mex');
2 Use coder.Constant to specify that a global variable has a constant value. For

example, the following code specifies that the global variable g has initial value 4 and
that global variable gc has the constant value 42.

global_values = {'g', 4, 'gc', coder.Constant(42)};
3 Generate the code using the -globals option. For example, generate code for

myfunction specifying that the global variables are defined in the cell array
global_values.

codegen -config cfg -globals global_values myfunction

Consistency Between MATLAB and Constant Global Data

By default, the generated MEX function verifies that the values of constant global data in
the MATLAB workspace are consistent with the compile-time values in the generated
MEX. It tests for consistency at function entry and after calls to extrinsic functions. If the
MEX function detects an inconsistency, it ends with an error. To control when the MEX
function tests for consistency, use the global synchronization mode and the
coder.extrinsic synchronization options.

The following table shows how the global data synchronization mode and the
coder.extrinsic synchronization option setting determine when a MEX function
verifies consistency between the compile-time constant global data values and MATLAB.

Global Data
Synchronization
Mode (Project)

GlobalDataSyncMethod
(MEX Configuration
Object)

Verify
Consistency
of Constant
Global
Values at
MEX
Function
Entry

coder.extrinsic
synchronization
option

Verify
Consistency
of Constant
Global Values
After Extrinsic
Function Call

At MEX-
function
entry, exit
and extrinsic
calls (default)

'SyncAlways' yes 'sync:on'
(default)

yes

'sync:off' no

20 Generating C/C++ Code from MATLAB Code

20-110

Global Data
Synchronization
Mode (Project)

GlobalDataSyncMethod
(MEX Configuration
Object)

Verify
Consistency
of Constant
Global
Values at
MEX
Function
Entry

coder.extrinsic
synchronization
option

Verify
Consistency
of Constant
Global Values
After Extrinsic
Function Call

At MEX-
function entry
and exit

'SyncAtEntryAndExits' yes 'sync:on' yes
'sync:off'
(default)

no

Disabled 'NoSync' no N/A N/A

Constant Global Data in a Code Generation Report

The code generation report provides the following information about a constant global
variable:

• Type of Global on the Variables tab.
• Highlighted variable name in the Function pane.

See “MATLAB Variables” on page 21-13.

Global Data Limitations for Generated Code
• Global structure variables cannot contain handle objects or sparse arrays.
• You cannot apply coder.cstructname directly to a global variable. To name the

structure type to use with a global variable, use coder.cstructname to create a type
object that names the structure type. Then, when you run codegen, specify that the
global variable has that type. See “Name the C Structure Type to Use With a Global
Structure Variable” on page 20-178.

See Also
global

 See Also

20-111

More About
• “Specify Global Variable Type and Initial Value Using the App” on page 17-35
• “Name the C Structure Type to Use With a Global Structure Variable” on page 20-

178

20 Generating C/C++ Code from MATLAB Code

20-112

Specify Global Cell Arrays at the Command Line
To specify global cell array inputs, use the -globals option of the codegen command
with this syntax:

codegen myfunction -globals {global_var, {type_object, initial_value}}

For example:

• To specify that the global variable g is a 1x3 cell array whose elements have class
double and whose initial value is {1 2 3}, use:

codegen myfunction -globals {'g', {coder.typeof({1 1 1}), {1 2 3}}}

Alternatively, use:

t = coder.typeof({1 1 1});
codegen myfunction -globals {'g', {t, {1 2 3}}}

The global variable g is a 1x3 homogeneous cell array whose elements are 1x1 double.

To make g heterogeneous, use:

t = makeHeterogeneous(coder.typeof({1 1 1}));
codegen myfunction -globals {'g', {t, {1 2 3}}}

• To specify that g is a cell array whose first element has type char, whose second
element has type double, and whose initial value is {'a', 1}, use:

codegen myfunction -globals {'g', {coder.typeof({'a', 1}), {'a', 1}}}

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1 char
and whose second element is 1x1 double.

• To specify that g is a cell array whose first element has type double, whose second
element is a 1x2 double array, and whose initial value is {1 [2 3]}, use:

codegen myfunction -globals {'g', {coder.typeof({1 [2 3]}), {1 [2 3]}}}

Alternatively, use:

t = coder.typeof({1 [2 3]});
codegen myfunction -globals {'g', {t, {1 [2 3]}}}

The global variable g is a 1x2 heterogeneous cell array whose first element is 1x1
double and whose second element is 1x2 double.

 Specify Global Cell Arrays at the Command Line

20-113

Global variables that are cell arrays cannot have variable size.

See Also
codegen | coder.typeof

Related Examples
• “Generate Code for Global Data” on page 20-102

20 Generating C/C++ Code from MATLAB Code

20-114

Generate Code for Enumerations
The basic workflow for generating code for enumerated types in MATLAB code is:

1 Define an enumerated data type that derives from one of these base types: int8,
uint8, int16, uint16, or int32.

2 Save the enumerated data type in a file on the MATLAB path.
3 Write a MATLAB function that uses the enumerated type.
4 Specify enumerated type inputs.
5 Generate code.

See Also

More About
• “Code Generation for Enumerations” on page 9-2
• “Generate Code for an LED Control Function That Uses Enumerated Types” on page

20-181
• “Customize Enumerated Types in Generated Code” on page 9-8
• “Specify an Enumerated Type Input Parameter by Example” on page 17-14
• “Specify an Enumerated Type Input Parameter” on page 17-22

 Generate Code for Enumerations

20-115

Generate Code for Variable-Size Data
In this section...
“Disable Support for Variable-Size Data” on page 20-116
“Control Dynamic Memory Allocation” on page 20-117
“Generating Code for MATLAB Functions with Variable-Size Data” on page 20-119
“Generate Code for a MATLAB Function That Expands a Vector in a Loop” on page 20-
120

Variable-size data is data whose size might change at run time. You can use MATLAB
Coder to generate C/C++ code from MATLAB code that uses variable-size data. MATLAB
supports bounded and unbounded variable-size data for code generation. Bounded
variable-size data has fixed upper bounds. This data can be allocated statically on the
stack or dynamically on the heap. Unbounded variable-size data does not have fixed upper
bounds. This data must be allocated on the heap. By default, for MEX and C/C++ code
generation, support for variable-size data is enabled and dynamic memory allocation is
enabled for variable-size arrays whose size is greater than or equal to a configurable
threshold.

Disable Support for Variable-Size Data
By default, for MEX and C/C++ code generation, support for variable-size data is
enabled. You modify variable sizing settings from the project settings dialog box, the
command line, or using dialog boxes.

Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the Memory tab, select or clear Enable variable-sizing.

At the Command Line

1 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

20 Generating C/C++ Code from MATLAB Code

20-116

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;
3 Using the -config option, pass the configuration object to codegen :

codegen -config cfg foo

Control Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays whose size is
greater than or equal to a configurable threshold. If you disable support for variable-size
data (see “Disable Support for Variable-Size Data” on page 20-116), you also disable
dynamic memory allocation. You can modify dynamic memory allocation settings from the
project settings dialog box or the command line.

Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the Memory tab, set Dynamic memory allocation to one of the following

options:

Setting Action
Never Dynamic memory allocation is disabled.

Variable-size data is allocated statically
on the stack.

For all variable-sized arrays Dynamic memory allocation is enabled
for variable-size arrays. Variable-size
data is allocated dynamically on the
heap.

For arrays with max size at or
above threshold

Dynamic memory allocation is enabled
for variable-size arrays whose size is
greater than or equal to the Dynamic
memory allocation threshold.
Variable-size arrays whose size is less
than this threshold are allocated on the
stack.

 Generate Code for Variable-Size Data

20-117

4 Optionally, if you set Dynamic memory allocation to For arrays with maximum
size at or above threshold, configure Dynamic memory allocation
threshold to fine-tune memory allocation.

At the Command Line

1 Create a configuration object for code generation. For example, for a MEX function:

mexcfg = coder.config('mex');
2 Set the DynamicMemoryAllocation option:

Setting Action
mexcfg.DynamicMemoryAllocation='Off'; Dynamic memory allocation

is disabled. Variable-size data
is allocated statically on the
stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays'; Dynamic memory allocation
is enabled for variable-size
arrays. Variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold'; Dynamic memory allocation
is enabled for variable-size
arrays whose size (in bytes)
is greater than or equal to
the value specified using the
DynamicMemoryAllocatio
nThreshold parameter.
Variable-size arrays whose
size is less than this
threshold are allocated on
the stack.

3 Optionally, if you set DynamicMemoryAllocation to 'Threshold', configure
DynamicMemoryAllocationThreshold to fine tune memory allocation.

4 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg foo

20 Generating C/C++ Code from MATLAB Code

20-118

Generating Code for MATLAB Functions with Variable-Size
Data
Here is a basic workflow that first generates MEX code for verifying the generated code
and then generates standalone code after you are satisfied with the result of the
prototype.

To work through these steps with a simple example, see “Generate Code for a MATLAB
Function That Expands a Vector in a Loop” on page 20-120

1 In the MATLAB Editor, add the compilation directive %#codegen at the top of your
function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm
• Turns on checking in the MATLAB Code Analyzer to detect potential errors during

code generation
2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code assigns data a
fixed size but later grows the data, such as by assignment or concatenation in a loop.
If that data is supposed to vary in size at run time, you can ignore these warnings.

3 Generate a MEX function using codegen to verify the generated code. Use the
following command-line options:

• -args {coder.typeof...} if you have variable-size inputs
• -report to generate a code generation report

For example:

codegen -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for function
foo. The first argument, 0, indicates the input data type (double) and complexity
(real). The second argument, [2 4], indicates the size, a matrix with two
dimensions. The third argument, 1, indicates that the input is variable sized. The
upper bound is 2 for the first dimension and 4 for the second dimension.

Note During compilation, codegen detects variables and structure fields that
change size after you define them, and reports these occurrences as errors. In

 Generate Code for Variable-Size Data

20-119

addition, codegen performs a run-time check to generate errors when data exceeds
upper bounds.

4 Fix size mismatch errors:

Cause How To Fix For More Information
You try to change the
size of data after its size
has been locked.

Declare the data to be
variable sized.

See “Diagnosing and
Fixing Size Mismatch
Errors” on page 6-22.

5 Fix upper bounds errors

Cause How To Fix For More Information
MATLAB cannot
determine or compute
the upper bound

Specify an upper bound. See“Specify Upper Bounds
for Variable-Size Arrays”
on page 6-8 and
“Diagnosing and Fixing
Size Mismatch Errors” on
page 6-22.

MATLAB attempts to
compute an upper
bound for unbounded
variable-size data.

If the data is unbounded,
enable dynamic memory
allocation.

See “Control Dynamic
Memory Allocation” on
page 20-117.

6 Generate C/C++ code using the codegen function.

Generate Code for a MATLAB Function That Expands a Vector
in a Loop
• “About the MATLAB Function myuniquetol” on page 20-121
• “Step 1: Add Compilation Directive for Code Generation” on page 20-121
• “Step 2: Address Issues Detected by the Code Analyzer” on page 20-121
• “Step 3: Generate MEX Code” on page 20-122
• “Step 4: Generate C Code” on page 20-123
• “Step 5: Specify an Upper Bound for the Output Vector” on page 20-124
• “Step 6: Change the Dynamic Memory Allocation Threshold” on page 20-124

20 Generating C/C++ Code from MATLAB Code

20-120

About the MATLAB Function myuniquetol

This example uses the function myuniquetol. This function returns in vector B a version
of input vector A, where the elements are unique to within tolerance tol of each other. In
vector B, abs(B(i) - B(j)) > tol for all i and j. Initially, assume input vector A can store
up to 100 elements.

function B = myuniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

Step 1: Add Compilation Directive for Code Generation

Add the %#codegen compilation directive at the top of the function:

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

Step 2: Address Issues Detected by the Code Analyzer

The Code Analyzer detects that variable B might change size in the for-loop. It issues
this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, you expect vector B to expand in size because it adds values from vector
A. Therefore, you can ignore this warning.

 Generate Code for Variable-Size Data

20-121

Step 3: Generate MEX Code

It is a best practice to generate MEX code before you generate C/C++ code. Generating
MEX code can identify code generation issues that are harder to detect at run time.

1 Generate a MEX function for myuniquetol:
codegen -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

What do these command-line options mean?

The -args option specifies the class, complexity, and size of each input to function
myuniquetol:

• The first argument, coder.typeof, defines a variable-size input. The expression
coder.typeof(0,[1 100],1) defines input A as a real double vector with a
fixed upper bound. Its first dimension is fixed at 1 and its second dimension can
vary in size up to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command Line” on
page 20-57.

• The second argument, coder.typeof(0), defines input tol as a real double
scalar.

The -report option instructs codegen to generate a code generation report,
regardless of whether errors or warnings occur.

For more information, see the codegen reference page.

Code generation is successful. codegen does not detect issues. In the current folder,
codegen generates a MEX function for myuniquetol and provides a link to the code
generation report.

2 Click the View report link.
3 In the code generation report, select the Variables tab.

20 Generating C/C++ Code from MATLAB Code

20-122

The size of A is 1x:100 because you specified that A is variable size with an upper
bound of 100. The size of variable B is 1x:?, indicating that it is variable size with no
upper bounds.

Step 4: Generate C Code

Generate C code for variable-size inputs. By default, codegen allocates memory statically
for data whose size is less than the dynamic memory allocation threshold of 64 kilobytes.
If the size of the data is greater than or equal to the threshold or is unbounded, codegen
allocates memory dynamically on the heap.

1 Create a configuration option for C library generation:

cfg=coder.config('lib');

2 Issue this command:
codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

codegen generates a static library in the default location, codegen\lib
\myuniquetol and provides a link to the code generation report.

3 Click the View report link.
4 In the list of generated files, click myuniquetol.h.

The function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2], double tol,
 emxArray_real_T *B);

codegen computes the size of A and, because its maximum size is less than the
default dynamic memory allocation threshold of 64k bytes, allocates this memory
statically. The generated code contains:

• double A_data[]: the definition of A.
• int A_size[2]: the actual size of the input.

The code generator determines that B is variable size with unknown upper bounds. It
represents B as emxArray_real_T. MATLAB provides utility functions for creating
and interacting with emxArrays in your generated code. For more information, see
“C Code Interface for Arrays” on page 6-16.

 Generate Code for Variable-Size Data

20-123

Step 5: Specify an Upper Bound for the Output Vector

You specified that the input A is variable size with an upper bound of 100. Therefore, you
know that the output B cannot be larger than 100 elements.

• Use coder.varsize to indicate that B is variable size with an upper bound of 100.

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B', [1 100], [0 1]);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol
 B = [B A(i)];
 k = i;
 end
end

• Generate code.
codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

The function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2], double tol,
 double B_data[], int B_size[2]);

The code generator statically allocates the memory for B. It stores the size of B in int
B_size[2].

Step 6: Change the Dynamic Memory Allocation Threshold

In this step, you reduce the dynamic memory allocation threshold and generate code for
an input that exceeds this threshold. This step specifies that the second dimension of A
has an upper bound of 10000.

1 Change the upper bound of B to match the upper bound of A.

function B = myuniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B', [1 10000], [0 1]);
B = A(1);
k = 1;
for i = 2:length(A)
 if abs(A(k) - A(i)) > tol

20 Generating C/C++ Code from MATLAB Code

20-124

 B = [B A(i)];
 k = i;
 end
end

2 Set the dynamic memory allocation threshold to 4 kilobytes and generate code where
the size of input A exceeds this threshold.
cfg.DynamicMemoryAllocationThreshold=4096;
codegen -config cfg -report myuniquetol -args {coder.typeof(0,[1 10000],1),coder.typeof(0)}

3 View the generated code in the report. Because the maximum size of A and B now
exceed the dynamic memory allocation threshold, codegen allocates A and B
dynamically on the heap. In the generated code, A and B have type
emxArray_real_T.

extern void myuniquetol(const emxArray_real_T *A, double tol, emxArray_real_T *B);

See Also

More About
• “Using Dynamic Memory Allocation for an "Atoms" Simulation” on page 24-51

 See Also

20-125

How MATLAB Coder Partitions Generated Code
In this section...
“Partitioning Generated Files” on page 20-126
“How to Select the File Partitioning Method” on page 20-126
“Partitioning Generated Files with One C/C++ File Per MATLAB File” on page 20-127
“Generated Files and Locations” on page 20-132
“File Partitioning and Inlining” on page 20-134

Partitioning Generated Files
By default, during code generation, MATLAB Coder partitions the code to match your
MATLAB file structure. This one-to-one mapping lets you easily correlate your files
generated in C/C++ with the compiled MATLAB code. MATLAB Coder cannot produce the
same one-to-one correspondence for MATLAB functions that are inlined in generated code
(see “File Partitioning and Inlining” on page 20-134).

Alternatively, you can select to generate all C/C++ functions into a single file. For more
information, see “How to Select the File Partitioning Method” on page 20-126. This option
facilitates integrating your code with existing embedded software.

How to Select the File Partitioning Method
Using the MATLAB Coder App
1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Code Appearance tab, set the Generated file partitioning method to

Generate one file for each MATLAB file or Generate all functions
into a single file.

At the Command Line

Use the codegen configuration object FilePartitionMethod option. For example, to
compile the function foo that has no inputs and generate one C/C++ file for each
MATLAB function:

20 Generating C/C++ Code from MATLAB Code

20-126

1 Create a MEX configuration object and set the FilePartitionMethod option:

mexcfg = coder.config('mex');
mexcfg.FilePartitionMethod = 'MapMFileToCFile';

2 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg -O disable:inline foo
% Disable inlining to generate one C/C++ file for each MATLAB function

Partitioning Generated Files with One C/C++ File Per MATLAB
File
By default, for MATLAB functions that are not inlined, MATLAB Coder generates one C/C
++ file for each MATLAB file. In this case, MATLAB Coder partitions generated C/C++
code so that it corresponds to your MATLAB files.

How MATLAB Coder Partitions Entry-Point MATLAB Functions

For each entry-point (top-level) MATLAB function, MATLAB Coder generates one C/C++
source, header, and object file with the same name as the MATLAB file.

For example, suppose you define a simple function foo that calls the function identity.
The source file foo.m contains the following code:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

Here is the code for identity.m :

function y = identity(u) %#codegen
y = u;

In the MATLAB Coder app, to generate a C static library for foo.m:

1 Define the inputs u and v. For more information, see “Specify Properties of Entry-
Point Function Inputs Using the App” on page 17-4.

2 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

3 Set the Build type to Static Library

 How MATLAB Coder Partitions Generated Code

20-127

4 Click More Settings.
5 On the All Settings tab, under Function Inlining, set the Inline threshold

parameter to 0
6 Click Close
7 To generate the library, click Generate.

To generate a C static library for foo.m, at the command line, enter:

codegen -config:lib -O disable:inline foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

MATLAB Coder generates source, header, and object files for foo and identity in your
output folder.

20 Generating C/C++ Code from MATLAB Code

20-128

How MATLAB Coder Partitions Local Functions

For each local function, MATLAB Coder generates code in the same C/C++ file as the
calling function. For example, suppose you define a function foo that calls a local
function identity:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

function y = identity(u)
y = u;

To generate a C++ library, before generating code, select a C++ compiler and set C++
as your target language. For example, at the command line:

1 Select C++ as your target language:

cfg = coder.config('lib')
cfg.TargetLang='C++'

2 Generate the C++ library:

codegen -config cfg foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

In the primary function foo, MATLAB Coder inlines the code for the identity local
function.

 How MATLAB Coder Partitions Generated Code

20-129

Note If you specify C++, MATLAB Coder wraps the C code into .cpp files so that
you can use a C++ compiler and interface with external C++ applications. It does not
generate C++ classes.

Here is an excerpt of the generated code in foo.cpp:

...
/* Function Definitions */
double foo(double u, double v)
{
 return (double)(float)u + v;
}
...

How MATLAB Coder Partitions Overloaded Functions

An overloaded function is a function that has multiple implementations to accommodate
different classes of input. For each implementation (that is not inlined), MATLAB Coder
generates a separate C/C++ file with a unique numeric suffix.

For example, suppose you define a simple function multiply_defined:

20 Generating C/C++ Code from MATLAB Code

20-130

%#codegen
function y = multiply_defined(u)

y = u+1;

You then add two more implementations of multiply_defined, one to handle inputs of
type single (in an @single subfolder) and another for inputs of type double (in an
@double subfolder).

To call each implementation, define the function call_multiply_defined:

%#codegen
function [y1,y2,y3] = call_multiply_defined

y1 = multiply_defined(int32(2));
y2 = multiply_defined(2);
y3 = multiply_defined(single(2));

Next, generate C code for the overloaded function multiply_defined. For example, at
the MATLAB command line, enter:

codegen -O disable:inline -config:lib call_multiply_defined

MATLAB Coder generates C source, header, and object files for each implementation of
multiply_defined, as highlighted. Use numeric suffixes to create unique file names.

 How MATLAB Coder Partitions Generated Code

20-131

Generated Files and Locations
The types and locations of generated files depend on the target that you specify. For all
targets, if errors or warnings occur during build or if you explicitly request a report,
MATLAB Coder generates reports.

Each time MATLAB Coder generates the same type of output for the same code or
project, it removes the files from the previous build. If you want to preserve files from a
build, copy them to a different location before starting another build.

20 Generating C/C++ Code from MATLAB Code

20-132

Generated Files for MEX Targets

By default, MATLAB Coder generates the following files for MEX function (mex) targets.

Type of Files Location
Platform-specific MEX files Current folder
MEX, and C/C++ source, header, and
object files

codegen/mex/function_name

HTML reports codegen/mex/function_name/html

Generated Files for C/C++ Static Library Targets

By default, MATLAB Coder generates the following files for C/C++ static library targets.

Type of Files Location
C/C++ source, library, header, and
object files

codegen/lib/function_name

HTML reports codegen/lib/function_name/html

Generated Files for C/C++ Dynamic Library Targets

By default, MATLAB Coder generates the following files for C/C++ dynamic library
targets.

Type of Files Location
C/C++ source, library, header, and
object files

codegen/dll/function_name

HTML reports codegen/dll/function_name/html

Generated Files for C/C++ Executable Targets

By default, MATLAB Coder generates the following files for C/C++ executable targets.

Type of Files Location
C/C++ source, header, and object files codegen/exe/function_name
HTML reports codegen/exe/function_name/html

 How MATLAB Coder Partitions Generated Code

20-133

Changing Names and Locations of Generated Files
Using the MATLAB Coder App

To change Action
The output file name 1 To open the Generate dialog box, on the Generate Code

page, click the Generate arrow .
2 In the Output file name field, enter the file name.

The output file location 1 To open the Generate dialog box, on the Generate Code
page, click the Generate arrow .

2 Click More Settings.
3 On the Paths tab, set Build folder to Specified

folder.
4 For the Build folder name field, either browse to the

output file location or enter the full path. The output file
location must not contain:

• Spaces (Spaces can lead to code generation failures in
certain operating system configurations).

• Tabs
• \, $, #, *, ?
• Non-7-bit ASCII characters, such as Japanese

characters.

At the Command Line

You can change the name and location of generated files by using the codegen options -o
and -d.

File Partitioning and Inlining
How MATLAB Coder partitions generated C/C++ code depends on whether you choose to
generate one C/C++ file for each MATLAB file and whether you inline your MATLAB
functions.

20 Generating C/C++ Code from MATLAB Code

20-134

If you MATLAB Coder
Generate all C/C++
functions into a single file
and disable inlining

Generates a single C/C++ file without inlining functions.

Generate all C/C++
functions into a single file
and enable inlining

Generates a single C/C++ file. Inlines functions whose
sizes fall within the inlining threshold.

Generate one C/C++ file for
each MATLAB file and
disable inlining

Partitions generated C/C++ code to match MATLAB file
structure. See “Partitioning Generated Files with One C/C
++ File Per MATLAB File” on page 20-127.

Generate one C/C++ file for
each MATLAB file and
enable inlining

Places inlined functions in the same C/C++ file as the
function into which they are inlined.

Even when you enable inlining, MATLAB Coder inlines only
those functions whose sizes fall within the inlining
threshold. For MATLAB functions that are not inlined,
MATLAB Coder partitions the generated C/C++ code, as
described.

Tradeoffs Between File Partitioning and Inlining

Weighing file partitioning against inlining represents a trade-off between readability,
efficiency, and ease of integrating your MATLAB code with existing embedded software.

If You Generate Generated C/C++
Code

Advantages Disadvantages

All C/C++ functions
into a single file

Does not match
MATLAB file
structure

Easier to integrate
with existing
embedded software

Difficult to map C/C+
+ code to original
MATLAB file

One C/C++-file for
each MATLAB file
and enable inlining

Does not exactly
match MATLAB file
structure

Program executes
faster

Difficult to map C/C+
+ code to original
MATLAB file

One C/C++-file for
each MATLAB file
and disable inlining

Matches MATLAB
file structure

Easy to map C/C++
code to original
MATLAB file

Program runs less
efficiently

 How MATLAB Coder Partitions Generated Code

20-135

How Disabling Inlining Affects File Partitioning

Inlining is enabled by default. Therefore, to generate one C/C++ file for each top-level
MATLAB function, you must:

• Select to generate one C/C++ file for each top-level MATLAB function. For more
information, see “How to Select the File Partitioning Method” on page 20-126.

• Explicitly disable inlining, either globally or for individual MATLAB functions.

How to Disable Inlining Globally Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the All Settings tab, under Function Inlining set the Inline threshold to 0.

How to Disable Inlining Globally at the Command Line

To disable inlining of functions, use the -O disable:inline option with codegen. For
example, to disable inlining and generate a MEX function for a function foo that has no
inputs:

codegen -O disable:inline foo

For more information, see the description of codegen.
How to Disable Inlining for Individual Functions

To disable inlining for an individual MATLAB function, add the directive
coder.inline('never'); on a separate line in the source MATLAB file, after the
function signature.

function y = foo(u,v) %#codegen
coder.inline('never');
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

codegen does not inline entry-point functions.

The coder.inline directive applies only to the function in which it appears. In this
example, inlining is disabled for function foo, but not for identity, a top-level function
defined in a separate MATLAB file and called by foo. To disable inlining for identity,

20 Generating C/C++ Code from MATLAB Code

20-136

add this directive after its function signature in the source file identity.m. For more
information, see coder.inline.

For a more efficient way to disable inlining for both functions, see “How to Disable
Inlining Globally at the Command Line” on page 20-136.

Correlating C/C++ Code with Inlined Functions

To correlate the C/C++ code that you generate with the original inlined functions, add
comments in the MATLAB code to identify the function. These comments will appear in
the C/C++ code and help you map the generated code back to the original MATLAB
functions.

Modifying the Inlining Threshold

To change inlining behavior, adjust the inlining threshold parameter.

Modifying the Inlining Threshold Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the All Settings tab, under Function Inlining, set the value of the Inline

threshold parameter.

Modifying the Inlining Threshold at the Command Line

Set the value of the InlineThreshold parameter of the configuration object. See
coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig.

 How MATLAB Coder Partitions Generated Code

20-137

Requirements for Signed Integer Representation
You must compile the code that is generated by the MATLAB Coder software on a target
that uses a two’s complement representation for signed integer values. The generated
code does not verify that the target uses a two’s complement representation for signed
integer values.

20 Generating C/C++ Code from MATLAB Code

20-138

Build Process Customization
For certain applications, you might want to control aspects of the build process that occur
after C/C++ source code generation but before compilation. For example, you can specify
compiler or linker options. You can get and modify all the generated source files to add a
copyright disclaimer. You can control the build process in a variety of ways. Customize the
build process by:

• Using the function coder.updateBuildInfo.
• Modifying the build information by using a coder.ExternalDependency class.
• Modifying the build information with a script or function executed by the

PostCodeGenCommand configuration property. This script or function is called a post-
code-generation command.

All three of these approaches work by altering the makefile that is generated and used to
build your code. As a best practice, it is recommended to use the first two approaches,
coder.updateBuildInfo and coder.ExternalDependency. These approaches
enable you to preconfigure your MATLAB code with the build information that you
require. Alternatively, the post-code generation command can provide an additional,
highly customizable approach, based around an independent function or script.

The coder.ExternalDependency class and the post-code-generation command provide
access to the build information object, buildInfo. You can use build information
methods on buildInfo to configure project, build, and dependency information.
MATLAB Coder creates buildInfo from the class RTW.BuildInfo at the start of the
build. This object is stored in a MAT-file buildInfo.mat and saved in the build folder.

After code generation, you can access the build information object by loading it from
buildInfo.mat. Do not confuse the build information object with the build configuration
object, coder.BuildConfig, which provides specific functionality for configuring build
within a coder.ExternalDependency class.

Build Information Methods
To access or write data to the build information object, use build information methods.
Using these methods you can modify:

• Compiler options
• Linker options

 Build Process Customization

20-139

• Preprocessor identifier definitions
• Source files and paths
• Include files and paths
• Precompiled external libraries
• Packaging options.

See “Package Code for Other Development Environments” on page 24-41.

To call the methods, use the syntax:

method_name(buildInfo,input_arg1,...,input_argN)

Alternatively, you can enter:

buildInfo.method_name(input_arg1,...,input_argN)

addCompileFlags

• Purpose: Add compiler options to build information.
• Syntax: addCompileFlags(buildinfo, options, groups)

groups is optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

options
A character vector, an array of character vectors, or a string that specifies the
compiler options to be added to the build information. The function adds each
option to the end of a compiler option vector. If you specify multiple options within
a single character array, for example '-Zi -Wall', the function adds the options
to the vector as a single element. For example, if you add '-Zi -Wall' and then
'-O3', the vector consists of two elements, as shown below.

'-Zi -Wall' '-O3'

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
compiler options. You can use groups to

20 Generating C/C++ Code from MATLAB Code

20-140

• Document the use of specific compiler options
• Retrieve or apply collections of compiler options

You can apply

• A single group name to one or more compiler options
• Multiple group names to collections of compiler options (available for
nonmakefile build environments only)

• Description:

The addCompileFlags function adds specified compiler options to the project's build
information. MATLAB Coder stores the compiler options in a vector. The function adds
options to the end of the vector based on the order in which you specify them.

addDefines

• Purpose: Add preprocessor macro definitions to build information.
• Syntax: addDefines(buildinfo, macrodefs, groups)

groups is optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

macrodefs
A character vector, an array of character vectors, or a string that specifies the
preprocessor macro definitions to be added to the object. The function adds each
definition to the end of a compiler option vector. If you specify multiple definitions
within a single character array, for example '-DRT -DDEBUG', the function adds
the options to the vector as a single element. For example, if you add '-DPROTO -
DDEBUG' and then '-DPRODUCTION', the vector consists of two elements, as
shown below.

'-DPROTO -DDEBUG' '-DPRODUCTION'

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
definitions. You can use groups to

 Build Process Customization

20-141

• Document the use of specific macro definitions
• Retrieve or apply groups of macro definitions

You can apply

• A single group name to one or more macro definitions
• Multiple group names to collections of macro definitions (available for
nonmakefile build environments only)

• Description:

The addDefines function adds specified preprocessor macro definitions to the
project's build information. The MATLAB Coder software stores the definitions in a
vector. The function adds definitions to the end of the vector based on the order in
which you specify them.

addIncludeFiles

• Purpose: Add include files to build information.
• Syntax: addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character vector, an array of character vectors, or a string that specifies names
of include files to be added to the build information.

The filename can include wildcard characters, provided that the dot delimiter (.)
is present. Examples are '*.*', '*.h', and '*.h*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate include file entries that

• You specify as input
• Already exist in the include file vector

20 Generating C/C++ Code from MATLAB Code

20-142

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.
paths (optional)

A character vector, an array of character vectors, or a string that specifies paths to
the include files. The function adds the paths to the end of a vector in the order
that you specify them. If you specify a single path as a character array, the
function uses that path for all files.

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
include files. You can use groups to

• Document the use of specific include files
• Retrieve or apply groups of include files

You can apply

• A single group name to an include file
• A single group name to multiple include files
• Multiple group names to collections of multiple include files

• Description:

The addIncludeFiles function adds specified include files to the project's build
information. The MATLAB Coder software stores the include files in a vector. The
function adds the filenames to the end of the vector in the order that you specify them.

If you choose to specify groups, but omit paths, specify a null character vector ('')
for paths.

addIncludePaths

• Purpose: Add include paths to build information.
• Syntax: addIncludePaths(buildinfo, paths, groups)

groups is optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

 Build Process Customization

20-143

paths
A character vector, an array of character vectors, or a string that specifies include
file paths to be added to the build information. The function adds the paths to the
end of a vector in the order that you specify them.

The function removes duplicate include file entries that

• You specify as input
• Already exist in the include path vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.
groups (optional)

A character vector, an array of character vectors, or a string that groups specified
include paths. You can use groups to

• Document the use of specific include paths
• Retrieve or apply groups of include paths

You can apply

• A single group name to an include path
• A single group name to multiple include paths
• Multiple group names to collections of multiple include paths

• Description:

The addIncludePaths function adds specified include paths to the project's build
information. The MATLAB Coder software stores the include paths in a vector. The
function adds the paths to the end of the vector in the order that you specify them.

addLinkFlags

• Purpose: Add link options to build information.
• Syntax: addLinkFlags(buildinfo, options, groups)

groups is optional.
• Arguments:

20 Generating C/C++ Code from MATLAB Code

20-144

buildinfo
Build information stored in RTW.BuildInfo.

options
A character vector, an array of character vectors, or a string that specifies the
linker options to be added to the build information. The function adds each option
to the end of a linker option vector. If you specify multiple options within a single
character array, for example '-MD -Gy', the function adds the options to the
vector as a single element. For example, if you add '-MD -Gy' and then '-T', the
vector consists of two elements, as shown below.

'-MD -Gy' '-T'

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
linker options. You can use groups to

• Document the use of specific linker options
• Retrieve or apply groups of linker options

You can apply

• A single group name to one or more linker options
• Multiple group names to collections of linker options (available for nonmakefile

build environments only)
• Description:

The addLinkFlags function adds specified linker options to the project's build
information. The MATLAB Coder software stores the linker options in a vector. The
function adds options to the end of the vector based on the order in which you specify
them.

addLinkObjects

• Purpose: Add link objects to build information.
• Syntax: addLinkObjects(buildinfo, linkobjs, paths, priority,

precompiled, linkonly, groups)

The arguments except buildinfo , linkobjs, and paths are optional. If you specify
an optional argument, you must specify the optional arguments preceding it.

 Build Process Customization

20-145

• Arguments:
buildinfo

Build information stored in RTW.BuildInfo.
linkobjs

A character vector, an array of character vectors, or a string that specifies the
filenames of linkable objects to be added to the build information. The function
adds the filenames that you specify in the function call to a vector that stores the
object filenames in priority order. If you specify multiple objects that have the
same priority (see priority below), the function adds them to the vector based
on the order in which you specify the object filenames in the cell array.

The function removes duplicate link objects that

• You specify as input
• Already exist in the linkable object filename vector
• Have a path that matches the path of a matching linkable object filename

A duplicate entry consists of an exact match of a path and corresponding linkable
object filename.

paths
A character vector, an array of character vectors, or a string that specifies paths to
the linkable objects. If you specify a character array, the path applies to all
linkable objects.

priority (optional)
A numeric value or vector of numeric values that indicates the relative priority of
each specified link object. Lower values have higher priority. The default priority is
1000.

precompiled (optional)
The logical value true or false or a vector of logical values that indicates
whether each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster compiling and linking
and exists in a specified location.

If precompiled is false (the default), the MATLAB Coder build process creates
the link object in the build folder.

This argument is ignored if linkonly equals true.

20 Generating C/C++ Code from MATLAB Code

20-146

linkonly (optional)
The logical value true or false or a vector of logical values that indicates
whether each specified link object is to be used only for linking.

Specify true if the MATLAB Coder build process should not build, nor generate
rules in the makefile for building, the specified link object, but should include it
when linking the final executable. For example, you can use this to incorporate
link objects for which source files are not available. If linkonly is true, the value
of precompiled is ignored.

If linkonly is false (the default), rules for building the link objects are added to
the makefile. In this case, the value of precompiled determines which subsection
of the added rules is expanded, START_PRECOMP_LIBRARIES (true) or
START_EXPAND_LIBRARIES (false). The software performs the expansion of the
START_PRECOMP_LIBRARIES or START_EXPAND_LIBRARIES macro only if your
code generation target uses the template makefile approach for building code.

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
link objects. You can use groups to

• Document the use of specific link objects
• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object
• A single group name to multiple linkable objects
• Multiple group name to collections of multiple linkable objects

The default value of groups is {''}.
• Description:

The addLinkObjects function adds specified link objects to the project's build
information. The MATLAB Coder software stores the link objects in a vector in relative
priority order. If multiple objects have the same priority or you do not specify
priorities, the function adds the objects to the vector based on the order in which you
specify them.

If you choose to specify an optional argument, you must specify the optional
arguments preceding it. For example, to specify that objects are precompiled using the

 Build Process Customization

20-147

precompiled argument, you must specify the priority argument that precedes
precompiled. You could pass the default priority value 1000, as shown below.
addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

addNonBuildFiles

• Purpose: Add nonbuild-related files to build information.
• Syntax: addNonBuildFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character vector, an array of character vectors, or a string that specifies names
of nonbuild-related files to be added to the build information.

The filename can include wildcard characters, provided that the dot delimiter (.)
is present. Examples are '*.*', '*.DLL', and '*.D*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate nonbuild file entries that

• Already exist in the nonbuild file vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.
paths (optional)

A character vector, an array of character vectors, or a string that specifies paths to
the nonbuild files. The function adds the paths to the end of a vector in the order
that you specify them. If you specify a single path as a character array, the
function uses that path for all files.

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
nonbuild files. You can use groups to

20 Generating C/C++ Code from MATLAB Code

20-148

• Document the use of specific nonbuild files
• Retrieve or apply groups of nonbuild files

You can apply

• A single group name to a nonbuild file
• A single group name to multiple nonbuild files
• Multiple group names to collections of multiple nonbuild files

• Description:

The addNonBuildFiles function adds specified nonbuild-related files, such as DLL
files required for a final executable, or a README file, to the project's build
information. The MATLAB Coder software stores the nonbuild files in a vector. The
function adds the filenames to the end of the vector in the order that you specify them.

If you choose to specify groups, but omit paths, specify a null character vector ('')
for paths.

addSourceFiles

• Purpose: Add source files to build information.
• Syntax: addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

filenames
A character vector, an array of character vectors, or a string that specifies names
of the source files to be added to the build information.

The filename can include wildcard characters, provided that the dot delimiter (.)
is present. Examples are '*.*', '*.c', and '*.c*'.

The function adds the filenames to the end of a vector in the order that you specify
them.

The function removes duplicate source file entries that

 Build Process Customization

20-149

• You specify as input
• Already exist in the source file vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.
paths (optional)

A character vector, an array of character vectors, or a string that specifies paths to
the source files. The function adds the paths to the end of a vector in the order
that you specify them. If you specify a single path as a character array, the
function uses that path for all files.

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
source files. You can use groups to

• Document the use of specific source files
• Retrieve or apply groups of source files

You can apply

• A single group name to a source file
• A single group name to multiple source files
• Multiple group names to collections of multiple source files

• Description:

The addSourceFiles function adds specified source files to the project's build
information. The MATLAB Coder software stores the source files in a vector. The
function adds the filenames to the end of the vector in the order that you specify them.

If you choose to specify groups, but omit paths, specify a null character vector ('')
for paths.

addSourcePaths

• Purpose: Add source paths to build information.
• Syntax: addSourcePaths(buildinfo, paths, groups)

groups is optional.

20 Generating C/C++ Code from MATLAB Code

20-150

• Arguments:
buildinfo

Build information stored in RTW.BuildInfo.
paths

A character vector, an array of character vectors, or a string that specifies source
file paths to be added to the build information. The function adds the paths to the
end of a vector in the order that you specify them.

The function removes duplicate source file entries that

• You specify as input
• Already exist in the source path vector
• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path and corresponding filename.

Note The MATLAB Coder software does not check whether a specified path is
valid.

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
source paths. You can use groups to

• Document the use of specific source paths
• Retrieve or apply groups of source paths

You can apply

• A single group name to a source path
• A single group name to multiple source paths
• Multiple group names to collections of multiple source paths

• Description:

The addSourcePaths function adds specified source paths to the project's build
information. The MATLAB Coder software stores the source paths in a vector. The
function adds the paths to the end of the vector in the order that you specify them.

 Build Process Customization

20-151

Note The MATLAB Coder software does not check whether a specified path is valid.

addTMFTokens

• Purpose: Add template makefile (TMF) tokens that provide build-time information for
makefile generation.

• Syntax: addTMFTokens(buildinfo, tokennames, tokenvalues, groups)

groups is optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

tokennames
A character vector, an array of character vectors, or a string that specifies names
of TMF tokens (for example, '|>CUSTOM_OUTNAME<|') to be added to the build
information. The function adds the token names to the end of a vector in the order
that you specify them.

If you specify a token name that already exists in the vector, the first instance
takes precedence and its value used for replacement.

tokenvalues
A character vector, an array of character vectors, or a string that specifies TMF
token values corresponding to the previously-specified TMF token names. The
function adds the token values to the end of a vector in the order that you specify
them.

groups (optional)
A character vector, an array of character vectors, or a string that groups specified
TMF tokens. You can use groups to

• Document the use of specific TMF tokens
• Retrieve or apply groups of TMF tokens

You can apply

• A single group name to a TMF token
• A single group name to multiple TMF tokens
• Multiple group names to collections of multiple TMF tokens

20 Generating C/C++ Code from MATLAB Code

20-152

• Description:

Call the addTMFTokens function inside a post code generation command to provide
build-time information to help customize makefile generation. The tokens specified in
the addTMFTokens function call must be handled appropriately in the template
makefile (TMF) for the target selected for your project. For example, if your post code
generation command calls addTMFTokens to add a TMF token named |
>CUSTOM_OUTNAME<| that specifies an output file name for the build, the TMF must
act on the value of |>CUSTOM_OUTNAME<| to achieve the desired result.

The addTMFTokens function adds specified TMF token names and values to the
project's build information. The MATLAB Coder software stores the TMF tokens in a
vector. The function adds the tokens to the end of the vector in the order that you
specify them.

findIncludeFiles

• Purpose: Find and add include (header) files to build information.
• Syntax: findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

extPatterns (optional)
A cell array of character vectors or string array that specifies patterns of file name
extensions for which the function is to search. Each pattern

• Must start with *.
• Can include a combination of alphanumeric and underscore (_) characters

The default pattern is *.h.

Examples of valid patterns include
*.h
*.hpp
.x

• Description:

The findIncludeFiles function

 Build Process Customization

20-153

• Searches for include files, based on specified file name extension patterns, in the
source and include paths recorded in a project's build information object

• Adds the files found, along with their full paths, to the build information object
• Deletes duplicate entries

getCompileFlags

• Purpose: Get compiler options from build information.
• Syntax: options = getCompileFlags(buildinfo, includeGroups,

excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of compiler flags
you want the function to return.

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of compiler flags
you do not want the function to return.

• Output arguments:

Compiler options stored in the project's build information.
• Description:

The getCompileFlags function returns compiler options stored in the project's build
information. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getDefines

• Purpose: Get preprocessor macro definitions from build information.
• Syntax: [macrodefs, identifiers, values] = getDefines(buildinfo,

includeGroups, excludeGroups)

20 Generating C/C++ Code from MATLAB Code

20-154

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of macro
definitions you want the function to return.

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of macro
definitions you do not want the function to return.

• Output arguments:

Preprocessor macro definitions stored in the project's build information. The function
returns the macro definitions in three vectors.

Vector Description
macrodefs Complete macro definitions with -D prefix
identifiers Names of the macros
values Values assigned to the macros (anything

specified to the right of the first equals sign) ;
the default is an empty character vector ('')

• Description:

The getDefines function returns preprocessor macro definitions stored in the
project's build information. When the function returns a definition, it automatically

• Prepends a -D to the definition if the -D was not specified when the definition was
added to the build information

• Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of definitions the function is to return.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

 Build Process Customization

20-155

getFullFileList

• Purpose: Get All files from project's build information.
• Syntax: [fPathNames, names] = getFullFileList(buildinfo, fcase)

fcase is optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

fcase (optional)
The character vector 'source', 'include', or 'nonbuild'. If the argument is
omitted, the function returns all the files from the build information object.

If You Specify The Function
'source' Returns source files from the build information

object.
'include' Returns include files from the build information

object.
'nonbuild' Returns nonbuild files from the build information

object.

• Output arguments:

Fully-qualified file paths and file names for files stored in the project's build
information.

Note Usually it is unnecessary to resolve the path of every file in the project build
information, because the makefile for the project build will resolve file locations based
on source paths and rules. Therefore, getFullFileList returns the path for each
file only if a path was explicitly associated with the file when it was added, or if you
called updateFilePathsAndExtensions to resolve file paths and extensions before
calling getFullFileList.

• Description:

The getFullFileList function returns the fully-qualified paths and names of all
files, or files of a selected type (source, include, or nonbuild), stored in the project's
build information.

20 Generating C/C++ Code from MATLAB Code

20-156

getIncludeFiles

• Purpose: Get include files from build information.
• Syntax: files = getIncludeFiles(buildinfo, concatenatePaths,

replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify The Function
true Concatenates and returns each filename with its

corresponding path.
false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify The Function
true Replaces the token $(MATLAB_ROOT) with the

absolute path for your MATLAB installation
folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of include files
you want the function to return.

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of include files
you do not want the function to return.

• Output arguments:

Names of include files stored in the project's build information.

 Build Process Customization

20-157

• Description:

The getIncludeFiles function returns the names of include files stored in the
project's build information. Use the concatenatePaths and replaceMatlabroot
arguments to control whether the function includes paths and your MATLAB root
definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of include
files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getIncludePaths

• Purpose: Get include paths from build information.
• Syntax: files=getIncludePaths(buildinfo, replaceMatlabroot,

includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify The Function
true Replaces the token $(MATLAB_ROOT) with the

absolute path for your MATLAB installation
folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of include paths
you want the function to return.

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of include paths
you do not want the function to return.

20 Generating C/C++ Code from MATLAB Code

20-158

• Output arguments:

Paths of include files stored in the build information object.
• Description:

The getIncludePaths function returns the names of include file paths stored in the
project's build information. Use the replaceMatlabroot argument to control
whether the function includes your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of include file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getLinkFlags

• Purpose: Get link options from build information.
• Syntax: options=getLinkFlags(buildinfo, includeGroups,

excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of linker flags
you want the function to return.

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of linker flags
you do not want the function to return. To exclude groups and not include specific
groups, specify an empty cell array ('') for includeGroups.

• Output arguments:

Linker options stored in the project's build information.
• Description:

 Build Process Customization

20-159

The getLinkFlags function returns linker options stored in the project's build
information. Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getNonBuildFiles

• Purpose: Get nonbuild-related files from build information.
• Syntax: files=getNonBuildFiles(buildinfo, concatenatePaths,

replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify The Function
true Concatenates and returns each filename with its

corresponding path.
false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify The Function
true Replaces the token $(MATLAB_ROOT) with the

absolute path for your MATLAB installation
folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of nonbuild files
you want the function to return.

20 Generating C/C++ Code from MATLAB Code

20-160

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of nonbuild files
you do not want the function to return.

• Output arguments:

Names of nonbuild files stored in the project's build information.
• Description:

The getNonBuildFiles function returns the names of nonbuild-related files, such as
DLL files required for a final executable, or a README file, stored in the project's
build information. Use the concatenatePaths and replaceMatlabroot arguments
to control whether the function includes paths and your MATLAB root definition in the
output it returns. Using optional includeGroups and excludeGroups arguments,
you can selectively include or exclude groups of nonbuild files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

getSourceFiles

• Purpose: Get source files from project's build information.
• Syntax: srcfiles=getSourceFiles(buildinfo, concatenatePaths,

replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify The Function
true Concatenates and returns each filename with its

corresponding path.
false Returns only filenames.

Note Usually it is unnecessary to resolve the path of every file in the project
build information, because the makefile for the project build will resolve file

 Build Process Customization

20-161

locations based on source paths and rules. Therefore, specifying true for
concatenatePaths returns the path for each file only if a path was explicitly
associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and extensions before
calling getSourceFiles.

replaceMatlabroot
The logical value true or false.

If You Specify The Function
true Replaces the token $(MATLAB_ROOT) with the

absolute path for your MATLAB installation
folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of source files
you want the function to return.

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of source files
you do not want the function to return.

• Output arguments:

Names of source files stored in the project's build information.
• Description:

The getSourceFiles function returns the names of source files stored in the
project's build information. Use the concatenatePaths and replaceMatlabroot
arguments to control whether the function includes paths and your MATLAB root
definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of source
files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

20 Generating C/C++ Code from MATLAB Code

20-162

getSourcePaths

• Purpose: Get source paths from build information.
• Syntax: files=getSourcePaths(buildinfo, replaceMatlabroot,

includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
• Input arguments:

buildinfo
Build information stored in RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify The Function
true Replaces the token $(MATLAB_ROOT) with the

absolute path for your MATLAB installation folder.
false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)
A cell array of character vectors or a string that specifies groups of source paths
you want the function to return.

excludeGroups (optional)
A cell array of character vectors or a string that specifies groups of source paths
you do not want the function to return.

• Output arguments:

Paths of source files stored in the project's build information.
• Description:

The getSourcePaths function returns the names of source file paths stored in the
project build information. Use the replaceMatlabroot argument to control whether
the function includes your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can selectively
include or exclude groups of source file paths that the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a null
character vector ('') for includeGroups.

 Build Process Customization

20-163

packNGo

• See packNGo.

updateFilePathsAndExtensions

• Purpose: Update files in project build information with missing paths and file
extensions.

• Syntax: updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.
• Arguments:

buildinfo
Build information stored in RTW.BuildInfo.

extensions (optional)
A cell array of character vectors or a string that specifies the extensions (file
types) of files for which to search and include in the update processing. By default,
the function searches for files with a .c extension. The function checks files and
updates paths and extensions based on the order in which you list the extensions
in the cell array. For example, if you specify {'.c' '.cpp'}, and a folder
contains myfile.c and myfile.cpp, an instance of myfile is updated to
myfile.c.

• Description:

Using paths that already exist in a project's build information, the
updateFilePathsAndExtensions function checks whether file references in the
build information need to be updated with a path or file extension. This function can
be particularly useful for

• Maintaining build information for a toolchain that requires the use of file
extensions

• Updating multiple customized instances of build information for a given project

updateFileSeparator

• Purpose: Change file separator used in project's build information.
• Syntax: updateFileSeparator(buildinfo, separator)
• Arguments:

20 Generating C/C++ Code from MATLAB Code

20-164

buildinfo
Build information stored in RTW.BuildInfo.

separator
A character vector that specifies the file separator \ (Windows) or / (UNIX®) to be
applied to file path specifications.

• Description:

The updateFileSeparator function changes instances of the current file separator
(/ or \) in a project's build information to the specified file separator.

The default value for the file separator matches the value returned by the MATLAB
command filesep. For makefile based builds, you can override the default by
defining a separator with the MAKEFILE_FILESEP macro in the template makefile. If
the GenerateMakefile parameter is set, the MATLAB Coder software overrides the
default separator and updates the build information after evaluating the
PostCodeGenCommand configuration parameter.

To use the build information object after code generation is complete, load the
buildInfo.mat file from your generated code. For example:

load(fullfile('.','raspberrypi_generated_code','buildInfo.mat'));
packNGo(buildInfo,{'fileName','copy_to_raspberrypi'});

coder.updateBuildInfo Function
The coder.updateBuildInfo function provides a convenient way to customize the
build process from within your MATLAB code. For more information and examples, see
the coder.updateBuildInfo reference page.

coder.ExternalDependency Class
When you are working with external code integration or you have multiple functions that
use the same build information, customize the build process by using the
coder.ExternalDependency class. The coder.ExternalDependency class provides
access to the build information object and methods. For more information and examples,
see “Develop Interface for External C/C++ Code” on page 26-14 and the
coder.ExternalDependency reference page.

 Build Process Customization

20-165

Post-Code-Generation Command
As a best practice, customize your build process by using the first two approaches,
coder.updateBuildInfo and coder.ExternalDependency. A third approach that
provides additional flexibility is a post-code-generation command. A post-code-generation
command is a function or script executed by the PostCodeGenCommand configuration
object property. Set the command by using your code generation configuration object
(coder.MexCodeConfig, coder.CodeConfig or coder.EmbeddedCodeConfig).

Command Format Result
Script Script can gain access to the project (top-

level function) name and the build
information directly.

Function Function can receive the project name and
the build information as arguments.

To write the post code-generation command as a script, set PostCodeGenCommand to the
script name. You can access the project name in the variable projectName and the
RTW.BuildInfo object in the variable buildInfo. At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'ScriptName';

When you define the command as a function, you can specify an arbitrary number of input
arguments. If you want to access the project name, include projectName as an
argument. If you want to modify or access build information, add buildInfo as an
argument. At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'FunctionName(projectName, buildInfo)';

For example, consider the function setbuildargs that takes the build information object
as a parameter and adds linker options by using the addLinkFlags method.

function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library be included
% in the build
linkFlags = {'-lpthread'};
buildInfo.addLinkFlags(linkFlags);

20 Generating C/C++ Code from MATLAB Code

20-166

To use this function as a post-code-generation command, create a configuration object.
Use this configuration object when you generate code. For example:

cfg = coder.config('dll');
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';
codegen -config cfg foo

To set a post-code-generation command from the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the Custom Code tab, set the Post-code-generation command parameter.

If your post-code-generation command calls user-defined functions, make sure that the
functions are on the MATLAB path. If the build process cannot find a function that you
use in your command, the process fails.

See Also
coder.CodeConfig | coder.EmbeddedCodeConfig | coder.ExternalDependency |
coder.MexCodeConfig | coder.updateBuildInfo

More About
• “Configure Build Settings” on page 20-28
• “Develop Interface for External C/C++ Code” on page 26-14
• “Configure Build for External C/C++ Code” on page 26-10
• “Package Code for Other Development Environments” on page 24-41

 See Also

20-167

Run-time Stack Overflow
If your C compiler reports a run-time stack overflow, set the value of the maximum stack
usage parameter to be less than the available stack size. In a project, in the project
settings dialog box Memory tab, set the Stack usage max parameter. For command-line
configuration objects (coder.MexCodeConfig, coder.CodeConfig,
coder.EmbeddedCodeConfig), set the StackUsageMax parameter.

20 Generating C/C++ Code from MATLAB Code

20-168

Pass Structure Arguments by Reference or by Value in
Generated Code

This example shows how to control whether structure arguments to generated entry-point
functions are passed by reference or by value.

Passing by reference uses a pointer to access the structure arguments. If the function
writes to an element of the input structure, it overwrites the input value. Passing by value
makes a copy of the input or output structure argument. To reduce memory usage and
execution time, use pass by reference.

If a structure argument is both an input and output, the generated entry-point function
passes the argument by reference. Generated MEX functions pass structure arguments by
reference. For MEX function output, you cannot specify that you want to pass structure
arguments by value.

Specify Pass by Reference or by Value Using the MATLAB Coder App

To open the Generate dialog box, on the Generate Code page, click the Generate
arrow.

Set the Build type to one of the following:

• Source Code
• Static Library
• Dynamic Library
• Executable

Click More Settings.

On the All Settings tab, set the Pass structures by reference to entry-point
functions option to:

• Yes, for pass by reference (default)
• No, for pass by value

Specify Pass by Reference or by Value Using the Command-Line Interface

Create a code configuration object for a static library, a dynamic library, or an executable
program. For example, create a code configuration object for a static library.

 Pass Structure Arguments by Reference or by Value in Generated Code

20-169

cfg = coder.config('lib');

Set the PassStructByReference property to:

• true, for pass by reference (default)
• false, for pass by value

For example:

cfg.PassStructByReference = true;

Pass Input Structure Argument by Reference

Write the MATLAB function my_struct_in that has an input structure argument.

function y = my_struct_in(s)
%#codegen

y = s.f;

Define a structure variable mystruct in the MATLAB® workspace.

mystruct = struct('f', 1:4);

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by reference.

cfg.PassStructByReference = true;

Generate code. Specify that the input argument has the type of the variable mystruct.

codegen -config cfg -args {mystruct} my_struct_in

View the generated C code.

type codegen/lib/my_struct_in/my_struct_in.c

/*
 * File: my_struct_in.c

20 Generating C/C++ Code from MATLAB Code

20-170

 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 14:00:39
 */

/* Include Files */
#include "my_struct_in.h"

/* Function Definitions */

/*
 * Arguments : const struct0_T *s
 * double y[4]
 * Return Type : void
 */
void my_struct_in(const struct0_T *s, double y[4])
{
 y[0] = s->f[0];
 y[1] = s->f[1];
 y[2] = s->f[2];
 y[3] = s->f[3];
}

/*
 * File trailer for my_struct_in.c
 *
 * [EOF]
 */

The generated function signature for my_struct_in is

void my_struct_in(const struct0_T *s, double y[4])

my_struct_in passes the input structure s by reference.

Pass Input Structure Argument by Value

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the input argument has the type of the variable mystruct.

codegen -config cfg -args {mystruct} my_struct_in

View the generated C code.

 Pass Structure Arguments by Reference or by Value in Generated Code

20-171

type codegen/lib/my_struct_in/my_struct_in.c

/*
 * File: my_struct_in.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 14:00:51
 */

/* Include Files */
#include "my_struct_in.h"

/* Function Definitions */

/*
 * Arguments : const struct0_T s
 * double y[4]
 * Return Type : void
 */
void my_struct_in(const struct0_T s, double y[4])
{
 y[0] = s.f[0];
 y[1] = s.f[1];
 y[2] = s.f[2];
 y[3] = s.f[3];
}

/*
 * File trailer for my_struct_in.c
 *
 * [EOF]
 */

The generated function signature for my_struct_in is

void my_struct_in(const struct0_T s, double y[4]

my_struct_in passes the input structure s by value.

Pass Output Structure Argument by Reference

Write the MATLAB function my_struct_out that has an output structure argument.

function s = my_struct_out(x)

20 Generating C/C++ Code from MATLAB Code

20-172

%#codegen

s.f = x;

Define a variable a in the MATLAB® workspace.

a = 1:4;

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by reference.

cfg.PassStructByReference = true;

Generate code. Specify that the input argument has the type of the variable a.

codegen -config cfg -args {a} my_struct_out

View the generated C code.

type codegen/lib/my_struct_out/my_struct_out.c

/*
 * File: my_struct_out.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 14:00:57
 */

/* Include Files */
#include "my_struct_out.h"

/* Function Definitions */

/*
 * Arguments : const double x[4]
 * struct0_T *s
 * Return Type : void
 */
void my_struct_out(const double x[4], struct0_T *s)

 Pass Structure Arguments by Reference or by Value in Generated Code

20-173

{
 s->f[0] = x[0];
 s->f[1] = x[1];
 s->f[2] = x[2];
 s->f[3] = x[3];
}

/*
 * File trailer for my_struct_out.c
 *
 * [EOF]
 */

The generated function signature for my_struct_out is

void my_struct_out(const double x[4], struct0_T *s)

my_struct_out passes the output structure s by reference.

Pass Output Structure Argument by Value

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the input argument has the type of the variable a.

codegen -config cfg -args {a} my_struct_out

View the generated C code.

type codegen/lib/my_struct_out/my_struct_out.c

/*
 * File: my_struct_out.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 14:01:03
 */

/* Include Files */
#include "my_struct_out.h"

/* Function Definitions */

20 Generating C/C++ Code from MATLAB Code

20-174

/*
 * Arguments : const double x[4]
 * Return Type : struct0_T
 */
struct0_T my_struct_out(const double x[4])
{
 struct0_T s;
 s.f[0] = x[0];
 s.f[1] = x[1];
 s.f[2] = x[2];
 s.f[3] = x[3];
 return s;
}

/*
 * File trailer for my_struct_out.c
 *
 * [EOF]
 */

The generated function signature for my_struct_out is

struct0_T my_struct_out(const double x[4])

my_struct_out returns an output structure.

Pass Input and Output Structure Argument by Reference

When an argument is both an input and an output, the generated C function passes the
argument by reference even when PassStructByReference is false.

Write the MATLAB function my_struct_inout that has a structure argument that is
both an input argument and an output argument.

function [y,s] = my_struct_inout(x,s)
%#codegen

y = x + sum(s.f);

Define the variable a and structure variable mystruct in the MATLAB® workspace.

 Pass Structure Arguments by Reference or by Value in Generated Code

20-175

a = 1:4;
mystruct = struct('f',a);

Create a code generation configuration object for a C static library.

cfg = coder.config('lib');

Specify that you want to pass structure arguments by value.

cfg.PassStructByReference = false;

Generate code. Specify that the first input has the type of a and the second input has the
type of mystruct.

codegen -config cfg -args {a, mystruct} my_struct_inout

View the generated C code.

type codegen/lib/my_struct_inout/my_struct_inout.c

/*
 * File: my_struct_inout.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 14:01:08
 */

/* Include Files */
#include "my_struct_inout.h"

/* Function Definitions */

/*
 * Arguments : const double x[4]
 * const struct0_T *s
 * double y[4]
 * Return Type : void
 */
void my_struct_inout(const double x[4], const struct0_T *s, double y[4])
{
 double b_y;
 b_y = ((s->f[0] + s->f[1]) + s->f[2]) + s->f[3];
 y[0] = x[0] + b_y;
 y[1] = x[1] + b_y;

20 Generating C/C++ Code from MATLAB Code

20-176

 y[2] = x[2] + b_y;
 y[3] = x[3] + b_y;
}

/*
 * File trailer for my_struct_inout.c
 *
 * [EOF]
 */

The generated function signature for my_struct_inout is

void my_struct_inout(const double x[4], const struct0_T *s, double y[4])

my_struct_inout passes the structure s by reference even though
PassStructByReference is false.

See Also

More About
• “Structure Definition for Code Generation” on page 7-2

 See Also

20-177

Name the C Structure Type to Use With a Global
Structure Variable

This example shows how to name the C structure type to use in code generated for a
global structure.

To name the C structure type to use for a structure variable, you use
coder.cstructname. However, you cannot apply coder.cstructname directly to a
global variable inside a function. Instead, specify the C structure type name in one of
these ways:

• At the command line, use coder.cstructname to create a type object that names the
C structure type. When you run codegen, specify that the global variable has that
type.

• In the MATLAB® Coder™ app, after you define and initialize a global variable, specify
the C structure type name in the structure properties dialog box.

You can also use these approaches to name the C structure type for a global cell array.

Write a MATLAB Function That Uses a Global Variable

Write a MATLAB® function getmyfield that returns field a of global variable g.

type getmyfield

function y = getmyfield()
% Copyright 2018 The MathWorks, Inc.
%#codegen

global g;
y = g.a;
end

Specify the C Structure Type Name at the Command Line
1 Define and initialize a global structure g.
2 Use coder.cstructname to create a type object T that has the properties of g and

names the generated C structure type mytype.
3 Generate code for getmyfield, specifying that g is a global variable with the type T.

global g
g = struct('a',5);

20 Generating C/C++ Code from MATLAB Code

20-178

T = coder.cstructname(g,'mytype');
codegen -config:lib -globals {'g',T} getmyfield

In the generated code, g has the type mytype.

mytype g;

The generated C structure type mytype is:

typedef struct {
 double a;
} mytype;

Specify the C Structure Type Name in the MATLAB Coder App

1 Open the MATLAB Coder app and specify that you want to generate code for
getmyfields.

2 On the Define Input Types page, Click Add global.
3 Click the field next to the global variable g. Then, click Define Initial Value.
4 Enter struct('a',5).
5 To specify the C structure type name to use for g, click the gear icon.
6 In the Properties dialog box, next to C type definition name, enter mytype.

Alternatively, if you defined g or a type object for g in the workspace, you can enter g or
the type object as the initial value.

See Also
coder.cstructname

 See Also

20-179

More About
• “Structure Definition for Code Generation” on page 7-2
• “Generate Code for Global Data” on page 20-102
• “Specify Cell Array Inputs at the Command Line” on page 20-59

20 Generating C/C++ Code from MATLAB Code

20-180

Generate Code for an LED Control Function That Uses
Enumerated Types

This example shows how to generate code for a function that uses enumerated types. In
this example, the enumerated types inherit from base type int32. The base type can be
int8, uint8, int16, uint16, or int32.

Define the enumerated type sysMode. Store it in sysMode.m on the MATLAB path.

classdef sysMode < int32
 enumeration
 OFF(0),
 ON(1)
 end
end

Define the enumerated type LEDcolor. Store it in LEDcolor.m on the MATLAB path.

classdef LEDcolor < int32
 enumeration
 GREEN(1),
 RED(2)
 end
end

Define the function displayState, which uses enumerated data to activate an LED
display, based on the state of a device. displayState lights a green LED display to
indicate the ON state. It lights a red LED display to indicate the OFF state.

function led = displayState(state)
%#codegen

if state == sysMode.ON
 led = LEDcolor.GREEN;
else
 led = LEDcolor.RED;
end

 Generate Code for an LED Control Function That Uses Enumerated Types

20-181

Generate a MEX function for displayState. Specify that displayState takes one
input argument that has an enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

Test the MEX function.

displayState_mex(sysMode.OFF)

ans =

 LEDcolor enumeration

 RED

Generate a static library for the function displayState. Specify that displayState
takes one input argument that has an enumerated data type sysMode.

codegen -config:lib displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState. It generates
supporting files in the default folder, codegen/lib/displayState.

View the header file displayState_types.h.

type codegen/lib/displayState/displayState_types.h

/*
 * File: displayState_types.h
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 14:01:20
 */

#ifndef DISPLAYSTATE_TYPES_H
#define DISPLAYSTATE_TYPES_H

/* Include Files */
#include "rtwtypes.h"

20 Generating C/C++ Code from MATLAB Code

20-182

/* Type Definitions */
#ifndef enum_LEDcolor
#define enum_LEDcolor

enum LEDcolor
{
 GREEN = 1, /* Default value */
 RED
};

#endif /*enum_LEDcolor*/

#ifndef typedef_LEDcolor
#define typedef_LEDcolor

typedef enum LEDcolor LEDcolor;

#endif /*typedef_LEDcolor*/

#ifndef enum_sysMode
#define enum_sysMode

enum sysMode
{
 OFF = 0, /* Default value */
 ON
};

#endif /*enum_sysMode*/

#ifndef typedef_sysMode
#define typedef_sysMode

typedef enum sysMode sysMode;

#endif /*typedef_sysMode*/
#endif

/*
 * File trailer for displayState_types.h
 *
 * [EOF]
 */

 Generate Code for an LED Control Function That Uses Enumerated Types

20-183

The enumerated type LEDcolor is represented as a C enumerated type because the base
type in the class definition for LEDcolor is int32. When the base type is int8, uint8,
int16, or uint16, the code generator produces a typedef for the enumerated type. It
produces #define statements for the enumerated type values. For example:

typedef short LEDcolor;
#define GREEN ((LEDcolor)1)
#define RED ((LEDcolor)2)

See Also

More About
• “Code Generation for Enumerations” on page 9-2
• “Customize Enumerated Types in Generated Code” on page 9-8

20 Generating C/C++ Code from MATLAB Code

20-184

Generate Code That Uses N-Dimensional Indexing
By default, the code generator uses one-dimensional indexing for arrays. The code
generator creates one-dimensional arrays in C/C++ code for N-dimensional arrays in
MATLAB code. You can use N-dimensional indexing to improve readability and adapt the
interface to your generated code. For example, the three-dimensional MATLAB array:

A = zeros(2,4,6)

becomes:

A[48]

in the generated C/C++ code, by default. The original dimension data for the array is not
preserved. With N-dimensional indexing, the code generator produces:

A[6][4][2]

The order of the indices is reversed because MATLAB generates code that uses column-
major array layout by default. To switch the order of the indices, you can enable row-
major array layout.

Conversion of an N-dimensional array to one dimension is also called array flattening. In
computer memory, all data is stored in terms of one-dimensional arrays. The choice of
indexing does not change computation results. However, if your code has inputs or
outputs that are arrays, the interface to your generated code can change.

To enable N-dimensional indexing:

• Use the -preservearraydims option:

codegen foo -preservearraydims

• Set the PreserveArrayDimensions property for your code generation configuration
object to true. For example:

cfg = coder.config('lib');
cfg.PreserveArrayDimensions = true;
codegen foo -config cfg

To enable N-dimensional indexing from the MATLAB CoderApp:

• Navigate to the Generate Code page in the code generation workflow.

 Generate Code That Uses N-Dimensional Indexing

20-185

• Open the Generate dialog box by clicking the Generate arrow .
• Click More Settings.
• On the Memory tab, select the Preserve array dimensions check box.

Improve Readability with N-Dimensional Indexing and Row-
Major Layout
N-dimensional indexing can make it easier for you to trace your generated C/C++ code
back to your MATLAB code. The code generator preserves the dimensions of the original
arrays, rather than converting arrays to one dimension. Furthermore, you can specify
row-major layout to make the code appearance even more intuitive.

Consider the MATLAB function addMatrices, which adds two matrices, element by
element:

function sum = addMatrices(A,B)
%#codegen
sum = coder.nullcopy(A);
for row = 1:size(A,1)
 for col = 1:size(A,2)
 sum(row,col) = A(row,col) + B(row,col);
 end
end

Generate code for addMatrices so that it operates on 2-by-4 arrays. Enable N-
dimensional indexing and row-major array layout:

cfg = coder.config('lib');
cfg.PreserveArrayDimensions = true;
cfg.RowMajor = true;
codegen addMatrices -args {ones(2,4),ones(2,4)} -config cfg -launchreport

Code generation produces code with explicit two-dimensional array indexing:

/* N-d indexing on, row-major on */
void addMatrices(double A[2][4], double B[2][4], double sum[2][4])
{
 int row;
 int col;
 for (row = 0; row < 2; row++) {
 for (col = 0; col < 4; col++) {
 sum[row][col] = A[row][col] + B[row][col];

20 Generating C/C++ Code from MATLAB Code

20-186

 }
 }
}

The generated code for addMatrices uses the same two-dimensional indexing as the
original MATLAB code. You can easily analyze the generated code in comparison with the
original algorithm. To understand how to use row-major layout, see “Generate Code That
Uses Row-Major Array Layout” on page 30-4.

Column-Major Layout and N-Dimensional Indexing
The choice of array layout affects the appearance of N-dimensional indexing. For
example, generate code for the addMatrices function using column-major array layout:

cfg.RowMajor = false;
codegen addMatrices -args {ones(2,4),ones(2,4)} -config cfg -launchreport

Code generation produces this C code:

/* N-d indexing on, row-major off */
void addMatrices(double A[4][2], double B[4][2], double sum[4][2])
{
 int row;
 int col;
 for (row = 0; row < 2; row++) {
 for (col = 0; col < 4; col++) {
 sum[col][row] = A[col][row] + B[col][row];
 }
 }
}

The input and output matrices in the C code are transposes of the original MATLAB
matrices. To understand why, consider how arrays are represented in computer memory.
The MATLAB language uses column-major layout by default, where the elements from the
first (leftmost) dimension or index are contiguous in memory. C uses row-major array
layout by default, where elements from the last (rightmost) dimension or index are
contiguous. To preserve the original element adjacency, the code generator must reverse
the order of the array dimensions.

For example, in this case, if you define the MATLAB matrix A as:

A=reshape(1:8,2,4)

or

 Generate Code That Uses N-Dimensional Indexing

20-187

A =
 1 3 5 7
 2 4 6 8

then, because MATLAB uses column-major layout, the data is internally stored in the
order:

A(:)' =
 1 2 3 4 5 6 7 8

In C code, you must transpose the original data, for this example, call it AA:

AA = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};

to attain the list of data elements with the same internal storage order. In other words,
the C array must be 4-by-2. (You can obtain an equivalent storage order by defining the
array as a 2-by-4, with AA = {{1, 2, 3, 4}, {5, 6, 7, 8}}. However, obtaining
this order requires a manual reshape or rearrangement of the data.)

The choice of array layout affects only internal data representation and does not change
computational or algorithmic results. To preserve the intuitive appearance of MATLAB
arrays in generated code, use N-dimensional indexing with row-major array layout. Note
that row-major layout can affect the efficiency of your generated code. For more
information, see “Code Design for Row-Major Array Layout” on page 30-16.

Other Code Generation Considerations
Consider other aspects of N-dimensional indexing. The code generator always produces
one-dimensional arrays for N-dimensional vectors, even when you specify N-dimensional
indexing. For example, if you generate code for a MATLAB vector:

A = zeros(1,10)

or

A = zeros(1,10,1)

the resulting C/C++ arrays are stored as:

A[10]

N-dimensional indexing also applies to arrays and structures. For example, if you declare
structures in your code as:

20 Generating C/C++ Code from MATLAB Code

20-188

x = struct('f1', ones(2,3));
coder.cstructname(x,'myStruct1');
y = struct('f2', ones(1,6,1));
coder.cstructname(y,'myStruct2');

then the generated code contains the structure definitions:

typedef struct {
 double f1[2][3];
} myStruct1;
typedef struct {
 double f2[6];
} myStruct2;

Avoid linear indexing on N-dimensional arrays. Linear indexing occurs, for example, when
you use the colon operator:

A(:)

To apply linear indexing, the code generator must cast an N-dimensional array into a one-
dimensional array. Casting operations make your code more complex for the code
generator to analyze. This increased complexity can hinder the ability of the code
generator to optimize for performance.

Last, note the following:

• You can use N-dimensional indexing for arrays of any data type.
• Only fixed-size arrays, and not variable-size arrays, can use N-dimensional indexing.

See Also
codegen | coder.cstructname | reshape

More About
• “Generate Code That Uses Row-Major Array Layout” on page 30-4
• “Code Design for Row-Major Array Layout” on page 30-16
• “Code Generation for Variable-Size Arrays” on page 6-2
• “Preserve Variable Names in Generated Code” on page 20-46

 See Also

20-189

Edge Detection on Images
This example shows how to generate a standalone C library from MATLAB code that
implements a simple Sobel filter that performs edge detection on images. The example
also shows how to generate and test a MEX function in MATLAB prior to generating C
code to verify that the MATLAB code is suitable for code generation.

About the sobel Function

The sobel.m function takes an image (represented as a double matrix) and a threshold
value and returns an image with the edges detected (based on the threshold value).

type sobel

% edgeImage = sobel(originalImage, threshold)
% Sobel edge detection. Given a normalized image (with double values)
% return an image where the edges are detected w.r.t. threshold value.
function edgeImage = sobel(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = [1 2 1; 0 0 0; -1 -2 -1];
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Generate the MEX Function

Generate a MEX function using the codegen command.

codegen sobel

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\mex\sobel\html\report.mldatx').

Before generating C code, you should first test the MEX function in MATLAB to ensure
that it is functionally equivalent to the original MATLAB code and that no run-time errors
occur. By default, codegen generates a MEX function named sobel_mex in the current
folder. This allows you to test the MATLAB code and MEX function and compare the
results.

20 Generating C/C++ Code from MATLAB Code

20-190

Read in the Original Image

Use the standard imread command.

im = imread('hello.jpg');
image(im);

Convert Image to a Grayscale Version

Convert the color image (shown above) to an equivalent grayscale image with normalized
values (0.0 for black, 1.0 for white).

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

 Edge Detection on Images

20-191

Run the MEX Function (The Sobel Filter)

Pass the normalized image and a threshold value.

edgeIm = sobel_mex(gray, 0.7);

Display the Result

im3 = repmat(edgeIm, [1 1 3]);
image(im3);

Generate Standalone C Code

codegen -config coder.config('lib') sobel

20 Generating C/C++ Code from MATLAB Code

20-192

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\lib\sobel\html\report.mldatx').

Using codegen with the -config coder.config('lib') option produces a
standalone C library. By default, the code generated for the library is in the folder
codegen/lib/sobel/.

Inspect the Generated Function
type codegen/lib/sobel/sobel.c

/*
 * File: sobel.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 12:55:50
 */

/* Include Files */
#include "sobel.h"
#include "sobel_emxutil.h"
#include "sqrt.h"
#include "conv2.h"

/* Function Definitions */

/*
 * Arguments : const emxArray_real_T *originalImage
 * double threshold
 * emxArray_uint8_T *edgeImage
 * Return Type : void
 */
void sobel(const emxArray_real_T *originalImage, double threshold,
 emxArray_uint8_T *edgeImage)
{
 emxArray_real_T *H;
 emxArray_real_T *V;
 int i0;
 int loop_ub;
 emxInit_real_T(&H, 2);
 emxInit_real_T(&V, 2);

 /* edgeImage = sobel(originalImage, threshold) */
 /* Sobel edge detection. Given a normalized image (with double values) */

 Edge Detection on Images

20-193

 /* return an image where the edges are detected w.r.t. threshold value. */
 conv2(originalImage, H);
 b_conv2(originalImage, V);
 i0 = H->size[0] * H->size[1];
 loop_ub = H->size[0] * H->size[1];
 emxEnsureCapacity_real_T(H, loop_ub);
 loop_ub = i0 - 1;
 for (i0 = 0; i0 <= loop_ub; i0++) {
 H->data[i0] = H->data[i0] * H->data[i0] + V->data[i0] * V->data[i0];
 }

 emxFree_real_T(&V);
 b_sqrt(H);
 i0 = edgeImage->size[0] * edgeImage->size[1];
 edgeImage->size[0] = H->size[0];
 edgeImage->size[1] = H->size[1];
 emxEnsureCapacity_uint8_T(edgeImage, i0);
 loop_ub = H->size[0] * H->size[1];
 for (i0 = 0; i0 < loop_ub; i0++) {
 edgeImage->data[i0] = (unsigned char)((H->data[i0] > threshold) * 255U);
 }

 emxFree_real_T(&H);
}

/*
 * File trailer for sobel.c
 *
 * [EOF]
 */

20 Generating C/C++ Code from MATLAB Code

20-194

C Code Generation for a MATLAB Kalman Filtering
Algorithm

This example shows how to generate C code for a MATLAB Kalman filter function,
kalmanfilter, which estimates the position of a moving object based on past noisy
measurements. It also shows how to generate a MEX function for this MATLAB code to
increase the execution speed of the algorithm in MATLAB.

Prerequisites

There are no prerequisites for this example.

About the kalmanfilter Function

The kalmanfilter function predicts the position of a moving object based on its past
values. It uses a Kalman filter estimator, a recursive adaptive filter that estimates the
state of a dynamic system from a series of noisy measurements. Kalman filtering has a
broad range of application in areas such as signal and image processing, control design,
and computational finance.

About the Kalman Filter Estimator Algorithm

The Kalman estimator computes the position vector by computing and updating the
Kalman state vector. The state vector is defined as a 6-by-1 column vector that includes
position (x and y), velocity (Vx Vy), and acceleration (Ax and Ay) measurements in a 2-
dimensional Cartesian space. Based on the classical laws of motion:

The iterative formula capturing these laws are reflected in the Kalman state transition
matrix "A". Note that by writing about 10 lines of MATLAB code, you can implement the
Kalman estimator based on the theoretical mathematical formula found in many adaptive
filtering textbooks.

type kalmanfilter.m

 C Code Generation for a MATLAB Kalman Filtering Algorithm

20-195

% Copyright 2010 The MathWorks, Inc.
function y = kalmanfilter(z)
%#codegen
dt=1;
% Initialize state transition matrix
A=[1 0 dt 0 0 0;... % [x]
 0 1 0 dt 0 0;... % [y]
 0 0 1 0 dt 0;... % [Vx]
 0 0 0 1 0 dt;... % [Vy]
 0 0 0 0 1 0 ;... % [Ax]
 0 0 0 0 0 1]; % [Ay]
H = [1 0 0 0 0 0; 0 1 0 0 0 0]; % Initialize measurement matrix
Q = eye(6);
R = 1000 * eye(2);
persistent x_est p_est % Initial state conditions
if isempty(x_est)
 x_est = zeros(6, 1); % x_est=[x,y,Vx,Vy,Ax,Ay]'
 p_est = zeros(6, 6);
end
% Predicted state and covariance
x_prd = A * x_est;
p_prd = A * p_est * A' + Q;
% Estimation
S = H * p_prd' * H' + R;
B = H * p_prd';
klm_gain = (S \ B)';
% Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);
p_est = p_prd - klm_gain * H * p_prd;
% Compute the estimated measurements
y = H * x_est;
end % of the function

Load Test Data

The position of the object to track are recorded as x and y coordinates in a Cartesian
space in a MAT file called position_data.mat. The following code loads the MAT file
and plots the trace of the positions. The test data includes two sudden shifts or
discontinuities in position which are used to check that the Kalman filter can quickly re-
adjust and track the object.

load position_data.mat
hold; grid;

Current plot held

20 Generating C/C++ Code from MATLAB Code

20-196

for idx = 1: numPts
z = position(:,idx);
plot(z(1), z(2), 'bx');
axis([-1 1 -1 1]);
end
title('Test vector for the Kalman filtering with 2 sudden discontinuities ');
xlabel('x-axis');ylabel('y-axis');
hold;

Current plot released

 C Code Generation for a MATLAB Kalman Filtering Algorithm

20-197

Inspect and Run the ObjTrack Function

The ObjTrack.m function calls the Kalman filter algorithm and plots the trajectory of the
object in blue and the Kalman filter estimated position in green. Initially, you see that it
takes a short time for the estimated position to converge with the actual position of the
object. Then, three sudden shifts in position occur. Each time the Kalman filter readjusts
and tracks the object after a few iterations.

type ObjTrack

% Copyright 2010 The MathWorks, Inc.
function ObjTrack(position)
%#codegen
% First, setup the figure
numPts = 300; % Process and plot 300 samples
figure;hold;grid; % Prepare plot window
% Main loop
for idx = 1: numPts
 z = position(:,idx); % Get the input data
 y = kalmanfilter(z); % Call Kalman filter to estimate the position
 plot_trajectory(z,y); % Plot the results
end
hold;
end % of the function

ObjTrack(position)

20 Generating C/C++ Code from MATLAB Code

20-198

Current plot held
Current plot released

Generate C Code

The codegen command with the -config:lib option generates C code packaged as a
standalone C library.

Because C uses static typing, codegen must determine the properties of all variables in
the MATLAB files at compile time. Here, the -args command-line option supplies an
example input so that codegen can infer new types based on the input types.

 C Code Generation for a MATLAB Kalman Filtering Algorithm

20-199

The -report option generates a compilation report that contains a summary of the
compilation results and links to generated files. After compiling the MATLAB code,
codegen provides a hyperlink to this report.

z = position(:,1);
codegen -config:lib -report -c kalmanfilter.m -args {z}

Code generation successful: To view the report, open('codegen\lib\kalmanfilter\html\report.mldatx').

Inspect the Generated Code

The generated C code is in the codegen/lib/kalmanfilter/ folder. The files are:

dir codegen/lib/kalmanfilter/

. kalmanfilter_rtw.bat

.. kalmanfilter_rtw.mk
buildInfo.mat kalmanfilter_rtw.rsp
codeInfo.mat kalmanfilter_rtw_comp.rsp
codedescriptor.dmr kalmanfilter_rtw_ref.rsp
examples kalmanfilter_terminate.c
html kalmanfilter_terminate.h
interface kalmanfilter_types.h
kalmanfilter.c rtw_proj.tmw
kalmanfilter.h rtwtypes.h
kalmanfilter_initialize.c setup_msvc150.bat
kalmanfilter_initialize.h
kalmanfilter_ref.rsp

Inspect the C Code for the kalmanfilter.c Function

type codegen/lib/kalmanfilter/kalmanfilter.c

/*
 * File: kalmanfilter.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 12:58:03
 */

/* Include Files */
#include <math.h>
#include <string.h>
#include "kalmanfilter.h"

20 Generating C/C++ Code from MATLAB Code

20-200

/* Variable Definitions */
static double x_est[6];
static double p_est[36];

/* Function Definitions */

/*
 * Arguments : const double z[2]
 * double y[2]
 * Return Type : void
 */
void kalmanfilter(const double z[2], double y[2])
{
 int i0;
 signed char Q[36];
 int k;
 double x_prd[6];
 int i1;
 double d0;
 int r1;
 double S[4];
 int r2;
 double a[36];
 static const signed char b[36] = { 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1,
 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };

 double B[12];
 double p_prd[36];
 double a21;
 static const signed char b_a[36] = { 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1 };

 double a22_tmp;
 double a22;
 static const signed char b_b[12] = { 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 };

 static const signed char c_a[12] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 };

 static const short R[4] = { 1000, 0, 0, 1000 };

 double d1;
 double Y[12];
 double b_z[2];

 C Code Generation for a MATLAB Kalman Filtering Algorithm

20-201

 /* Copyright 2010 The MathWorks, Inc. */
 /* Initialize state transition matrix */
 /* % [x] */
 /* % [y] */
 /* % [Vx] */
 /* % [Vy] */
 /* % [Ax] */
 /* [Ay] */
 /* Initialize measurement matrix */
 for (i0 = 0; i0 < 36; i0++) {
 Q[i0] = 0;
 }

 /* Initial state conditions */
 /* Predicted state and covariance */
 for (k = 0; k < 6; k++) {
 Q[k + 6 * k] = 1;
 x_prd[k] = 0.0;
 for (i0 = 0; i0 < 6; i0++) {
 r1 = k + 6 * i0;
 a[r1] = 0.0;
 d0 = 0.0;
 for (i1 = 0; i1 < 6; i1++) {
 d0 += (double)b_a[k + 6 * i1] * p_est[i1 + 6 * i0];
 }

 a[r1] = d0;
 x_prd[k] += (double)b_a[r1] * x_est[i0];
 }
 }

 for (i0 = 0; i0 < 6; i0++) {
 for (i1 = 0; i1 < 6; i1++) {
 d0 = 0.0;
 for (r2 = 0; r2 < 6; r2++) {
 d0 += a[i0 + 6 * r2] * (double)b[r2 + 6 * i1];
 }

 r1 = i0 + 6 * i1;
 p_prd[r1] = d0 + (double)Q[r1];
 }
 }

 /* Estimation */

20 Generating C/C++ Code from MATLAB Code

20-202

 for (i0 = 0; i0 < 2; i0++) {
 for (i1 = 0; i1 < 6; i1++) {
 r1 = i0 + (i1 << 1);
 B[r1] = 0.0;
 d0 = 0.0;
 for (r2 = 0; r2 < 6; r2++) {
 d0 += (double)c_a[i0 + (r2 << 1)] * p_prd[i1 + 6 * r2];
 }

 B[r1] = d0;
 }

 for (i1 = 0; i1 < 2; i1++) {
 d0 = 0.0;
 for (r2 = 0; r2 < 6; r2++) {
 d0 += B[i0 + (r2 << 1)] * (double)b_b[r2 + 6 * i1];
 }

 r1 = i0 + (i1 << 1);
 S[r1] = d0 + (double)R[r1];
 }
 }

 if (fabs(S[1]) > fabs(S[0])) {
 r1 = 1;
 r2 = 0;
 } else {
 r1 = 0;
 r2 = 1;
 }

 a21 = S[r2] / S[r1];
 a22_tmp = S[2 + r1];
 a22 = S[2 + r2] - a21 * a22_tmp;
 for (k = 0; k < 6; k++) {
 i0 = k << 1;
 d0 = B[r1 + i0];
 d1 = (B[r2 + i0] - d0 * a21) / a22;
 Y[1 + i0] = d1;
 Y[i0] = (d0 - d1 * a22_tmp) / S[r1];
 }

 for (i0 = 0; i0 < 2; i0++) {
 for (i1 = 0; i1 < 6; i1++) {

 C Code Generation for a MATLAB Kalman Filtering Algorithm

20-203

 B[i1 + 6 * i0] = Y[i0 + (i1 << 1)];
 }
 }

 /* Estimated state and covariance */
 for (i0 = 0; i0 < 2; i0++) {
 d0 = 0.0;
 for (i1 = 0; i1 < 6; i1++) {
 d0 += (double)c_a[i0 + (i1 << 1)] * x_prd[i1];
 }

 b_z[i0] = z[i0] - d0;
 }

 for (i0 = 0; i0 < 6; i0++) {
 d0 = B[i0 + 6];
 x_est[i0] = x_prd[i0] + (B[i0] * b_z[0] + d0 * b_z[1]);
 for (i1 = 0; i1 < 6; i1++) {
 r1 = i0 + 6 * i1;
 a[r1] = 0.0;
 r2 = i1 << 1;
 a[r1] = B[i0] * (double)c_a[r2] + d0 * (double)c_a[1 + r2];
 }

 for (i1 = 0; i1 < 6; i1++) {
 d0 = 0.0;
 for (r2 = 0; r2 < 6; r2++) {
 d0 += a[i0 + 6 * r2] * p_prd[r2 + 6 * i1];
 }

 r1 = i0 + 6 * i1;
 p_est[r1] = p_prd[r1] - d0;
 }
 }

 /* Compute the estimated measurements */
 for (i0 = 0; i0 < 2; i0++) {
 y[i0] = 0.0;
 d0 = 0.0;
 for (i1 = 0; i1 < 6; i1++) {
 d0 += (double)c_a[i0 + (i1 << 1)] * x_est[i1];
 }

 y[i0] = d0;

20 Generating C/C++ Code from MATLAB Code

20-204

 }

 /* of the function */
}

/*
 * Arguments : void
 * Return Type : void
 */
void kalmanfilter_init(void)
{
 int i;
 for (i = 0; i < 6; i++) {
 x_est[i] = 0.0;
 }

 /* x_est=[x,y,Vx,Vy,Ax,Ay]' */
 memset(&p_est[0], 0, 36U * sizeof(double));
}

/*
 * File trailer for kalmanfilter.c
 *
 * [EOF]
 */

Accelerate the Execution Speed of the MATLAB Algorithm

You can accelerate the execution speed of the kalmanfilter function that is processing
a large data set by using the codegen command to generate a MEX function from the
MATLAB code.

Call the kalman_loop Function to Process Large Data Sets

First, run the Kalman algorithm with a large number of data samples in MATLAB. The
kalman_loop function runs the kalmanfilter function in a loop. The number of loop
iterations is equal to the second dimension of the input to the function.

type kalman_loop

% Copyright 2010 The MathWorks, Inc.
function y=kalman_loop(z)
% Call Kalman estimator in the loop for large data set testing
%#codegen
[DIM, LEN]=size(z);

 C Code Generation for a MATLAB Kalman Filtering Algorithm

20-205

y=zeros(DIM,LEN); % Initialize output
for n=1:LEN % Output in the loop
 y(:,n)=kalmanfilter(z(:,n));
end;

Baseline Execution Speed Without Compilation

Now time the MATLAB algorithm. Use the randn command to generate random numbers
and create the input matrix position composed of 100,000 samples of (2x1) position
vectors. Remove all MEX files from the current folder. Use the MATLAB stopwatch timer
(tic and toc commands) to measure how long it takes to process these samples when
running the kalman_loop function.

clear mex
delete(['*.' mexext])
position = randn(2,100000);
tic, kalman_loop(position); a=toc;

Generate a MEX Function for Testing

Next, generate a MEX function using the command codegen followed by the name of the
MATLAB function kalman_loop. The codegen command generates a MEX function
called kalman_loop_mex. You can then compare the execution speed of this MEX
function with that of the original MATLAB algorithm.

codegen -args {position} kalman_loop.m
which kalman_loop_mex

C:\TEMP\Bdoc18b_943130_7372\ib632619\12\tp5c759800\coder-ex53054096\kalman_loop_mex.mexw64

Time the MEX Function

Now, time the MEX function kalman_loop_mex. Use the same signal position as
before as the input, to ensure a fair comparison of the execution speed.

tic, kalman_loop_mex(position); b=toc;

Comparison of the Execution Speeds

Notice the speed execution difference using a generated MEX function.

display(sprintf('The speedup is %.1f times using the generated MEX over the baseline MATLAB function.',a/b));

The speedup is 40.1 times using the generated MEX over the baseline MATLAB function.

20 Generating C/C++ Code from MATLAB Code

20-206

Portfolio Optimization (Black Litterman Approach)
This example shows how to generate a MEX function and C source code from MATLAB
code that performs portfolio optimization using the Black Litterman approach.

Prerequisites

There are no prerequisites for this example.

About the hlblacklitterman Function

The hlblacklitterman.m function reads in financial information regarding a portfolio
and performs portfolio optimization using the Black Litterman approach.

type hlblacklitterman

function [er, ps, w, pw, lambda, theta] = hlblacklitterman(delta, weq, sigma, tau, P, Q, Omega)%#codegen
% hlblacklitterman
% This function performs the Black-Litterman blending of the prior
% and the views into a new posterior estimate of the returns as
% described in the paper by He and Litterman.
% Inputs
% delta - Risk tolerance from the equilibrium portfolio
% weq - Weights of the assets in the equilibrium portfolio
% sigma - Prior covariance matrix
% tau - Coefficiet of uncertainty in the prior estimate of the mean (pi)
% P - Pick matrix for the view(s)
% Q - Vector of view returns
% Omega - Matrix of variance of the views (diagonal)
% Outputs
% Er - Posterior estimate of the mean returns
% w - Unconstrained weights computed given the Posterior estimates
% of the mean and covariance of returns.
% lambda - A measure of the impact of each view on the posterior estimates.
% theta - A measure of the share of the prior and sample information in the
% posterior precision.

% Reverse optimize and back out the equilibrium returns
% This is formula (12) page 6.
pi = weq * sigma * delta;
% We use tau * sigma many places so just compute it once
ts = tau * sigma;
% Compute posterior estimate of the mean
% This is a simplified version of formula (8) on page 4.

 Portfolio Optimization (Black Litterman Approach)

20-207

er = pi' + ts * P' * inv(P * ts * P' + Omega) * (Q - P * pi');
% We can also do it the long way to illustrate that d1 + d2 = I
d = inv(inv(ts) + P' * inv(Omega) * P);
d1 = d * inv(ts);
d2 = d * P' * inv(Omega) * P;
er2 = d1 * pi' + d2 * pinv(P) * Q;
% Compute posterior estimate of the uncertainty in the mean
% This is a simplified and combined version of formulas (9) and (15)
ps = ts - ts * P' * inv(P * ts * P' + Omega) * P * ts;
posteriorSigma = sigma + ps;
% Compute the share of the posterior precision from prior and views,
% then for each individual view so we can compare it with lambda
theta=zeros(1,2+size(P,1));
theta(1,1) = (trace(inv(ts) * ps) / size(ts,1));
theta(1,2) = (trace(P'*inv(Omega)*P* ps) / size(ts,1));
for i=1:size(P,1)
 theta(1,2+i) = (trace(P(i,:)'*inv(Omega(i,i))*P(i,:)* ps) / size(ts,1));
end
% Compute posterior weights based solely on changed covariance
w = (er' * inv(delta * posteriorSigma))';
% Compute posterior weights based on uncertainty in mean and covariance
pw = (pi * inv(delta * posteriorSigma))';
% Compute lambda value
% We solve for lambda from formula (17) page 7, rather than formula (18)
% just because it is less to type, and we've already computed w*.
lambda = pinv(P)' * (w'*(1+tau) - weq)';
end

% Black-Litterman example code for MatLab (hlblacklitterman.m)
% Copyright (c) Jay Walters, blacklitterman.org, 2008.
%
% Redistribution and use in source and binary forms,
% with or without modification, are permitted provided
% that the following conditions are met:
%
% Redistributions of source code must retain the above
% copyright notice, this list of conditions and the following
% disclaimer.
%
% Redistributions in binary form must reproduce the above
% copyright notice, this list of conditions and the following
% disclaimer in the documentation and/or other materials
% provided with the distribution.
%

20 Generating C/C++ Code from MATLAB Code

20-208

% Neither the name of blacklitterman.org nor the names of its
% contributors may be used to endorse or promote products
% derived from this software without specific prior written
% permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
% CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
% INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
% BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
% SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
% WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
% OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
% DAMAGE.
%
% This program uses the examples from the paper "The Intuition
% Behind Black-Litterman Model Portfolios", by He and Litterman,
% 1999. You can find a copy of this paper at the following url.
% http:%papers.ssrn.com/sol3/papers.cfm?abstract_id=334304
%
% For more details on the Black-Litterman model you can also view
% "The BlackLitterman Model: A Detailed Exploration", by this author
% at the following url.
% http:%www.blacklitterman.org/Black-Litterman.pdf
%

The %#codegen directive indicates that the MATLAB code is intended for code
generation.

Generate the MEX Function for Testing

Generate a MEX function using the codegen command.

codegen hlblacklitterman -args {0, zeros(1, 7), zeros(7,7), 0, zeros(1, 7), 0, 0}

Before generating C code, you should first test the MEX function in MATLAB to ensure
that it is functionally equivalent to the original MATLAB code and that no run-time errors
occur. By default, codegen generates a MEX function named hlblacklitterman_mex
in the current folder. This allows you to test the MATLAB code and MEX function and
compare the results.

 Portfolio Optimization (Black Litterman Approach)

20-209

Run the MEX Function

Call the generated MEX function

testMex();

View 1
Country P mu w*
Australia 0 4.328 1.524
Canada 0 7.576 2.095
France -29.5 9.288 -3.948
Germany 100 11.04 35.41
Japan 0 4.506 11.05
UK -70.5 6.953 -9.462
USA 0 8.069 58.57
q 5
omega/tau 0.0213
lambda 0.317
theta 0.0714
pr theta 0.929

View 1
Country P mu w*
Australia 0 4.328 1.524
Canada 0 7.576 2.095
France -29.5 9.288 -3.948
Germany 100 11.04 35.41
Japan 0 4.506 11.05
UK -70.5 6.953 -9.462
USA 0 8.069 58.57
q 5
omega/tau 0.0213
lambda 0.317
theta 0.0714
pr theta 0.929

Execution Time - MATLAB function: 0.14204 seconds
Execution Time - MEX function : 0.0033029 seconds

Generate C Code

cfg = coder.config('lib');
codegen -config cfg hlblacklitterman -args {0, zeros(1, 7), zeros(7,7), 0, zeros(1, 7), 0, 0}

20 Generating C/C++ Code from MATLAB Code

20-210

Using codegen with the specified -config cfg option produces a standalone C library.

Inspect the Generated Code

By default, the code generated for the library is in the folder codegen/lib/
hbblacklitterman/.

The files are:

dir codegen/lib/hlblacklitterman/

. interface

.. inv.c
buildInfo.mat inv.h
codeInfo.mat inv.obj
codedescriptor.dmr pinv.c
examples pinv.h
hlblacklitterman.c pinv.obj
hlblacklitterman.h rtGetInf.c
hlblacklitterman.lib rtGetInf.h
hlblacklitterman.obj rtGetInf.obj
hlblacklitterman_initialize.c rtGetNaN.c
hlblacklitterman_initialize.h rtGetNaN.h
hlblacklitterman_initialize.obj rtGetNaN.obj
hlblacklitterman_ref.rsp rt_nonfinite.c
hlblacklitterman_rtw.bat rt_nonfinite.h
hlblacklitterman_rtw.mk rt_nonfinite.obj
hlblacklitterman_rtw.rsp rtw_proj.tmw
hlblacklitterman_rtw_comp.rsp rtwtypes.h
hlblacklitterman_rtw_ref.rsp setup_msvc150.bat
hlblacklitterman_terminate.c svd.c
hlblacklitterman_terminate.h svd.h
hlblacklitterman_terminate.obj svd.obj
hlblacklitterman_types.h

Inspect the C Code for the hlblacklitterman.c Function

type codegen/lib/hlblacklitterman/hlblacklitterman.c

/*
 * File: hlblacklitterman.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 12:55:04
 */

 Portfolio Optimization (Black Litterman Approach)

20-211

/* Include Files */
#include "rt_nonfinite.h"
#include "hlblacklitterman.h"
#include "pinv.h"
#include "inv.h"

/* Function Definitions */

/*
 * hlblacklitterman
 * This function performs the Black-Litterman blending of the prior
 * and the views into a new posterior estimate of the returns as
 * described in the paper by He and Litterman.
 * Inputs
 * delta - Risk tolerance from the equilibrium portfolio
 * weq - Weights of the assets in the equilibrium portfolio
 * sigma - Prior covariance matrix
 * tau - Coefficiet of uncertainty in the prior estimate of the mean (pi)
 * P - Pick matrix for the view(s)
 * Q - Vector of view returns
 * Omega - Matrix of variance of the views (diagonal)
 * Outputs
 * Er - Posterior estimate of the mean returns
 * w - Unconstrained weights computed given the Posterior estimates
 * of the mean and covariance of returns.
 * lambda - A measure of the impact of each view on the posterior estimates.
 * theta - A measure of the share of the prior and sample information in the
 * posterior precision.
 * Arguments : double delta
 * const double weq[7]
 * const double sigma[49]
 * double tau
 * const double P[7]
 * double Q
 * double Omega
 * double er[7]
 * double ps[49]
 * double w[7]
 * double pw[7]
 * double *lambda
 * double theta[3]
 * Return Type : void
 */

20 Generating C/C++ Code from MATLAB Code

20-212

void hlblacklitterman(double delta, const double weq[7], const double sigma[49],
 double tau, const double P[7], double Q, double Omega,
 double er[7], double ps[49], double w[7], double pw[7],
 double *lambda, double theta[3])
{
 int i0;
 double pi[7];
 double d0;
 int i1;
 double ts[49];
 double y_tmp;
 double b;
 double er_tmp[7];
 double b_y_tmp[7];
 double unusedExpr[7];
 double posteriorSigma[49];
 double b_er_tmp[49];
 int ps_tmp;
 int ts_tmp;

 /* Reverse optimize and back out the equilibrium returns */
 /* This is formula (12) page 6. */
 for (i0 = 0; i0 < 7; i0++) {
 pi[i0] = 0.0;
 d0 = 0.0;
 for (i1 = 0; i1 < 7; i1++) {
 d0 += weq[i1] * sigma[i1 + 7 * i0];
 }

 pi[i0] = d0;
 pi[i0] = d0 * delta;
 }

 /* We use tau * sigma many places so just compute it once */
 for (i0 = 0; i0 < 49; i0++) {
 ts[i0] = tau * sigma[i0];
 }

 /* Compute posterior estimate of the mean */
 /* This is a simplified version of formula (8) on page 4. */
 y_tmp = 0.0;
 for (i0 = 0; i0 < 7; i0++) {
 er_tmp[i0] = 0.0;
 b_y_tmp[i0] = 0.0;

 Portfolio Optimization (Black Litterman Approach)

20-213

 d0 = 0.0;
 b = 0.0;
 for (i1 = 0; i1 < 7; i1++) {
 d0 += ts[i0 + 7 * i1] * P[i1];
 b += P[i1] * ts[i1 + 7 * i0];
 }

 b_y_tmp[i0] = b;
 er_tmp[i0] = d0;
 y_tmp += b * P[i0];
 }

 b = inv(y_tmp + Omega);
 y_tmp = 0.0;
 for (i0 = 0; i0 < 7; i0++) {
 y_tmp += P[i0] * pi[i0];
 }

 y_tmp = Q - y_tmp;
 for (i0 = 0; i0 < 7; i0++) {
 er[i0] = pi[i0] + er_tmp[i0] * b * y_tmp;
 }

 /* We can also do it the long way to illustrate that d1 + d2 = I */
 pinv(P, unusedExpr);

 /* Compute posterior estimate of the uncertainty in the mean */
 /* This is a simplified and combined version of formulas (9) and (15) */
 y_tmp = 0.0;
 for (i0 = 0; i0 < 7; i0++) {
 y_tmp += b_y_tmp[i0] * P[i0];
 }

 b = inv(y_tmp + Omega);
 for (i0 = 0; i0 < 7; i0++) {
 for (i1 = 0; i1 < 7; i1++) {
 b_er_tmp[i0 + 7 * i1] = er_tmp[i0] * b * P[i1];
 }

 for (i1 = 0; i1 < 7; i1++) {
 d0 = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 d0 += b_er_tmp[i0 + 7 * ps_tmp] * ts[ps_tmp + 7 * i1];
 }

20 Generating C/C++ Code from MATLAB Code

20-214

 ps_tmp = i0 + 7 * i1;
 ps[ps_tmp] = ts[ps_tmp] - d0;
 }
 }

 for (i0 = 0; i0 < 49; i0++) {
 posteriorSigma[i0] = sigma[i0] + ps[i0];
 }

 /* Compute the share of the posterior precision from prior and views, */
 /* then for each individual view so we can compare it with lambda */
 b_inv(ts, b_er_tmp);
 for (i0 = 0; i0 < 7; i0++) {
 for (i1 = 0; i1 < 7; i1++) {
 ts_tmp = i0 + 7 * i1;
 ts[ts_tmp] = 0.0;
 d0 = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 d0 += b_er_tmp[i0 + 7 * ps_tmp] * ps[ps_tmp + 7 * i1];
 }

 ts[ts_tmp] = d0;
 }
 }

 y_tmp = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 y_tmp += ts[ps_tmp + 7 * ps_tmp];
 }

 theta[0] = y_tmp / 7.0;
 b = inv(Omega);
 for (i0 = 0; i0 < 7; i0++) {
 for (i1 = 0; i1 < 7; i1++) {
 b_er_tmp[i0 + 7 * i1] = P[i0] * b * P[i1];
 }

 for (i1 = 0; i1 < 7; i1++) {
 ts_tmp = i0 + 7 * i1;
 ts[ts_tmp] = 0.0;
 d0 = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 d0 += b_er_tmp[i0 + 7 * ps_tmp] * ps[ps_tmp + 7 * i1];

 Portfolio Optimization (Black Litterman Approach)

20-215

 }

 ts[ts_tmp] = d0;
 }
 }

 y_tmp = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 y_tmp += ts[ps_tmp + 7 * ps_tmp];
 }

 theta[1] = y_tmp / 7.0;
 for (i0 = 0; i0 < 7; i0++) {
 for (i1 = 0; i1 < 7; i1++) {
 b_er_tmp[i0 + 7 * i1] = P[i0] * b * P[i1];
 }

 for (i1 = 0; i1 < 7; i1++) {
 ts_tmp = i0 + 7 * i1;
 ts[ts_tmp] = 0.0;
 d0 = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 d0 += b_er_tmp[i0 + 7 * ps_tmp] * ps[ps_tmp + 7 * i1];
 }

 ts[ts_tmp] = d0;
 }
 }

 y_tmp = 0.0;
 for (ps_tmp = 0; ps_tmp < 7; ps_tmp++) {
 y_tmp += ts[ps_tmp + 7 * ps_tmp];
 }

 theta[2] = y_tmp / 7.0;

 /* Compute posterior weights based solely on changed covariance */
 for (i0 = 0; i0 < 49; i0++) {
 ts[i0] = delta * posteriorSigma[i0];
 }

 b_inv(ts, b_er_tmp);
 for (i0 = 0; i0 < 7; i0++) {
 d0 = 0.0;

20 Generating C/C++ Code from MATLAB Code

20-216

 for (i1 = 0; i1 < 7; i1++) {
 d0 += er[i1] * b_er_tmp[i1 + 7 * i0];
 }

 w[i0] = d0;
 }

 /* Compute posterior weights based on uncertainty in mean and covariance */
 for (i0 = 0; i0 < 49; i0++) {
 ts[i0] = delta * posteriorSigma[i0];
 }

 b_inv(ts, b_er_tmp);
 for (i0 = 0; i0 < 7; i0++) {
 d0 = 0.0;
 for (i1 = 0; i1 < 7; i1++) {
 d0 += pi[i1] * b_er_tmp[i1 + 7 * i0];
 }

 pw[i0] = d0;
 }

 /* Compute lambda value */
 /* We solve for lambda from formula (17) page 7, rather than formula (18) */
 /* just because it is less to type, and we've already computed w*. */
 pinv(P, er_tmp);
 *lambda = 0.0;
 for (i0 = 0; i0 < 7; i0++) {
 *lambda += er_tmp[i0] * (w[i0] * (1.0 + tau) - weq[i0]);
 }

 /* Black-Litterman example code for MatLab (hlblacklitterman.m) */
 /* Copyright (c) Jay Walters, blacklitterman.org, 2008. */
 /* */
 /* Redistribution and use in source and binary forms, */
 /* with or without modification, are permitted provided */
 /* that the following conditions are met: */
 /* */
 /* Redistributions of source code must retain the above */
 /* copyright notice, this list of conditions and the following */
 /* disclaimer. */
 /* */
 /* Redistributions in binary form must reproduce the above */
 /* copyright notice, this list of conditions and the following */

 Portfolio Optimization (Black Litterman Approach)

20-217

 /* disclaimer in the documentation and/or other materials */
 /* provided with the distribution. */
 /* */
 /* Neither the name of blacklitterman.org nor the names of its */
 /* contributors may be used to endorse or promote products */
 /* derived from this software without specific prior written */
 /* permission. */
 /* */
 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, */
 /* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR */
 /* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS */
 /* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, */
 /* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING */
 /* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE */
 /* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH */
 /* DAMAGE. */
 /* */
 /* This program uses the examples from the paper "The Intuition */
 /* Behind Black-Litterman Model Portfolios", by He and Litterman, */
 /* 1999. You can find a copy of this paper at the following url. */
 /* http:%papers.ssrn.com/sol3/papers.cfm?abstract_id=334304 */
 /* */
 /* For more details on the Black-Litterman model you can also view */
 /* "The BlackLitterman Model: A Detailed Exploration", by this author */
 /* at the following url. */
 /* http:%www.blacklitterman.org/Black-Litterman.pdf */
 /* */
}

/*
 * File trailer for hlblacklitterman.c
 *
 * [EOF]
 */

20 Generating C/C++ Code from MATLAB Code

20-218

Working with Persistent Variables
This example shows how to generate a MEX function from a MATLAB function,
compute_average, that uses persistent variables. It illustrates that you must clear the
state of persistent variables before using the function to compute the average of a new
set of values.

Prerequisites

There are no prerequisites for this example.

About the compute_average Function

The compute_average.m function uses two persistent variables, the accumulated sum
and the number of values added so far, so that you can call the function with one value at
a time.

type compute_average

% y = compute_average(x)
% This function takes an input scalar value 'x' and returns the average
% value so far.
function y = compute_average(x) %#codegen
assert(isa(x,'double')); % Input is scalar double

% Declare two persistent variables 'sum' and 'cnt'.
persistent sum cnt;

% Upon the first call we need to initialize the variables.
if isempty(sum)
 sum = 0;
 cnt = 0;
end

% Compute the accumulated sum and the number of values so far.
sum = sum + x;
cnt = cnt + 1;

% Return the current average.
y = sum / cnt;

The %#codegen directive indicates that the MATLAB code is intended for code
generation.

 Working with Persistent Variables

20-219

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the name of the
MATLAB file to compile.

codegen compute_average

By default, codegen generates a MEX function named hello_world_mex in the current
folder. This allows you to test the MATLAB code and MEX function and compare the
results.

Run the MEX Function

(10 + 20 + 100) / 3 = 43.3333

compute_average_mex(10)

ans = 10

compute_average_mex(20)

ans = 15

compute_average_mex(100)

ans = 43.3333

Clear the Internal State of Persistent Variables

Clear the persistent variables by using the clear mex command.

clear mex

Run the MEX Function Again to Calculate the Average of a Different Set of Values

(10 + 20 + 30 + 40) / 4 = 25

compute_average_mex(10)

ans = 10

compute_average_mex(20)

ans = 15

compute_average_mex(30)

20 Generating C/C++ Code from MATLAB Code

20-220

matlab:doc('codegen');

ans = 20

compute_average_mex(40)

ans = 25

 Working with Persistent Variables

20-221

Working with Structure Arrays
This example shows how to write a MATLAB function that uses structure arrays so that it
is suitable for code generation. For code generation, you must first create a scalar
template version of the structure before growing it into an array. The code generation
inference engine uses the type of this scalar value as the base type of the array.

Prerequisites

There are no prerequisites for this example.

About the struct_array Function

The struct_array.m file uses a structure array.

type struct_array

% y = struct_array(n)
% Take an input scalar number 'n' which will designate the size of the
% structure array return.
function y = struct_array(n) %#codegen

% Copyright 2010-2013 The MathWorks, Inc.

assert(isa(n,'double')); % Input is scalar double

% To create a structure array you start to define the base scalar element
% first. Typically, we initialize all the fields with "dummy" (or zero)
% values so the type/shape of all its contents are well defined.
s.x = 0;
s.y = 0;
s.vx = 0;
s.vy = 0;

% To create a structure array of fixed size you can do this in multiple
% ways. One example is to use the library function 'repmat' which takes a
% scalar element and repeats it to its desired size.
arr1 = repmat(s, 3, 5); % Creates a 3x5 matrix of structure 's'

% At this point you can now modify the fields of this structure array.
arr1(2,3).x = 10;
arr1(2,3).y = 20;
arr1(2,4).x = 5;
arr1(2,4).y = 7;

20 Generating C/C++ Code from MATLAB Code

20-222

% Another way of creating a structure array of fixed size is to use the
% concatenation operator.
arr2 = [s s s; s s s; s s s; s s s; s s s];

% If two variables agree on base type and shape you can copy one structure
% array to the other using standard assignment.
arr2 = arr1;

% To create a structure array of variable size with a known upper bound can
% be done in multiple ways as well. Again, we can use repmat for this, but
% this time we will add a constraint to the (non constant) input variable.
% This guarantees that the input 'n' of this function is less than or equal to 10.
assert(n <= 10);

% Create a row vector with at most 10 elements of structures based on 's'
arr3 = repmat(s, 1, n);

% Or we can use a for-loop with the concatenation operator. The compiler is
% unable to analyze that 'arr4' will be at most 10 elements big, so we
% add a hint on 'arr4' using coder.varsize. This will specify that the
% dimensions of 'arr4' is exactly one row with at most 10 columns. Look at
% the documentation for coder.varsize for further information.
coder.varsize('arr4', [1 10]);
arr4 = repmat(s, 1, 0);
for i = 1:n
 arr4 = [arr4 s];
end

% Let the top-level function return 'arr4'.
y = arr4;

In MATLAB, when building up a structure array, you would typically just add fields as you
go. For example, s(1).x = 10; s(2).y = 20; This "dynamic" style of building structures is not
supported for code generation. One reason is that it is possible in MATLAB to have
different structure fields for two different elements of a structure array, which conflicts
with the more static approach of type inference. Therefore, you need to fully specify the
base scalar element first, and then grow a structure array from this fully specified
element. This method guarantees that two elements of a structure array always share the
same type (fields).

 Working with Structure Arrays

20-223

Generate the MEX Function

Generate a MEX function using the command codegen followed by the name of the
MATLAB file to compile.

codegen struct_array

By default, codegen generates a MEX function named struct_array_mex in the
current folder. This allows you to test the MATLAB code and MEX function and compare
the results.

Run the MEX Function

struct_array_mex(10)

ans = 1x10 struct array with fields:
 x
 y
 vx
 vy

20 Generating C/C++ Code from MATLAB Code

20-224

matlab:doc('codegen');

Adding a Custom Toolchain
This example shows how to register and use a toolchain to compile an executable. This
example uses Intel® Compiler, but the concepts and API shown below can be used for any
toolchain. The registered toolchain can be selected from a list of toolchains and a
makefile will be generated to build the code using that toolchain.

About the coderrand Function

The coderrand.m function simply generates a random scalar value from the standard
uniform distribution on the open interval (0,1).

type coderrand

function y = coderrand %#codegen

% Copyright 2012 The MathWorks, Inc.

y = rand();

Toolchain Info

A toolchain is a collection of tools required to compile, link, download and run on
specified platform. A toolchain has multiple tools, such as a compiler, linker and archiver.
Each of these tools can take multiple options, which can be grouped into configurations
like Faster Builds, Faster Runs, Debug. A toolchain object describes the basic information
of the toolchain. The toolchain object has methods to describe all of the above. The object
can be saved into a MATLAB file and shared across installations.

edit intel_tc
tc = intel_tc

tc =
###
Toolchain Name: Intel v14 | nmake makefile (64-bit Windows)
Supported Toolchain Version: 14
Toolchain Specification Format Version: R2018b
Toolchain Specification Revision: 1.0
###

Supported Host Platform = win64
Supported Languages = C/C++

 Adding a Custom Toolchain

20-225

Setup/Cleanup

MATLAB Setup: (none)
MATLAB Cleanup: (none)
Shell Setup:
 call %ICPP_COMPILER14%\bin\compilervars.bat intel64
Shell Cleanup: (none)

Attributes

RequiresBatchFile = true
RequiresCommandFile = true
TransformPathsWithSpaces = true

--
Macros intrinsic to the toolchain or assumed to be defined elsewhere
--
ldebug
conflags
cflags

MACROS

MW_EXTERNLIB_DIR = $(MATLAB_ROOT)\extern\lib\win64\microsoft
MW_LIB_DIR = $(MATLAB_ROOT)\lib\win64
CFLAGS_ADDITIONAL = -D_CRT_SECURE_NO_WARNINGS
CPPFLAGS_ADDITIONAL = -EHs -D_CRT_SECURE_NO_WARNINGS
LIBS_TOOLCHAIN = $(conlibs)
CVARSFLAG =

###
Build Tool: Intel C Compiler
###

Language : 'C'
OptionsRegistry : {'C Compiler', 'CFLAGS'}
InputFileExtensions : {Source}
OutputFileExtensions : {Object}
DerivedFileExtensions : {}
SupportedOutputs : {*}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

20 Generating C/C++ Code from MATLAB Code

20-226

Command

CC = icl
CC_PATH =

Directives

CompileFlag =
Debug = -Zi
ErrorPattern =
FileNamePattern =
FileSeparator = \
Include =
IncludeSearchPath = -I
LineNumberPattern =
OutputFlag = -Fo
PreprocessFile =
PreprocessorDefine = -D
WarningPattern =

File Extensions

Header = .h
Object = .obj
Source = .c

###
Build Tool: Intel C/C++ Linker
###

Language : 'C'
OptionsRegistry : {'Linker', 'LDFLAGS', 'Shared Library Linker', 'SHAREDLIB_LDFLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {'Executable', 'Shared Library'}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE, coder.make.enum.BuildOutput.SHARED_LIBRARY}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

 Adding a Custom Toolchain

20-227

LD = xilink
LD_PATH =

Directives

Debug =
FileSeparator = \
Library = -L
LibrarySearchPath = -I
OutputFlag = -out:

File Extensions

Executable = .exe
Shared Library = .dll

###
Build Tool: Intel C++ Compiler
###

Language : 'C++'
OptionsRegistry : {'C++ Compiler', 'CPPFLAGS'}
InputFileExtensions : {Source}
OutputFileExtensions : {Object}
DerivedFileExtensions : {}
SupportedOutputs : {*}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

CPP = icl
CPP_PATH =

Directives

CompileFlag =
Debug = -Zi
ErrorPattern =
FileNamePattern =

20 Generating C/C++ Code from MATLAB Code

20-228

FileSeparator = \
Include =
IncludeSearchPath = -I
LineNumberPattern =
OutputFlag = -Fo
PreprocessFile =
PreprocessorDefine = -D
WarningPattern =

File Extensions

Header = .hpp
Object = .obj
Source = .cpp

###
Build Tool: Intel C/C++ Linker
###

Language : 'C++'
OptionsRegistry : {'C++ Linker', 'CPP_LDFLAGS', 'C++ Shared Library Linker', 'CPP_SHAREDLIB_LDFLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {'Executable', 'Shared Library'}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE, coder.make.enum.BuildOutput.SHARED_LIBRARY}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

CPP_LD = xilink
CPP_LD_PATH =

Directives

Debug =
FileSeparator = \
Library = -L
LibrarySearchPath = -I
OutputFlag = -out:

 Adding a Custom Toolchain

20-229

File Extensions

Executable = .exe
Shared Library = .dll

###
Build Tool: Intel C/C++ Archiver
###

Language : 'C'
OptionsRegistry : {'Archiver', 'ARFLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {Static Library}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.STATIC_LIBRARY}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|'

Command

AR = xilib
AR_PATH =

Directives

Debug =
FileSeparator = \
LibrarySearchPath =
OutputFlag = -out:

File Extensions

Static Library = .lib

###
Build Tool: Download
###

Language : ''
OptionsRegistry : {'Download', 'DOWNLOAD_FLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {}

20 Generating C/C++ Code from MATLAB Code

20-230

DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<|'

Command

DOWNLOAD =
DOWNLOAD_PATH =

Directives

(none)

File Extensions

(none)

###
Build Tool: Execute
###

Language : ''
OptionsRegistry : {'Execute', 'EXECUTE_FLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {}
DerivedFileExtensions : {}
SupportedOutputs : {coder.make.enum.BuildOutput.EXECUTABLE}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<|'

Command

EXECUTE = $(PRODUCT)
EXECUTE_PATH =

Directives

(none)

 Adding a Custom Toolchain

20-231

File Extensions

(none)

###
Build Tool: NMAKE Utility
###

Language : ''
OptionsRegistry : {'Make Tool', 'MAKE_FLAGS'}
InputFileExtensions : {}
OutputFileExtensions : {}
DerivedFileExtensions : {}
SupportedOutputs : {*}
CommandPattern : '|>TOOL<| |>TOOL_OPTIONS<|'

Command

MAKE = nmake
MAKE_PATH =

Directives

Comment = #
DeleteCommand = @del
DisplayCommand = @echo
FileSeparator = \
ImpliedFirstDependency = $<
ImpliedTarget = $@
IncludeFile = !include
LineContinuation = \
MoveCommand = @ren
ReferencePattern = \$\($1\)
RunScriptCommand = @cmd /C

File Extensions

Makefile = .mk

###
Build Configuration : Faster Runs

20 Generating C/C++ Code from MATLAB Code

20-232

Description : Minimize run time
###

ARFLAGS = /nologo
CFLAGS = $(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL) /c /O2
CPPFLAGS = $(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL) /c /O2
CPP_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
CPP_SHAREDLIB_LDFLAGS =
DOWNLOAD_FLAGS =
EXECUTE_FLAGS =
LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
MEX_CPPFLAGS =
MEX_CPPLDFLAGS =
MEX_CFLAGS =
MEX_LDFLAGS =
MAKE_FLAGS = -f $(MAKEFILE)
SHAREDLIB_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) -dll -def:$(DEF_FILE)

###
Build Configuration : Faster Builds
Description : Minimize compilation and linking time
###

ARFLAGS = /nologo
CFLAGS = $(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL) /c /Od
CPPFLAGS = $(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL) /c /Od
CPP_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
CPP_SHAREDLIB_LDFLAGS =
DOWNLOAD_FLAGS =
EXECUTE_FLAGS =
LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN)
MEX_CPPFLAGS =
MEX_CPPLDFLAGS =
MEX_CFLAGS =
MEX_LDFLAGS =
MAKE_FLAGS = -f $(MAKEFILE)
SHAREDLIB_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) -dll -def:$(DEF_FILE)

###
Build Configuration : Debug
Description : Build with debug information
###

ARFLAGS = /nologo $(ARDEBUG)

 Adding a Custom Toolchain

20-233

CFLAGS = $(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL) /c /Od $(CDEBUG)
CPPFLAGS = $(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL) /c /Od $(CPPDEBUG)
CPP_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) $(CPPLDDEBUG)
CPP_SHAREDLIB_LDFLAGS =
DOWNLOAD_FLAGS =
EXECUTE_FLAGS =
LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) $(LDDEBUG)
MEX_CPPFLAGS =
MEX_CPPLDFLAGS =
MEX_CFLAGS =
MEX_LDFLAGS =
MAKE_FLAGS = -f $(MAKEFILE)
SHAREDLIB_LDFLAGS = $(ldebug) $(conflags) $(LIBS_TOOLCHAIN) -dll -def:$(DEF_FILE) $(LDDEBUG)

save intel_tc tc

Registering a Toolchain

Toolchains are registered through RTW.TargetRegistry. To register the toolchain, you
can also use rtwTargetInfo which will be loaded by the system automatically.

copyfile myRtwTargetInfoCustom.txt rtwTargetInfo.m
type rtwTargetInfo

function rtwTargetInfo(tr)
%RTWTARGETINFO Registration file for custom toolchains.

% Copyright 2012-2016 The MathWorks, Inc.

tr.registerTargetInfo(@loc_createToolchain);

end

% ---
% Create the ToolchainInfoRegistry entries
% ---
function config = loc_createToolchain

config(1) = coder.make.ToolchainInfoRegistry;
config(1).Name = 'Intel v14 | nmake makefile (64-bit Windows)';
config(1).FileName = fullfile(fileparts(mfilename('fullpath')), 'intel_tc.mat');
config(1).TargetHWDeviceType = {'*'};

20 Generating C/C++ Code from MATLAB Code

20-234

config(1).Platform = {computer('arch')};

end

Now, you can reset the TargetRegistry to pick up the new rtwTargetInfo.

RTW.TargetRegistry.getInstance('reset');

Choosing the Toolchain

You can now create the config object that is configured to create an executable using the
new toolchain.

cfg = coder.config('exe');
cfg.CustomSource = 'coderrand_main.c';
cfg.CustomInclude = pwd;
cfg.Toolchain = 'Intel v14';

If you do not have the Intel compilers installed, you can use the following command to
generate the code and makefile only.

cfg.GenCodeOnly = true;

Run the codegen to generate the code and makefile that uses the new toolchain.

codegen -config cfg coderrand

Once the codegen is finished, and you had Intel compilers installed, you can use
system('coderrand.exe') to run the executable.

Cleanup

You can reset the TargetRegistry to remove the toolchain that you registered above.

delete ./rtwTargetInfo.m
RTW.TargetRegistry.getInstance('reset');

 Adding a Custom Toolchain

20-235

Verify Generated C/C++ Code

• “Tracing Generated C/C++ Code to MATLAB Source Code” on page 21-2
• “Code Generation Reports” on page 21-9
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 21-17
• “Generate Standalone Code That Detects and Reports Run-Time Errors”

on page 21-19
• “Testing Code Generated from MATLAB Code” on page 21-22
• “Unit Test Generated Code with MATLAB Coder” on page 21-23
• “Unit Test External C Code with MATLAB Coder” on page 21-31

21

Tracing Generated C/C++ Code to MATLAB Source Code
In this section...
“Generate Traceability Tags” on page 21-2
“Format of Traceability Tags” on page 21-2
“Location of Comments in Generated Code” on page 21-3
“Traceability Tag Limitations” on page 21-7

Tracing the generated C/C++ code to the original MATLAB source code helps you to:

• Understand how the generated code implements your algorithm.
• Evaluate the quality of the generated code.

You can trace by using one of these methods:

• Configure MATLAB Coder to generate code that includes the MATLAB source code as
comments. In the comments, a traceability tag immediately precedes each line of
source code. The traceability tag provides details about the location of the source
code. If you have Embedded Coder, in the code generation report, the traceability tags
link to the corresponding MATLAB source code.

• With Embedded Coder, produce a code generation report that includes interactive
traceability. Interactive tracing in the report helps you to visualize the mapping
between the MATLAB source code and the generated C/C++ code. See “Interactively
Trace Between MATLAB Code and Generated C/C++ Code” (Embedded Coder).

Generate Traceability Tags
To produce traceability tags in the generated code, enable generation of MATLAB source
code as comments.

• In the MATLAB Coder app, set MATLAB source code as comments to Yes.
• In a code generation configuration object, set MATLABSourceComments to true.

Format of Traceability Tags
In the generated code, traceability tags appear immediately before the MATLAB source
code in the comment. The format of the tag is:

21 Verify Generated C/C++ Code

21-2

<filename>:<line number>.

For example, this comment indicates that the code x = r * cos(theta); appears at
line 4 in the source file straightline.m.

/* 'straightline:4' x = r * cos(theta); */

Location of Comments in Generated Code
The generated comments containing the source code and traceability tag appear in the
generated code as follows.

Straight-Line Source Code

In straight-line source code without if, while, for or switch statements, the comment
containing the source code precedes the generated code that implements the source code
statement. This comment appears after user comments that precede the generated code.

For example, in the following code, the user comment, /* Convert polar to
Cartesian */, appears before the generated comment containing the first line of source
code, together with its traceability tag,
/* 'straightline:4' x = r * cos(theta); */.

MATLAB Code

function [x, y] = straightline(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

Commented C Code

void straightline(double r, double theta, double *x, double *y)
{
 /* Convert polar to Cartesian */
 /* 'straightline:4' x = r * cos(theta); */
 *x = r * cos(theta);

 /* 'straightline:5' y = r * sin(theta); */
 *y = r * sin(theta);
}

 Tracing Generated C/C++ Code to MATLAB Source Code

21-3

If Statements

The comment for the if statement immediately precedes the code that implements the
statement. This comment appears after user comments that precede the generated code.
The comments for the elseif and else clauses appear immediately after the code that
implements the clause, and before the code generated for statements in the clause.

MATLAB Code

function y = ifstmt(u,v)
%#codegen
if u > v
 y = v + 10;
elseif u == v
 y = u * 2;
else
 y = v - 10;
end

Commented C Code

double ifstmt(double u, double v)
{
 double y;

 /* 'ifstmt:3' if u > v */
 if (u > v) {
 /* 'ifstmt:4' y = v + 10; */
 y = v + 10.0;
 } else if (u == v) {
 /* 'ifstmt:5' elseif u == v */
 /* 'ifstmt:6' y = u * 2; */
 y = u * 2.0;
 } else {
 /* 'ifstmt:7' else */
 /* 'ifstmt:8' y = v - 10; */
 y = v - 10.0;
 }

 return y;
}

21 Verify Generated C/C++ Code

21-4

For Statements

The comment for the for statement header immediately precedes the generated code
that implements the header. This comment appears after user comments that precede the
generated code.

MATLAB Code

function y = forstmt(u)
%#codegen
y = 0;
for i = 1:u
 y = y + 1;
end

Commented C Code

double forstmt(double u)
{
 double y;
 int i;

 /* 'forstmt:3' y = 0; */
 y = 0.0;

 /* 'forstmt:4' for i = 1:u */
 for (i = 0; i < (int)u; i++) {
 /* 'forstmt:5' y = y + 1; */
 y++;
 }

 return y;
}

While Statements

The comment for the while statement header immediately precedes the generated code
that implements the statement header. This comment appears after user comments that
precede the generated code.

MATLAB Code

function y = subfcn(y)
coder.inline('never');
while y < 100

 Tracing Generated C/C++ Code to MATLAB Source Code

21-5

 y = y + 1;
end

Commented C Code

void subfcn(double *y)
{
 /* 'subfcn:2' coder.inline('never'); */
 /* 'subfcn:3' while y < 100 */
 while (*y < 100.0) {
 /* 'subfcn:4' y = y + 1; */
 (*y)++;
 }
}

Switch Statements

The comment for the switch statement header immediately precedes the generated code
that implements the statement header. This comment appears after user comments that
precede the generated code. The comments for the case and otherwise clauses appear
immediately after the generated code that implements the clause, and before the code
generated for statements in the clause.

MATLAB Code

function y = switchstmt(u)
%#codegen
y = 0;
switch u
 case 1
 y = y + 1;
 case 3
 y = y + 2;
 otherwise
 y = y - 1;
end

Commented C Code

double switchstmt(double u)
{
 double y;

 /* 'switchstmt:3' y = 0; */

21 Verify Generated C/C++ Code

21-6

 /* 'switchstmt:4' switch u */
 switch ((int)u) {
 case 1:
 /* 'switchstmt:5' case 1 */
 /* 'switchstmt:6' y = y + 1; */
 y = 1.0;
 break;

 case 3:
 /* 'switchstmt:7' case 3 */
 /* 'switchstmt:8' y = y + 2; */
 y = 2.0;
 break;

 default:
 /* 'switchstmt:9' otherwise */
 /* 'switchstmt:10' y = y - 1; */
 y = -1.0;
 break;
 }

 return y;
}

Traceability Tag Limitations
• You cannot include MATLAB source code as comments for:

• MathWorks toolbox functions
• P-code

• The appearance or location of comments can vary:

• Even if the implementation code is eliminated, for example, due to constant folding,
comments can still appear in the generated code.

• If a complete function or code block is eliminated, comments can be eliminated
from the generated code.

• For certain optimizations, the comments can be separated from the generated
code.

• Even if you do not choose to include source code comments in the generated code,
the generated code includes legally required comments from the MATLAB source
code.

 Tracing Generated C/C++ Code to MATLAB Source Code

21-7

See Also

More About
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code”

(Embedded Coder)
• “Include Comments in Generated C/C++ Code” (Embedded Coder)
• “Code Generation Reports” on page 21-9

21 Verify Generated C/C++ Code

21-8

Code Generation Reports
In this section...
“Report Generation” on page 21-9
“Report Location” on page 21-10
“Errors and Warnings” on page 21-10
“Files and Functions” on page 21-10
“MATLAB Source” on page 21-12
“MATLAB Variables” on page 21-13
“Tracing Code” on page 21-15
“Code Insights” on page 21-15
“Additional Reports” on page 21-16
“Report Limitations” on page 21-16

MATLAB Coder produces a code generation report that helps you to:

• Debug code generation issues and verify that your MATLAB code is suitable for code
generation.

• View generated C/C++ code.
• Trace between MATLAB source code and generated C/C++ code.
• See how the code generator determines and propagates type information for variables

and expressions in your MATLAB code.
• Identify potential issues in the generated code.
• Access additional reports available with Embedded Coder.

Report Generation
When you enable report generation or when an error occurs, the code generator produces
a code generation report. To control production and opening of a code generation report,
use app settings, codegen options, or configuration object properties.

In the MATLAB Coder app:

• To generate a report, set Always create a code generation report to Yes.

 Code Generation Reports

21-9

• If you want the app to open the report for you, set Automatically launch a report if
one is generated to Yes.

At the command line, use codegen options:

• To generate a report, use the -report option.
• To generate and open a report, use the -launchreport option.

Alternatively, use configuration object properties:

• To generate a report, set GenerateReport to true.
• If you want codegen to open the report for you, set LaunchReport to true.

Report Location
The code generation report is named report.mldatx. It is located in the html subfolder
of the code generation output folder. If you have MATLAB R2018a or later, you can open
the report.mldatx file by double-clicking it.

Errors and Warnings
View code generation error, warning, and information messages on the All Messages
tab. To highlight the source code for an error or warning, click the message. It is a best
practice to address the first message because subsequent errors and warnings can be
related to the first message.

View compilation and linking errors and warnings on the Build Logs tab. The code
generator detects compilation warnings only for MEX output or if you use a supported
compiler for other types of output. See .https://www.mathworks.com/support/
compilers/current_release/.

Files and Functions
The report lists MATLAB source functions and generated files. In the MATLAB Source
pane, the Function List view organizes functions according to the containing file. To
visualize functions according to the call structure, use the Call Tree view.

To view a function in the code pane of the report, click the function in the list. Clicking a
function opens the file that contains the function. To edit the selected file in the MATLAB
Editor, click Edit in MATLAB or click a line number in the code pane.

21 Verify Generated C/C++ Code

21-10

If you have Embedded Coder and generate the report with traceability enabled, to view
the source code and generated code next to each other in the code pane, click Trace
Code. You can interactively trace between the source code and the generated code. See
“Interactively Trace Between MATLAB Code and Generated C/C++ Code” (Embedded
Coder).

If you want to move the generated files for standalone code (library or executable) to
another development environment, you can put them into a zip file by clicking Package
Code.

Specialized Functions or Classes

When a function is called with different types of inputs or a class uses different types for
its properties, the code generator produces specializations. In the MATLAB Source
pane, numbered functions (or classes) indicate specializations. For example:

Functions List After Fixed-Point Conversion

If you convert floating-point MATLAB code to fixed-point MATLAB code, and then
generate fixed-point C/C++ code, the MATLAB Source pane lists the original MATLAB
functions and the fixed-point MATLAB functions. For example:

 Code Generation Reports

21-11

MATLAB Source
To view a MATLAB function in the code pane, click the function in the MATLAB Source
pane. To see information about the type of a variable or expression, pause over the
variable or expression.

In the code pane, syntax highlighting of MATLAB source code helps you to identify
MATLAB syntax elements. Syntax highlighting also helps you to identify certain code
generation attributes such as whether a function is extrinsic or whether an argument is
constant.

Extrinsic Functions

In the MATLAB code, the report identifies an extrinsic function with purple text. The
information window indicates that the function is extrinsic.

Constant Arguments

In the MATLAB code, orange text indicates a compile-time constant argument to an entry-
point function or a specialized function. The information window includes the constant
value.

21 Verify Generated C/C++ Code

21-12

Knowing the value of the constant arguments helps you to understand generated function
signatures. It also helps you to see when code generation created function specializations
for different constant argument values.

To export the value to a variable in the workspace, click .

MATLAB Variables
The Variables tab provides information about the variables for the selected MATLAB
function. To select a function, click the function in the MATLAB Source pane.

The variables table shows:

• Class, size, and complexity
• Properties of fixed-point types
• Whether an array is sparse
• Array layout

This information helps you to debug errors, such as type mismatch errors, and to
understand how the code generator propagates types and represents data in the
generated code.

Visual Indicators on the Variables Tab

This table describes symbols, badges, and other indicators in the variables table.

Column in the Variables
Table

Indicator Description

Name expander Variable has elements or
properties that you can see
by clicking the expander.

Name {:} Heterogeneous cell array
(all elements have the same
properties)

Name {n} nth element of a
heterogeneous cell array

 Code Generation Reports

21-13

Column in the Variables
Table

Indicator Description

Class v > n v is reused with a different
class, size, and complexity.
The number n identifies
each unique reuse (a reuse
with a unique set of
properties). When you pause
over a renamed variable, the
report highlights only the
instances of this variable
that share the class, size,
and complexity. See “Reuse
the Same Variable with
Different Properties” on
page 4-10.

Size :n Variable-size dimension with
an upper bound of n

Size :? Variable-size with no upper
bound

Size italics Variable-size array whose
dimensions do not change
size during execution

Class sparse prefix Sparse array
Class complex prefix Complex number
Class Fixed-point type

To see the fixed-point
properties, click the badge.

Array Layout Indicators on the Variables Tab

This table describes the badges that indicate array layout in the variables table.

Badge Description
Row-major array layout.

21 Verify Generated C/C++ Code

21-14

Badge Description
Column-major array layout.

A mixture of row-major and column-major
layouts.

See “Row-Major and Column-Major Array Layouts” on page 30-2.

Tracing Code
You can trace between MATLAB source code and generated C/C++ code by using one of
these methods:

• Interactively visualize the mapping between the MATLAB code and the generated
code. To access interactive tracing, in the report, click Trace Code.

The Trace Code button is enabled only if you have Embedded Coder and you enabled
code traceability when you generated code. See “Interactively Trace Between
MATLAB Code and Generated C/C++ Code” (Embedded Coder).

• Include source code as comments in the generated C/C++ code.

In a comment, the code generator produces a tag that helps you find the
corresponding MATLAB source code. If you have Embedded Coder, the tag is a link to
the source code. See “Tracing Generated C/C++ Code to MATLAB Source Code” on
page 21-2.

Code Insights
The code generator can detect and report issues that can potentially occur in the
generated code. View the messages on the Code Insights tab. The issues include:

• Potential differences between the behavior of the generated code and the behavior of
the MATLAB code. The report includes potential differences messages only if you
enabled potential differences reporting. See “Potential Differences Reporting” on page
2-16.

• Potential data type issues in the generated code, such as single-precision and double-
precision operations.

The report includes potential data type issues only if you have Embedded Coder and
you enabled potential data type issues reporting. If you have Fixed-Point Designer, the

 Code Generation Reports

21-15

report also identifies expensive fixed-point operations. See “Highlight Potential Data
Type Issues in a Report” (Embedded Coder).

• Potential row-major issues. See “Code Design for Row-Major Array Layout” on page
30-16.

Additional Reports
The Summary tab can have links to these additional reports:

• Static code metrics report (requires Embedded Coder). See “Generating a Static Code
Metrics Report for Code Generated from MATLAB Code” (Embedded Coder).

• Code replacements report (requires Embedded Coder). See “Verify Code
Replacements” (Embedded Coder).

• Fixed-point conversion report (requires Fixed-Point Designer). See “Convert MATLAB
Code to Fixed-Point C Code” on page 14-5.

Report Limitations
• The entry-point summary shows individual elements of varagin and vargout, but the

variables table does not show them.
• The report does not show full information for unrolled loops. It displays data types of

one arbitrary iteration.
• The report does not show information about dead code.

See Also

More About
• “Generating a Static Code Metrics Report for Code Generated from MATLAB Code”

(Embedded Coder)
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code”

(Embedded Coder)
• “Tracing Generated C/C++ Code to MATLAB Source Code” on page 21-2
• “Convert MATLAB Code to Fixed-Point C Code” on page 14-5
• “Row-Major and Column-Major Array Layouts” on page 30-2

21 Verify Generated C/C++ Code

21-16

Run-Time Error Detection and Reporting in Standalone
C/C++ Code

You can generate standalone libraries and executables that detect and report run-time
errors, such as out-of-bounds array indexing. If the generated code detects an error, it
reports the error and terminates the program.

During development, before you generate C/C++ code, it is a best practice to test the
generated code by running the MEX version of your algorithm. However, some errors
occur only on the target hardware. To detect these errors, generate the standalone C/C+
+ code with run-time error detection enabled. Run-time error detection can affect the
performance of the generated code. If performance is a consideration for your
application, do not generate production code with run-time error detection enabled.

By default, run-time error detection is disabled for standalone libraries and executables.
To enable run-time error detection and reporting for standalone libraries and executables:

• At the command line, use the code configuration property RuntimeChecks.

cfg = coder.config('lib'); % or 'dll' or 'exe'
cfg.RuntimeChecks = true;
codegen -config cfg myfunction

• In the MATLAB Coder app, in the project settings dialog box, on the Debugging pane,
select the Generate run-time error checks check box.

Run-time error detection and reporting in standalone code has these requirements and
limitations:

• The error reporting software uses fprintf to write error messages to stderr. It
uses abort to terminate the application. If fprintf and abort are not available, you
must provide them. The abort function abruptly terminates the program. If your
system supports signals, you can catch the abort signal (SIGABRT) so that you can
control the program termination.

• Error messages are in English only.
• Some error checks require double-precision support. Therefore, the hardware on

which the generated code runs must support double-precision operations.
• If the program terminates, the error detection and reporting software does not display

the run-time stack. To inspect the stack, attach a debugger. Also, the error detection
and reporting software does not release resources, such as allocated memory.

 Run-Time Error Detection and Reporting in Standalone C/C++ Code

21-17

• If the program terminates, the error detection and reporting software does not release
resources, such as allocated memory.

• In standalone code, the function error displays a message that indicates that an error
occurred. To see the actual message specified by error, you must generate and run a
MEX function.

• In standalone code, if called with more than 1 argument, the function assert does not
report an error and does not terminate execution. If called with a single argument, for
example, assert(cond), if cond is not a constant true value, reports an error and
terminates execution.

See Also

Related Examples
• “Generate Standalone Code That Detects and Reports Run-Time Errors” on page 21-

19

More About
• “Why Test MEX Functions in MATLAB?” on page 19-2

21 Verify Generated C/C++ Code

21-18

Generate Standalone Code That Detects and Reports
Run-Time Errors

This example shows how to generate C/C++ libraries or executables that detect and
report run-time errors such as out-of-bounds array indexing. If the generated code detects
an error, it reports a message and terminates the program. You can detect and fix errors
that occur only on the target hardware.

Write the function getelement that indexes into one structure field using the value of
the other structure field.

function y = getelement(S)
y = S.A(S.u);
end

Create a code configuration object for a standalone library or executable. For example,
create a code configuration object for a static library. Enable the code generation report.

cfg = coder.config('lib');
cfg.GenerateReport = true;

Enable generation of run-time error detection and reporting.

cfg.RuntimeChecks = true;

Define an example input that you can use to specify the properties of the input argument.

S.A = ones(2,2);
S.u = 0;

Generate code.

codegen -config cfg getelement -args {S}

To open the code generation report, click the View report link.

In the list of generated files, click getelement.c.

You can see the code that checks for an error and calls a function to report the error. For
example, if the code detects an out-of-bounds array indexing error, it calls
rtDynamicBoundsError to report the error and terminate the program.

/* Include Files */
#include "rt_nonfinite.h"

 Generate Standalone Code That Detects and Reports Run-Time Errors

21-19

#include "getelement.h"
#include "getelement_rtwutil.h"
#include <stdio.h>
#include <stdlib.h>

/* Variable Definitions */
static rtBoundsCheckInfo emlrtBCI = { 1, 4, 2, 5, "S.A", "getelement",
 "C:\\coder\\runtime checks\\getelement.m", 0 };

static rtDoubleCheckInfo emlrtDCI = { 2, 5, "getelement",
 "C:\\coder\\runtime checks\\getelement.m", 1 };

/* Function Definitions */

/*
 * Arguments : const struct0_T *S
 * Return Type : double
 */
double getelement(const struct0_T *S)
{
 double d0;
 int i0;
 d0 = S->u;
 if (d0 != (int)floor(d0)) {
 rtIntegerError(d0, &emlrtDCI);
 }

 i0 = (int)d0;
 if (!((i0 >= 1) && (i0 <= 4))) {
 rtDynamicBoundsError(i0, 1, 4, &emlrtBCI);
 }

 return S->A[i0 - 1];
}

The error reporting software uses fprintf to write error messages to stderr. It uses
abort to terminate the application. If fprintf and abort are not available, you must
provide them. The abort function abruptly terminates the program. If your system

21 Verify Generated C/C++ Code

21-20

supports signals, you can catch the abort signal (SIGABRT) so that you can control the
program termination.

See Also

More About
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 21-

17

 See Also

21-21

Testing Code Generated from MATLAB Code
MATLAB Coder helps you to test your generated code.

If you use the MATLAB Coder app to generate a MEX function, you can test the MEX
function in the app. If you use codegen to generate a MEX function, test the MEX
function by using coder.runTest. Alternatively, use the codegen -test option.

If you have Embedded Coder, you can verify the numerical behavior of generated C/C++
code by using software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution. You can
also produce a profile of execution times.

See Also

More About
• “Verify MEX Functions in the MATLAB Coder App” on page 19-8
• “Verify MEX Functions at the Command Line” on page 19-9
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution” (Embedded Coder)
• “Execution Time Profiling for SIL and PIL” (Embedded Coder)
• “Unit Test Generated Code with MATLAB Coder” on page 21-23
• “Unit Test External C Code with MATLAB Coder” on page 21-31

21 Verify Generated C/C++ Code

21-22

Unit Test Generated Code with MATLAB Coder
This example shows how to test the output of generated code by using MATLAB® unit
tests with MATLAB® Coder™.

To monitor for regressions in code functionality, you can write unit tests for your code. In
MATLAB, you can create and run unit tests by using the MATLAB testing framework. To
test MEX code and standalone code that you generate from MATLAB code, you can use
the same unit tests that you use to test MATLAB code.

A MEX function includes instrumentation that helps you to detect issues before you
generate production code. Running unit tests on a MEX function tests the instrumented
code in MATLAB. Generated standalone code (static library or shared library) does not
include the instrumentation and can include optimizations that are not present in the
MEX code. To run unit tests on standalone code in a separate process outside of MATLAB,
use software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution. To use SIL or PIL
execution, you must have Embedded Coder®.

This example shows how to:

1 Create MATLAB unit tests that call your MATLAB function. This example uses class-
based unit tests.

2 Generate a MEX function from your MATLAB function.
3 Run the unit tests on the MEX function.
4 Run the unit tests on standalone code by using SIL.

Examine the Files

To access the files that this example uses, click Open Script.

addOne.m

The example performs unit tests on the MEX function generated from the MATLAB
function addOne. This function adds 1 to its input argument.

function y = addOne(x)
% Copyright 2014 - 2016 The MathWorks, Inc.

%#codegen
y = x + 1;

 Unit Test Generated Code with MATLAB Coder

21-23

end

TestAddOne.m

The file TestAddOne.m contains a class-based unit test with two tests.

• reallyAddsOne verifies that when the input is 1, the answer is 2.
• addsFraction verifies that when the input is pi, the answer is pi + 1.

For more information about writing class based-unit tests, see “Author Class-Based Unit
Tests in MATLAB” (MATLAB).

classdef TestAddOne < matlab.unittest.TestCase
 % Copyright 2014 - 2016 The MathWorks, Inc.

 methods (Test)

 function reallyAddsOne(testCase)
 x = 1;
 y = addOne(x);
 testCase.verifyEqual(y, 2);
 end

 function addsFraction(testCase)
 x = pi;
 y = addOne(x);
 testCase.verifyEqual(y, x+1);
 end
 end
end

run_unit_tests.m

The file run_unit_tests.m calls runtests to run the tests in TestAddOne.m.

% Run unit tests
% Copyright 2014 - 2016 The MathWorks, Inc.

runtests('TestAddOne')

21 Verify Generated C/C++ Code

21-24

Run Unit Tests on a MEX Function with the MATLAB Coder App

To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the MATLAB Coder app icon.

To prepare for code generation, advance through the app steps.

• On the Select Source Files page, specify that the entry-point function is addOne.
• On the Define Input Types page, specify that the input argument x is a double scalar.
• On the Check for Run-Time Issues step, enter code that calls addOne with

representative input. For example, addOne(2). Perform this step to make sure that
you can generate code for your MATLAB function and that the generated code does
not have run-time issues.

For more complicated MATLAB functions, you might want to provide a test file for the
Define Input Types and Check for Run-Time Issues steps. This test file calls the
MATLAB function with representative types. The app uses this file to determine the input
types for you. The test file can be different from the test file that you use for unit testing.

To generate the MEX function, on the Generate Code page:

1 For Build type, specify MEX.
2 Click Generate.

Run the unit tests on the generated MEX.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

 Unit Test Generated Code with MATLAB Coder

21-25

The app displays the test output on the Test Output tab. The unit tests pass.

Run Unit Tests After Modifying MATLAB Code

Modify addOne so that the constant 1 is single-precision. To edit addOne, in the upper-
left corner of the app, under Source Code, click addOne.

21 Verify Generated C/C++ Code

21-26

To generate a MEX function for the modified function, click Generate.

To run the unit tests:

1 Click Verify Code.
2 Make sure that you set the test file to run_unit_tests and Run using to

Generated code
3 Click Run Generated Code.

The unit tests fail.

• reallyAddsOne fails because the class of the output type is single, not double.
• addsFraction fails because the output class and value do not match the expected

class and value. The output type is single, not double. The value of the single-precision
output, 4.1415930, is not the same as the value of the double-precision output,
4.141592653589793.

Run Unit Tests With Software-in-the-Loop Execution in the App (Requires
Embedded Coder)

If you have Embedded Coder, you can run the units tests on generated standalone code
(static library or shared library) by using software-in-the-loop (SIL) execution.

Generate a library for addOne. For example, generate a static library.

On the Generate Code page:

1 For Build type, specify Static Library.
2 Click Generate.

Run the unit tests on the generated code.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

 Unit Test Generated Code with MATLAB Coder

21-27

To terminate the SIL execution, click Stop SIL Verification.

Run Unit Tests on a MEX Function by Using the Command-Line Workflow

If you use the command-line workflow to generate code, you can run unit tests on a MEX
function by using coder.runTest with a test file that runs the unit tests.

Generate a MEX function for the function that you want to test. For this example, specify
that the input argument is a double scalar by providing a sample input value.

codegen addOne -args {2}

Run the units tests on the MEX function. Specify that the test file is run_unit_tests
and that the function is addOne. When coder.runTest runs the test file, it replaces calls
to addOne with calls to addOne_mex. The unit tests run on the MEX function instead of
the original MATLAB function.

coder.runTest('run_unit_tests', 'addOne')

Running TestAddOne
..
Done TestAddOne

ans =

 1x2 TestResult array with properties:

21 Verify Generated C/C++ Code

21-28

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 0.85923 seconds testing time.

Run Unit Tests With Software-in-the-Loop Execution at the Command Line
(Requires Embedded Coder)

If you have Embedded Coder, you can run the units tests on generated standalone code
(static library or shared library) by using software-in-the-loop (SIL) execution.

Create a coder.EmbeddedCodeConfig object for a static library.

cfg = coder.config('lib');

Configure the object for SIL.

cfg.VerificationMode = 'SIL';

Generate code for the MATLAB function and the SIL interface.

codegen -config cfg -args {2} addOne

Run a test file that runs the unit tests with the SIL interface.

coder.runTest('run_unit_tests', ['addOne_sil.', mexext])

Terminate the SIL execution.

Click clear addOne_sil.

See Also
coder.runTest

 See Also

21-29

More About
• “Author Class-Based Unit Tests in MATLAB” (MATLAB)
• “Software-in-the-Loop Execution with the MATLAB Coder App” (Embedded Coder)
• “Software-in-the-Loop Execution From Command Line” (Embedded Coder)
• “Unit Test External C Code with MATLAB Coder” on page 21-31

21 Verify Generated C/C++ Code

21-30

Unit Test External C Code with MATLAB Coder
This example shows how to test external C code by using MATLAB® unit tests with
MATLAB® Coder™.

If you want to test C code, you can use MATLAB Coder to bring the code into MATLAB.
You can then write unit tests by using the MATLAB testing framework. You can write
richer, more flexible tests by taking advantage of the advanced numerical computing and
visualization capabilities of MATLAB.

This example shows how to:

1 Bring your C code into MATLAB as a MEX function that you generate with MATLAB
Coder.

2 Write a unit test by using the MATLAB testing framework.
3 Run the test on the MEX function.

If you have Embedded Coder®, you can run unit tests on generated standalone code
(static library or shared library) by using the unit tests with software-in-the-loop (SIL)
execution or processor-in-the-loop (PIL) execution.

Examine the Files

To access the files that this example uses, click Open Script.

kalmanfilter.c

kalmanfilter.c is the C function that the example tests. It estimates the position of a
moving object based on its past positions.

kalmanfilter.h

kalmanfilter.h is the header file for kalmanfilter.c.

position.mat

position.mat contains the positions of the object.

callKalmanFilter.m

callKalmanFilter calls kalmanfilter by using coder.ceval.

 Unit Test External C Code with MATLAB Coder

21-31

function [a,b] = callKalmanFilter(position)
% Copyright 2014 - 2016 The MathWorks, Inc.

numPts = size(position,2);

a = zeros(2,numPts,'double');
b = zeros(2,numPts,'double');
y = zeros(2,1,'double');

% Main loop
for idx = 1: numPts
 z = position(:,idx); % Get the input data

 % Call the initialize function
 coder.ceval('kalmanfilter_initialize');

 % Call the C function
 coder.ceval('kalmanfilter',z,coder.ref(y));

 % Call the terminate function
 coder.ceval('kalmanfilter_terminate');

 a(:,idx) = [z(1); z(2)];
 b(:,idx) = [y(1); y(2)];
end
end

TestKalmanFilter.m

TestKalmanFilter tests whether the error between the predicted position and actual
position exceeds the specified tolerance. The unit tests are class-based unit tests. For
more information, see “Author Class-Based Unit Tests in MATLAB” (MATLAB).

Although you want to test the MEX function, the unit tests in TestKalmanFilter call
the original MATLAB function from which you generated the MEX function. When
MATLAB Coder runs the tests, it replaces the calls to the MATLAB function with calls to
the MEX function. You cannot run these tests directly in MATLAB because MATLAB does
not recognize the coder.ceval calls in callKalmanFilter.

classdef TestKalmanFilter < matlab.unittest.TestCase
 % Copyright 2014 - 2016 The MathWorks, Inc.

21 Verify Generated C/C++ Code

21-32

 methods (Test)

 function SSE_LessThanTolerance(testCase)
 load position.mat;
 [z,y] = callKalmanFilter(position);

 tolerance = 0.001; % tolerance of 0.0001 will break
 A = z-1000*y;
 error = sum(sum(A.^2));

 testCase.verifyLessThanOrEqual(error, tolerance);

 % For debugging
 plot_kalman_filter_trajectory(z,1000*y);
 end

 function SampleErrorLessThanTolerance(testCase)
 load position.mat;
 [z,y] = callKalmanFilter(position);

 tolerance = 0.01; % tolerance of 0.001 will break
 A = z-1000*y;

 testCase.verifyEqual(1000*y, z, 'AbsTol', tolerance);
 % For debugging
 plot_kalman_filter_trajectory(z,1000*y);

 [value, location] = max(A(:));
 [R,C] = ind2sub(size(A),location);
 disp(['Max value ' num2str(value) ' is located at [' num2str(R) ',' num2str(C) ']']);
 end
 end
end

run_unit_tests_kalman.m

run_unit_tests_kalman calls runtests to run the tests in TestKalmanFilter.m.

% Run unit tests
% Copyright 2014 - 2016 The MathWorks, Inc.

 Unit Test External C Code with MATLAB Coder

21-33

runtests('TestKalmanFilter')

plot_kalman_filter_trajectory.m

plot_kalman_filter_trajectory plots the trajectory of the estimated and actual
positions of the object. Each unit test calls this function.

Generate MEX and Run Unit Tests in the MATLAB Coder App

To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the MATLAB Coder app icon.

To prepare for code generation, advance through the app steps.

• On the Select Source Files page, specify that the entry-point function is
callKalmanFilter.

• On the Define Input Types page, specify that the input argument x is a 2-by-310
array of doubles.

The unit tests load the variable position from position.mat and pass position to
callKalmanFilter. Therefore, the input to callKalmanFilter must have the
properties that position has. In the MATLAB workspace, if you load position.mat,
you see that position is a 2-by-310 array of doubles.

• Skip the Check for Run-Time Issues step for this example.

Configure the app for MEX code generation. Specify the names of the C source and
header files because callKalmanFilter integrates external C code.

1 For Build type, specify MEX.
2 Click More Settings.
3 On the Custom Code tab:

• Under Custom C Code for Generated Files, select Header file. In the custom code
field, enter #include "kalmanfilter.h".

• In the Additional source files field, enter kalmanfilter.c.

21 Verify Generated C/C++ Code

21-34

To generate the MEX function, click Generate.

Run the unit tests on the generated MEX.

1 Click Verify Code.
2 In the field for the test file, specify run_unit_tests_kalman.
3 Make sure that you set Run using to Generated code.
4 Click Run Generated Code.

 Unit Test External C Code with MATLAB Coder

21-35

When the app runs the test file, it replaces calls to callKalmanFilter in the unit test
with calls to callKalmanFilter_mex. The unit tests run on the MEX function instead of
the original MATLAB function.

The app displays the test output on the Test Output tab. The unit tests pass.

From the plots, you can see that the trajectory of the estimated position converges with
the trajectory of the actual position.

21 Verify Generated C/C++ Code

21-36

Run Unit Tests After Modifying C Code

When you modify the C code, to run the unit tests:

1 Regenerate the MEX function for the MATLAB function that calls the C code.
2 Repeat the verification step.

 Unit Test External C Code with MATLAB Coder

21-37

For example, modify kalmanfilter.c so that the value assigned to y[r2] is multiplied
by 1.1.

y[r2] += (double)d_a[r2 + (i0 << 1)] * x_est[i0] * 1.1;

Edit kalmanfilter.c outside of the app because you can use the app to edit only
MATLAB files listed in the Source Code pane of the app.

To generate the MEX function for the modified function, click Generate.

To run the unit tests:

1 Click Verify Code.
2 Make sure that you set the test file to run_unit_tests and Run using to

Generated code
3 Click Run Generated Code.

The tests fail because the error exceeds the specified tolerance.

The plots show the error between the trajectory for the estimated position and the
trajectory for the actual position.

21 Verify Generated C/C++ Code

21-38

Generate MEX and Run Unit Tests by Using the Command-Line Workflow

You can use the command-line workflow to run unit tests on external C code by using
coder.runTest. Specify a test file that runs the unit tests on the MATLAB function that
calls your C code.

Generate a MEX function for the MATLAB function that calls your C code. For this
example, generate MEX for callKalmanFilter.

 Unit Test External C Code with MATLAB Coder

21-39

Create a configuration object for MEX code generation.

cfg = coder.config('mex');

Specify the external source code and header file.

cfg.CustomSource = 'kalmanfilter.c';
cfg.CustomHeaderCode = '#include "kalmanfilter.h"';

To determine the type for the input to callKalmanFilter, load the position file.

load position.mat

To generate the MEX function, run codegen. Specify that the input to
callKalmanFilter has the same type as position.

codegen -config cfg callKalmanFilter -args position

Run the units tests on the MEX function. Specify that the test file is
run_unit_tests_kalman and that the function is callKalmanfilter. When
coder.runTest runs the test file, it replaces calls to callKalmanFilter in the unit
test with calls to callKalmanFilter_mex. The unit tests run on the MEX function
instead of the original MATLAB function.

coder.runTest('run_unit_tests_kalman', 'callKalmanFilter')

Running TestKalmanFilter
Current plot held
.Current plot held
Max value 0.0010113 is located at [2,273]
.
Done TestKalmanFilter

ans =

 1x2 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration
 Details

21 Verify Generated C/C++ Code

21-40

Totals:
 2 Passed, 0 Failed, 0 Incomplete.
 30.4311 seconds testing time.

 Unit Test External C Code with MATLAB Coder

21-41

See Also
coder.runTest

More About
• “Author Class-Based Unit Tests in MATLAB” (MATLAB)
• “Software-in-the-Loop Execution with the MATLAB Coder App” (Embedded Coder)
• “Software-in-the-Loop Execution From Command Line” (Embedded Coder)
• “Unit Test Generated Code with MATLAB Coder” on page 21-23

21 Verify Generated C/C++ Code

21-42

Code Replacement for MATLAB Code

• “What Is Code Replacement?” on page 22-2
• “Choose a Code Replacement Library” on page 22-8
• “Replace Code Generated from MATLAB Code” on page 22-10

22

What Is Code Replacement?
Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to, specific
target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement library
(CRL) during code generation. By default, the code generator does not apply a code
replacement library. You can choose from libraries that MathWorks provides and that you
create and register by using the Embedded Coder product. The list of available libraries
depends on:

• Installed support packages.
• System target file, language, standard math library, and device vendor configuration.
• Whether you have created and registered libraries, using the Embedded Coder

product.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
you use one of those libraries with another compiler, generated code might not compile.

Code Replacement Libraries
A code replacement library consists of one or more code replacement tables that specify
application-specific implementations of functions and operators. For example, a library for

22 Code Replacement for MATLAB Code

22-2

a specific embedded processor specifies function and operator replacements that optimize
generated code for that processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a
conceptual representation of a function or operator to an implementation representation
and priority.

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code
generator. Consists of:

• Function name or a key. The function name identifies most
functions. For operators and some functions, a series of
characters, called a key identifies a function or operator. For
example, function name 'cos' and operator key
'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming
('y1', 'u1', 'u2', ...), with corresponding I/O types (output or
input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation,
and rounding modes, which identify matching criteria for the
function or operator.

 What Is Code Replacement?

22-3

Table Entry
Component

Description

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8'.
• Implementation arguments, with corresponding I/O types

(output or input) and data types.
• Parameters that provide additional implementation details, such

as header and source file names and paths of build resources.
Priority Defines the entry priority relative to other entries in the table. The

value can range from 0 to 100, with 0 being the highest priority. If
multiple entries have the same priority, the code generator uses the
first match with that priority.

When the code generator looks for a match in a code replacement library, it creates and
populates a call site object with the function or operator conceptual representation. If a
match exists, the code generator uses the matched code replacement entry populated
with the implementation representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the
order that the tables appear in the library. If the code generator finds multiple matches
within a table, the priority determines the match. The code generator uses a higher-
priority entry over a similar entry with a lower priority.

Code Replacement Terminology
Term Definition
Cache hit A code replacement entry for a function or operator,

defined in the specified code replacement library,
for which the code generator finds a match.

Cache miss A conceptual representation of a function or
operator for which the code generator does not find
a match.

22 Code Replacement for MATLAB Code

22-4

Term Definition
Call site object Conceptual representation of a function or operator

that the code generator uses when it encounters a
call site for a function or operator. The code
generator uses the object to query the code
replacement library for a conceptual representation
match. If a match exists, the code generator returns
a code replacement object, fully populated with the
conceptual representation, implementation
representation, and priority, and uses that object to
generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions
and operators. When configured to use a code
replacement library, the code generator uses
criteria defined in the library to search for matches.
If a match is found, the code generator replaces
code that it generates by default with application-
specific code defined in the library.

Code replacement table One or more code replacement table entries.
Provides a way to group related or shared entries
for use in different libraries.

Code replacement entry Represents a potential replacement for a function
or operator. Maps a conceptual representation of a
function or operator to an implementation
representation and priority.

Conceptual argument Represents an input or output argument for a
function or operator being replaced. Conceptual
arguments observe naming conventions ('y1',
'u1', 'u2', ...) and data types familiar to the code
generator.

 What Is Code Replacement?

22-5

Term Definition
Conceptual representation Represents match criteria that the code generator

uses to qualify functions and operators for
replacement. Consists of:

• Function or operator name or key
• Conceptual arguments with type, dimension, and

complexity specification for inputs and output
• Attributes, such as an algorithm and fixed-point

saturation and rounding modes
Implementation argument Represents an input or output argument for a C or

C++ replacement function. Implementation
arguments observe C/C++ name and data type
specifications.

Implementation representation Specifies C or C++ replacement function prototype.
Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type, type
qualifiers, and complexity for the function inputs
and output

• Parameters that provide build information, such
as header and source file names and paths of
build resources and compile and link flags

Key Identifies a function or operator that is being
replaced. A function name or key appears in the
conceptual representation of a code replacement
entry. The key RTW_OP_ADD identifies the addition
operator.

22 Code Replacement for MATLAB Code

22-6

Term Definition
Priority Defines the match priority for a code replacement

entry relative to other entries, which have the same
name and conceptual argument list, within a code
replacement library. The priority can range from 0
to 100, with 0 being the highest priority. The default
is 100. If a library provides two implementations for
a function or operator, the implementation with the
higher priority shadows the one with the lower
priority.

Code Replacement Limitations
Code replacement verification — It is possible that code replacement behaves differently
than you expect. For example, data types that you observe in code generator input might
not match what the code generator uses as intermediate data types during an operation.
Verify code replacements by examining generated code.

Code replacement for matrices — Code replacement libraries do not support Dynamic and
Symbolic sized matrices.

See Also

Related Examples
• “Choose a Code Replacement Library” on page 22-8
• “Replace Code Generated from MATLAB Code” on page 22-10

 See Also

22-7

Choose a Code Replacement Library
In this section...
“About Choosing a Code Replacement Library” on page 22-8
“Explore Available Code Replacement Libraries” on page 22-8
“Explore Code Replacement Library Contents” on page 22-8

About Choosing a Code Replacement Library
By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that
MathWorks provides in “What Is Code Replacement?” on page 22-2.

• See “Explore Available Code Replacement Libraries” on page 22-8.
2 Explore the contents of the library. See “Explore Code Replacement Library

Contents” on page 22-8.

If you do not find a suitable library and you have an Embedded Coder license, you can
create a custom code replacement library. For more information, see “What Is Code
Replacement Customization?” (Embedded Coder).

Explore Available Code Replacement Libraries
You can select the code replacement library to use for code generation in a project, on the
Custom Code tab, by setting the Code replacement library parameter. Alternatively, in
a code configuration object, set the CodeReplacementLibrary parameter.

Explore Code Replacement Library Contents
Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.
>> crviewer

22 Code Replacement for MATLAB Code

22-8

The viewer opens. To view the content of a specific library, specify the name of the
library as an argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about
the library in the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a
table from the list. In the middle pane, the viewer displays the function and operator
entries that are in that table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information
from the table entry in the right pane.

If you select an operator entry that specifies net slope fixed-point parameters
(instantiated from entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an
additional tab that shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

See Also

Related Examples
• “What Is Code Replacement?” on page 22-2
• “Replace Code Generated from MATLAB Code” on page 22-10

 See Also

22-9

Replace Code Generated from MATLAB Code
This example shows how to replace generated code using a code replacement library.
Code replacement is a technique for changing the code that the code generator produces
for functions and operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that you have installed required software. Required software is:

• MATLAB
• MATLAB Coder
• C compiler

Some code replacement libraries available in your development environment require
Embedded Coder.

For instructions on installing MathWorks products, see the MATLAB installation
documentation. If you have installed MATLAB and want to see which other
MathWorks products are installed, in the MATLAB Command Window, enter ver.

2 Identify an existing MATLAB function or create a new MATLAB function for which
you want the code generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code
generation for the MATLAB function. Do one of the following:

• In a project, on the Custom Code tab, set the Code replacement library
parameter.

• In a code configuration object, set the CodeReplacementLibrary parameter.
2 Configure the code generator to produce only code. Before you build an executable,

verify your code replacements. Do one of the following:

• In a project, in the Generate dialog box, select the Generate code only check
box.

22 Code Replacement for MATLAB Code

22-10

• In a code configuration object, set the GenCodeOnly parameter.

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include
a code replacement section in the code generation report. The additional information
helps you verify code replacements. For more information, see “Verify Code
Replacements” (Embedded Coder).

Generate Replacement Code

Generate C/C++ code from the MATLAB code. If you configured the code generator to
produce a report, generate a code generation report. For example, in the MATLAB Coder
app, on the Generate Code page, click Generate. Or, at the command prompt, enter:

codegen -report myFunction -args {5} -config cfg

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. Code replacement can
sometimes behave differently than you expect. For example, data types that you observe
in the code generator input might not match what the code generator uses as
intermediate data types during an operation.

See Also

Related Examples
• “What Is Code Replacement?” on page 22-2
• “Choose a Code Replacement Library” on page 22-8
• “Configure Build Settings” on page 20-28

 See Also

22-11

Custom Toolchain Registration

• “Custom Toolchain Registration” on page 23-2
• “About coder.make.ToolchainInfo” on page 23-6
• “Create and Edit Toolchain Definition File” on page 23-8
• “Toolchain Definition File with Commentary” on page 23-10
• “Create and Validate ToolchainInfo Object” on page 23-16
• “Register the Custom Toolchain” on page 23-17
• “Use the Custom Toolchain” on page 23-19
• “Troubleshooting Custom Toolchain Validation” on page 23-20
• “Prevent Circular Data Dependencies with One-Pass or Single-Pass Linkers”

on page 23-25
• “Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain”

on page 23-26

23

Custom Toolchain Registration
In this section...
“What Is a Custom Toolchain?” on page 23-2
“What Is a Factory Toolchain?” on page 23-2
“What is a Toolchain Definition?” on page 23-3
“Key Terms” on page 23-4
“Typical Workflow” on page 23-4

What Is a Custom Toolchain?
You can add support for software build tools to MATLAB Coder software. For example,
you can add support for a third-party compiler/linker/archiver (toolchain) to your MATLAB
Coder software. This customization can be useful when the added toolchain has support
and optimizations for a specific type of processor or hardware. These added toolchains
are called custom toolchains.

What Is a Factory Toolchain?
MATLAB Coder software includes factory-default support for a set of toolchains. These
toolchains are called factory toolchains to distinguish them from custom toolchains. If you
install factory toolchains on your host computer, MATLAB Coder can automatically detect
and use them. Support for factory toolchains depends on the host operating system.
Toolchains are identified by the compiler in the toolchain. A complete list of supported
toolchains (compilers) is available at https://www.mathworks.com/support/compilers/.

23 Custom Toolchain Registration

23-2

https://www.mathworks.com/support/compilers/

What is a Toolchain Definition?

A toolchain definition provides MATLAB Coder software with information about the
software build tools, such as the compiler, linker, archiver. MATLAB Coder software uses
this information, along with a configuration object or project, to build the generated code.
This approach can be used when generating static libraries, dynamic libraries, and
executables. MEX-file generation uses a different approach. To specify which compiler to
use for MEX-function generation, see “Setting Up the C or C++ Compiler”.

MATLAB Coder software comes with a set of registered factory toolchain definitions. You
can create and register custom toolchain definitions. You can customize and manage
toolchain definitions. You can share custom toolchain definitions with others running
MATLAB Coder software.

If you install toolchain software for one of the factory toolchains, MATLAB Coder can
automatically detect and use the toolchain software. For more information about factory

 Custom Toolchain Registration

23-3

toolchains in MATLAB Coder software, see https://www.mathworks.com/support/
compilers/.

Key Terms
It is helpful to understand the following concepts:

• Toolchain — Software that can create a binary executable and libraries from source
code. A toolchain can include:

• Prebuild tools that set up the environment
• Build tools, such as an Assembler, C compiler, C++ Compiler, Linker, Archiver, that

build a binary executable from source code
• Postbuild tools that download and run the executable on the hardware, and clean

up the environment
• Custom toolchain — A toolchain that you define and register for use by MATLAB Coder

software
• Factory toolchains — Toolchains that are predefined and registered in MATLAB Coder

software
• Registered toolchains — The sum of custom and factory toolchain definitions

registered in MATLAB Coder software
• ToolchainInfo object — An instance of the coder.make.ToolchainInfo class that

contains a toolchain definition. You save the ToolchainInfo object as a MAT file,
register the file with MATLAB Coder. Then you can configure MATLAB Coder to load
the ToolchainInfo object during code generation.

• Toolchain definition file — A MATLAB file that defines the properties of a toolchain.
You use this file to create a ToolchainInfo object.

Note This documentation also refers to the ToolchainInfo object as a
coder.make.ToolchainInfo object.

Typical Workflow
The typical workflow for creating and using a custom toolchain definition is:

1 “Create and Edit Toolchain Definition File” on page 23-8

23 Custom Toolchain Registration

23-4

https://www.mathworks.com/support/compilers/
https://www.mathworks.com/support/compilers/

a Create a toolchain definition file that returns a coder.make.ToolchainInfo
object.

b Update the file with information about the custom toolchain.
2 “Create and Validate ToolchainInfo Object” on page 23-16

a Use the toolchain definition file to create a ToolchainInfo object in the
MATLAB workspace.

b Validate the ToolchainInfo object.
c Fix validation issues by updating the toolchain definition file, and creating/

validating the updated ToolchainInfo object.
d Create a valid ToolchainInfo object and save it to a MAT-file.

3 “Register the Custom Toolchain” on page 23-17

a Create an rtwTargetInfo.m file and update it with information about the MAT-file.
b Register the custom toolchain in MATLAB Coder software using the

rtwTargetInfo.m file.
4 “Use the Custom Toolchain” on page 23-19

a Configure MATLAB Coder software to use the custom toolchain.
b Build and run an executable using the custom toolchain.

This workflow requires an iterative approach, with multiple cycles to arrive at a finished
version of the custom ToolchainInfo object. You will need access to detailed
information about the custom toolchain.

For a tutorial example of this workflow, see “Adding a Custom Toolchain” on page 20-225.

For more information about the ToolchainInfo object, see “About
coder.make.ToolchainInfo” on page 23-6.

 Custom Toolchain Registration

23-5

About coder.make.ToolchainInfo
The following properties in coder.make.ToolchainInfo represent your custom
toolchain:

• coder.make.ToolchainInfo.PrebuildTools – Tools used before compiling the
source files into object files.

• coder.make.ToolchainInfo.BuildTools – Tools used for compiling source files
and linking/archiving them to form a binary.

• coder.make.ToolchainInfo.PostbuildTools – Tools used after the linker/
archiver is invoked.

• coder.make.ToolchainInfo.BuilderApplication – Tools used to call the
PrebuildTools, BuildTools, and PostbuildTools. For example: gmake, nmake.

Each configuration in coder.make.ToolchainInfo.BuildConfigurations applies a
set of options to the build tools specified by
coder.make.ToolchainInfo.BuildTools. By default, these configurations alter the
way the assembler, compiler, linker, and archiver operate to produce faster builds, faster
runs, and debug.

If you instantiate coder.make.ToolchainInfo to support building sources that involve
assembler, C, or C++ files, the coder.make.ToolchainInfo object contains the default
set of build tools shown here.

23 Custom Toolchain Registration

23-6

 About coder.make.ToolchainInfo

23-7

Create and Edit Toolchain Definition File
This example shows how to create a toolchain definition file by copying and pasting an
example file. You then update the relevant elements, and add or remove other elements as
needed for your custom toolchain. This is the first step in the typical workflow for
creating and using a custom toolchain definition. For more information about the
workflow, see “Typical Workflow” on page 23-4.

1 Review the list of registered toolchains. In the MATLAB Command Window, enter:

coder.make.getToolchains

The resulting output includes the list of factory toolchains for your host computer
environment, and previously-registered custom toolchains. For example, the following
output shows the factory toolchains for a host computer running 64-bit Windows and
no custom toolchains.

ans =

 'Microsoft Visual C++ 2012 v11.0 | nmake (64-bit Windows)'
 'Microsoft Visual C++ 2010 v10.0 | nmake (64-bit Windows)'
 'Microsoft Visual C++ 2008 v9.0 | nmake (64-bit Windows)'
 'Microsoft Windows SDK v7.1 | nmake (64-bit Windows)'

2 Create the folder of example files by opening the “Adding a Custom Toolchain” on
page 20-225 example.

3 Copy the example toolchain definition file to another location and rename it. For
example:

copyfile('intel_tc.m','../newtoolchn_tc.m')
4 Open the new toolchain definition file in the MATLAB Editor. For example:

cd ../
edit newtoolchn_tc.m

5 Edit the contents of the new toolchain definition file, providing information for the
custom toolchain.

For expanded commentary on an example toolchain definition file, see “Toolchain
Definition File with Commentary” on page 23-10.

For reference information about the class attributes and methods you can use in the
toolchain definition file, see coder.make.ToolchainInfo.

23 Custom Toolchain Registration

23-8

6 Save your changes to the toolchain definition file.

Next, create and validate a coder.make.ToolchainInfo object from the toolchain
definition file, as described in “Create and Validate ToolchainInfo Object” on page 23-16

 Create and Edit Toolchain Definition File

23-9

Toolchain Definition File with Commentary

In this section...
“Steps Involved in Writing a Toolchain Definition File” on page 23-10
“Write a Function That Creates a ToolchainInfo Object” on page 23-10
“Setup” on page 23-11
“Macros” on page 23-12
“C Compiler” on page 23-12
“C++ Compiler” on page 23-13
“Linker” on page 23-13
“Archiver” on page 23-14
“Builder” on page 23-14
“Build Configurations” on page 23-14

Steps Involved in Writing a Toolchain Definition File
This example shows how to create a toolchain definition file and explains each of the
steps involved. The example is based on the definition file used in “Adding a Custom
Toolchain” on page 20-225. For more information about the workflow, see “Typical
Workflow” on page 23-4.

Write a Function That Creates a ToolchainInfo Object
function tc = intel_tc
% INTEL_TC Creates a Intel v12.1 ToolchainInfo object.
% This can be used as a template to add other toolchains on Windows.

% Copyright 2012 The MathWorks,Inc.

tc = coder.make.ToolchainInfo('BuildArtifact','nmake makefile');
tc.Name = 'Intel v12.1 | nmake makefile (64-bit Windows)';
tc.Platform = 'win64';
tc.SupportedVersion = '12.1';

tc.addAttribute('TransformPathsWithSpaces');
tc.addAttribute('RequiresCommandFile');
tc.addAttribute('RequiresBatchFile');

The preceding code:

23 Custom Toolchain Registration

23-10

• Defines a function, intel_tc, that creates a coder.make.ToolchainInfo object
and assigns it to a handle, tc.

• Overrides the BuildArtifact property to create a makefile for nmake instead of for
gmake.

• Assigns values to the Name, Platform, and SupportedVersion properties for
informational and display purposes.

• Adds three custom attributes to Attributes property that are required by this
toolchain.

• 'TransformPathsWithSpaces' converts paths that contain spaces to short
Windows paths.

• 'RequiresCommandFile' generates a linker command file that calls the linker. This
avoids problems with calls that exceed the command line limit of 256 characters.

• 'RequiresBatchFile' creates a .bat file that calls the builder application.

Setup
% ------------------------------
% Setup
% ------------------------------
% Below we are using %ICPP_COMPILER12% as root folder where Intel Compiler is
% installed. You can either set an environment variable or give full path to the
% compilervars.bat file
tc.ShellSetup{1} = 'call %ICPP_COMPILER12%\bin\compilervars.bat intel64';

The preceding code:

• Assigns a system call to the ShellSetup property.
• The coder.make.ToolchainInfo.setup method runs these system calls before it

runs tools specified by PrebuildTools property.
• Calls compilervars.bat, which is shipped with the Intel® compilers, to get the set

of environment variables for Intel compiler and linkers.

 Toolchain Definition File with Commentary

23-11

Macros
% ------------------------------
% Macros
% ------------------------------
tc.addMacro('MW_EXTERNLIB_DIR',['$(MATLAB_ROOT)\extern\lib\' tc.Platform '\microsoft']);
tc.addMacro('MW_LIB_DIR',['$(MATLAB_ROOT)\lib\' tc.Platform]);
tc.addMacro('CFLAGS_ADDITIONAL','-D_CRT_SECURE_NO_WARNINGS');
tc.addMacro('CPPFLAGS_ADDITIONAL','-EHs -D_CRT_SECURE_NO_WARNINGS');
tc.addMacro('LIBS_TOOLCHAIN','$(conlibs)');
tc.addMacro('CVARSFLAG','');

tc.addIntrinsicMacros({'ldebug','conflags','cflags'});

The preceding code:

• Uses coder.make.ToolchainInfo.addMacro method to define macros and assign
values to them.

• Uses coder.make.ToolchainInfo.addIntrinsicMacros to define macros whose
values are specified by the toolchain, outside the scope of your MathWorks software.

C Compiler
% ------------------------------
% C Compiler
% ------------------------------

tool = tc.getBuildTool('C Compiler');

tool.setName('Intel C Compiler');
tool.setCommand('icl');
tool.setPath('');

tool.setDirective('IncludeSearchPath','-I');
tool.setDirective('PreprocessorDefine','-D');
tool.setDirective('OutputFlag','-Fo');
tool.setDirective('Debug','-Zi');

tool.setFileExtension('Source','.c');
tool.setFileExtension('Header','.h');
tool.setFileExtension('Object','.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C compiler
• Assigns values to the build tool object properties
• Creates directives and file extensions using name-value pairs
• Sets a command pattern.

23 Custom Toolchain Registration

23-12

• You can use setCommandPattern method to control the use of space characters in
commands. For example, the two bars in OUTPUT_FLAG<||>OUTPUT do not permit a
space character between the output flag and the output.

C++ Compiler
% ------------------------------
% C++ Compiler
% ------------------------------

tool = tc.getBuildTool('C++ Compiler');

tool.setName('Intel C++ Compiler');
tool.setCommand('icl');
tool.setPath('');

tool.setDirective('IncludeSearchPath','-I');
tool.setDirective('PreprocessorDefine','-D');
tool.setDirective('OutputFlag','-Fo');
tool.setDirective('Debug','-Zi');

tool.setFileExtension('Source','.cpp');
tool.setFileExtension('Header','.hpp');
tool.setFileExtension('Object','.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C++ compiler
• Is very similar to the build tool object for the C compiler

Linker
% ------------------------------
% Linker
% ------------------------------

tool = tc.getBuildTool('Linker');

tool.setName('Intel C/C++ Linker');
tool.setCommand('xilink');
tool.setPath('');

tool.setDirective('Library','-L');
tool.setDirective('LibrarySearchPath','-I');
tool.setDirective('OutputFlag','-out:');
tool.setDirective('Debug','');

tool.setFileExtension('Executable','.exe');
tool.setFileExtension('Shared Library','.dll');

tool.DerivedFileExtensions = horzcat(tool.DerivedFileExtensions,{ ...
 ['_' tc.Platform '.lib'],...
 ['_' tc.Platform '.exp']});

 Toolchain Definition File with Commentary

23-13

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the linker
• Assigns values to the coder.make.BuildTool.DerivedFileExtensions

Archiver
% ------------------------------
% Archiver
% ------------------------------

tool = tc.getBuildTool('Archiver');

tool.setName('Intel C/C++ Archiver');
tool.setCommand('xilib');
tool.setPath('');

tool.setDirective('OutputFlag','-out:');

tool.setFileExtension('Static Library','.lib');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the archiver.

Builder
% ------------------------------
% Builder
% ------------------------------

tc.setBuilderApplication(tc.Platform);

The preceding code:

• Gives the value of coder.make.ToolchainInfo.Platform as the argument for
setting the value of BuilderApplication. This sets the default values of the builder
application based on the platform. For example, when Platform is win64, this line
sets the delete command to 'del'; the display command to 'echo', the file separator
to '\', and the include directive to '!include'.

Build Configurations
% --
% BUILD CONFIGURATIONS

23 Custom Toolchain Registration

23-14

% --

optimsOffOpts = {'/c /Od'};
optimsOnOpts = {'/c /O2'};
cCompilerOpts = '$(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL)';
cppCompilerOpts = '$(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL)';
linkerOpts = {'$(ldebug) $(conflags) $(LIBS_TOOLCHAIN)'};
sharedLinkerOpts = horzcat(linkerOpts,'-dll -def:$(DEF_FILE)');
archiverOpts = {'/nologo'};

% Get the debug flag per build tool
debugFlag.CCompiler = '$(CDEBUG)';
debugFlag.CppCompiler = '$(CPPDEBUG)';
debugFlag.Linker = '$(LDDEBUG)';
debugFlag.Archiver = '$(ARDEBUG)';

cfg = tc.getBuildConfiguration('Faster Builds');
cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts));
cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts));
cfg.setOption('Linker',linkerOpts);
cfg.setOption('Shared Library Linker',sharedLinkerOpts);
cfg.setOption('Archiver',archiverOpts);

cfg = tc.getBuildConfiguration('Faster Runs');
cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOnOpts));
cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOnOpts));
cfg.setOption('Linker',linkerOpts);
cfg.setOption('Shared Library Linker',sharedLinkerOpts);
cfg.setOption('Archiver',archiverOpts);

cfg = tc.getBuildConfiguration('Debug');
cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts,debugFlag.CCompiler));
cfg.setOption ...
('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts,debugFlag.CppCompiler));
cfg.setOption('Linker',horzcat(linkerOpts,debugFlag.Linker));
cfg.setOption('Shared Library Linker',horzcat(sharedLinkerOpts,debugFlag.Linker));
cfg.setOption('Archiver',horzcat(archiverOpts,debugFlag.Archiver));

tc.setBuildConfigurationOption('all','Download','');
tc.setBuildConfigurationOption('all','Execute','');
tc.setBuildConfigurationOption('all','Make Tool','-f $(MAKEFILE)');

The preceding code:

• Creates each build configuration object.
• Sets the value of each option for a given build configuration object.

 Toolchain Definition File with Commentary

23-15

Create and Validate ToolchainInfo Object
This example shows how to create and validate a coder.make.ToolchainInfo object
from the toolchain definition file.

Before you create and validate a ToolchainInfo object, create and edit a toolchain
definition file, as described in “Create and Edit Toolchain Definition File” on page 23-8.

1 Use the function defined by the toolchain definition file to create a
coder.make.ToolchainInfo object and assign the object to a handle. For
example, the MATLAB Command Window, enter:

tc = newtoolchn_tc
2 Use the coder.make.ToolchainInfo.validate method with the

coder.make.ToolchainInfo object. For example, enter:

tc.validate

If the coder.make.ToolchainInfo object contains errors, the validation method
displays error messages in the MATLAB Command Window.

3 Search the toolchain definition file for items named in the error message (without
quotes) and update the values.

4 Repeat the process of creating and validating the ToolchainInfo object until there
are no more errors.

Next, register the custom toolchain, as described in “Register the Custom Toolchain” on
page 23-17.

For more information, see “Troubleshooting Custom Toolchain Validation” on page 23-
20.

23 Custom Toolchain Registration

23-16

Register the Custom Toolchain
Before you register the custom toolchain, create and validate the ToolchainInfo object,
as described in “Create and Validate ToolchainInfo Object” on page 23-16.

1 Use the save function to create a MATLAB-formatted binary file (MAT-file) from the
coder.make.ToolchainInfo object in the MATLAB workspace variables. For
example, enter:

save newtoolchn_tc tc

The new .mat file appears in the Current Folder.
2 Create a new MATLAB function called rtwTargetInfo.m.
3 Copy and paste the following text into rtwTargetInfo.m:

function rtwTargetInfo(tr)
% RTWTARGETINFO Target info callback

tr.registerTargetInfo(@loc_createToolchain);

end

% ---
% Create the ToolchainInfoRegistry entries
% ---
function config = loc_createToolchain

 config(1) = coder.make.ToolchainInfoRegistry;
 config(1).Name = '<mytoolchain v#.#> | <buildartifact (platform)>';
 config(1).FileName = fullfile('<yourdir>','<mytoolchain_tc.mat>');
 config(1).TargetHWDeviceType = {'<devicetype>'};
 config(1).Platform = {'<win64>'};

% To register more custom toolchains:
% 1) Copy and paste the five preceding 'config' lines.
% 2) Increment the index of config().
% 3) Replace the values between angle brackets.
% 4) Remove the angle brackets.

end

4 Replace the items between angle brackets with real values, and remove the angle
brackets:

• Name — Provide a unique name for the toolchain definition file using the
recommended format: name, version number, build artifact, and platform.

• FileName — The full path and name of the MAT-file.
• TargetHWDeviceType — The platform or platforms supported by the custom

toolchain.

 Register the Custom Toolchain

23-17

• Platform — The host operating system supported by the custom toolchain. For
all platforms, use the following wildcard: '*'

For more information, refer to the corresponding ToolchainInfo properties in
“Properties”.

Here are some example entries for an Intel toolchain that uses nmake, based on
“Adding a Custom Toolchain” on page 20-225:
config(1) = coder.make.ToolchainInfoRegistry;
config(1).Name = 'Intel v12.1 | nmake makefile (64-bit Windows)';
config(1).FileName = fullfile(fileparts(mfilename('fullpath')),'intel_tc.mat');
config(1).TargetHWDeviceType = {'ARM9','ARM10','ARM11'};
config(1).Platform = {computer('arch')};

5 Save the new rtwTargetInfo.m file to a folder that is on the MATLAB path.
6 List all of the rtwTargetInfo.m files on the MATLAB path. Using the MATLAB

Command Window, enter:

which -all rtwTargetInfo
7 Verify that the rtwTargetInfo.m file you just created appears in the list of files.
8 Reset TargetRegistry so it picks up the custom toolchain from the

rtwTargetInfo.m file:

RTW.TargetRegistry.getInstance('reset');

Next, use the custom toolchain, as described in “Use the Custom Toolchain” on page 23-
19.

23 Custom Toolchain Registration

23-18

Use the Custom Toolchain
You can use a custom toolchain when generating a static or dynamic library or an
executable. You cannot use one to generate MEX functions. To specify which compiler to
use for MEX-function generation, see “Setting Up the C or C++ Compiler”).

Before using the custom toolchain, register the custom toolchain, as described in
“Register the Custom Toolchain” on page 23-17.

1 Use coder.config to create a configuration object. For example:

cfg = coder.config('exe');
2 Get the value of config(end).Name from the rtwTargetInfo.m file. Then assign

that value to the cfg.Toolchain property:

cfg.Toolchain = 'mytoolchain v#.#' | 'buildartifact (platform)'

With the “Adding a Custom Toolchain” on page 20-225 example, this would look like:
cfg.Toolchain = 'Intel v12.1 | nmake makefile (64-bit Windows)';

3 Perform other steps required to generate code, as described in “Deployment”. For
example, specify the path and file name of the source code:

cfg.CustomSource = 'filename_main.c';
cfg.CustomInclude = pwd;

4 When you generate code using the codegen function, specify the configuration
object that uses the custom toolchain. For example:

codegen -config cfg filename

You have completed the full workflow of creating and using a custom toolchain described
in “Custom Toolchain Registration” on page 23-2.

 Use the Custom Toolchain

23-19

Troubleshooting Custom Toolchain Validation
In this section...
“Build Tool Command Path Incorrect” on page 23-20
“Build Tool Not in System Path” on page 23-20
“Tool Path Does Not Exist” on page 23-21
“Path Incompatible with Builder or Build Tool” on page 23-21
“Unsupported Platform” on page 23-22
“Toolchain is Not installed” on page 23-22
“Project or Configuration is Using the Template Makefile” on page 23-22
“Skipped Validation of Build Tool “Download” or “Execute”” on page 23-23

Build Tool Command Path Incorrect
If the path or command file name are not correct, validation displays:

Cannot find file 'path+command'. The file does not exist.

Consider the following two lines from an example toolchain definition file:

tool.setCommand('abc');
tool.setPath('/toolchain/');

To correct this issue:

• Check that the build tool is installed.
• Review the arguments given for the tool.setCommand and tool.setPath lines in

toolchain definition file.

Build Tool Not in System Path
When the build tool’s path is not provided and the command file is not in the system path,
validation displays:

Cannot find 'command'. It is not in the system path.

Consider the following two lines from an example toolchain definition file:

23 Custom Toolchain Registration

23-20

tool.setCommand('icl');
tool.setPath('');

Because the argument for setPath() is '' instead of an absolute path, the build tool
must be on the system path.

To correct this issue:

• Use coder.make.ToolchainInfo.ShellSetup property to add the path to the
toolchain installation.

• Use your system setup to add the toolchain installation directory to system
environment path.

Otherwise, replace '' with the absolute path of the command file.

Tool Path Does Not Exist
If the path of the build tool path is provided, but does not exist, validation displays:

Path 'toolpath' does not exist.

To correct this issue:

• Check the actual path of the build tool. Then, update the value of
coder.make.BuildTool.setPath in the toolchain definition file.

• Use your system setup to add the toolchain installation directory to system
environment path. Then, set the value of coder.make.BuildTool.setPath to ''.

Path Incompatible with Builder or Build Tool
If the file separator character in the build tool path (for example '/' or '\') is not
compatible with the builder application, validation can display:

Path 'toolpath' does not exist.

To correct this issue, check that the file separators in the toolchain definition match the
'FileSeparator' accepted by the tc.BuilderApplication when the specified path
is used by the make file. Then, update the value of coder.make.BuildTool.setPath in
the toolchain definition file.

 Troubleshooting Custom Toolchain Validation

23-21

Most toolchains and build tools (LCC being a notable exception) recognize '/' as a file
separator. To get your custom toolchain definitions to behave as expected, try using '/'
as the file separator.

Unsupported Platform
If the toolchain is not supported on the host computer platform, validation displays:
Toolchain 'tlchn' is supported on a 'pltfrma' platform. However, you are running on a 'pltfrmb' platform.

To correct this issue:

• Check the coder.make.ToolchainInfo.Platform property in your toolchain
definition file for errors.

• Update or replace the toolchain definition file with one that supports your host
computer platform.

• Change host computer platforms.

Toolchain is Not installed
If the toolchain is not installed, validation displays:

Toolchain is not installed

To correct this issue, install the expected toolchain, or verify that you selected the correct
toolchain, as described in “Use the Custom Toolchain” on page 23-19.

Project or Configuration is Using the Template Makefile
By default, MATLAB Coder tries to use the selected build toolchain to build the generated
code. However, if the makefile configuration options detailed in the following sections are
not set to their default value, MATLAB Coder cannot use the toolchain and reverts to
using the template makefile approach for building the generated code.

23 Custom Toolchain Registration

23-22

MATLAB Coder Project Settings

Project Settings Dialog Box All Settings
Parameter Name

Default Setting

Generate makefile Yes
Make command make_rtw
Template makefile default_tmf
Compiler optimization level Off

Command-line Configuration Parameters for the codegen function

coder.CodeConfig or
coder.EmbeddedCodeConfig Parameter
Name

Default Value

GenerateMakefile 'true'
MakeCommand 'make_rtw'
TemplateMakefile 'default_tmf'
CCompilerOptimization 'Off'

To use the toolchain approach, reset your configuration options to these default values
manually or:

• To reset settings for project project_name, at the MATLAB command line, enter:

coder.make.upgradeMATLABCoderProject(project_name)

• To reset command-line settings for configuration object config, create an updated
configuration object new_config and then use new_config with the codegen
function in subsequent builds. At the MATLAB command line, enter:

new_config = coder.make.upgradeCoderConfigObject(config);

Skipped Validation of Build Tool “Download” or “Execute”
Even though the Validation Report states “Toolchain Validation Result: Passed” it includes
one or both of the following notes:

Validation of build tool "Download"
Skipped. No "Download" build tool is specified.

 Troubleshooting Custom Toolchain Validation

23-23

Validation of build tool "Execute"
Skipped. "Execute" build tool "$(PRODUCT)" cannot be validated.

To correct this issue, update the toolchain definition file and re-register the updated
toolchain. For more information, see:

• “Create and Edit Toolchain Definition File” on page 23-8
• “Create and Validate ToolchainInfo Object” on page 23-16
• “Register the Custom Toolchain” on page 23-17

23 Custom Toolchain Registration

23-24

Prevent Circular Data Dependencies with One-Pass or
Single-Pass Linkers

Symptom: During a software build, a build error occurs; variables don't resolve correctly.

If your toolchain uses a one-pass or single-pass linker, prevent circular data dependencies
by adding the StartLibraryGroup and EndLibraryGroup linker directives to the toolchain
definition file.

For example, if the linker is like GNU gcc, then the directives are '-Wl,--start-
group' and '-Wl,--end-group', as shown here:

% ------------------------------
% Linker
% ------------------------------

tool = tc.getBuildTool('Linker');

tool.setName('GNU Linker');
tool.setCommand('gcc');
tool.setPath('');

tool.setDirective('Library', '-l');
tool.setDirective('LibrarySearchPath', '-L');
tool.setDirective('OutputFlag', '-o');
tool.setDirective('Debug', '-g');
tool.addDirective('StartLibraryGroup', {'-Wl,--start-group'});
tool.addDirective('EndLibraryGroup', {'-Wl,--end-group'});

tool.setFileExtension('Executable', '');
tool.setFileExtension('Shared Library', '.so');

 Prevent Circular Data Dependencies with One-Pass or Single-Pass Linkers

23-25

Build 32-bit DLL on 64-bit Windows® Platform Using
MSVC Toolchain

Register and use a Microsoft® Visual C/C++ (MSVC) toolchain running on a 64-bit
Windows® platform to compile a 32-bit dynamic link library (DLL). This example uses a
Microsoft® compiler. However, the concepts and programming interface apply for other
toolchains. Once you register the toolchain, you can select it from a list of toolchains, and
the code generator generates a makefile to build the code by using that toolchain. A
toolchain consists of several tools, such as a compiler, linker, and archiver with multiple
different configuration options. The toolchain compiles, links, and runs code on a
specified platform. To access the files that this example uses, click Open Script.

Check Platform and Determine MSVC Version

This code checks that the platform is supported and that you have a supported version of
Microsoft® Visual C/C++. The my_msvc_32bit_tc.m toolchain definition can use the
Microsoft® Visual Studio versions 9.0, 10.0, 11.0, 12.0, 14.0, or 15.0.

If you are not using a Windows® platform, or if you do not have a supported version of
Microsoft® Visual C/C++, the example generates only code and a makefile, without
running the generated makefile.

VersionNumbers = {'14.0'}; % Placeholder value
if ~ispc
 supportedCompilerInstalled = false;
else
 installed_compilers = mex.getCompilerConfigurations('C', 'Installed');
 MSVC_InstalledVersions = regexp({installed_compilers.Name}, 'Microsoft Visual C\+\+ 20\d\d');
 MSVC_InstalledVersions = cellfun(@(a)~isempty(a), MSVC_InstalledVersions);
 if ~any(MSVC_InstalledVersions)
 supportedCompilerInstalled = false;
 else
 VersionNumbers = {installed_compilers(MSVC_InstalledVersions).Version}';
 supportedCompilerInstalled = true;
 end
end

Function for the Dynamic Link Library

The example function for the dynamic link library, myMatlabFunction.m, multiplies a
number by two.

23 Custom Toolchain Registration

23-26

function y = myMatlabFunction(u)
% myMatlabFunction: Returns twice its input.
% Copyright 2017 The MathWorks, Inc.

%#codegen
assert(isa(u, 'double'), 'The input must be a "double".');
assert(all([1, 1] == size(u)), 'The input must be a scalar.');

y = double(u + u);

Create and Configure an MSVC Toolchain

The my_msvc_32bit_tc.m toolchain definition function takes in an argument containing
the Visual Studio version number. In this example, the commands that create and
configure this toolchain are:

tc = my_msvc_32bit_tc(VersionNumbers{end});
save my_msvc_32bit_tc tc;

Executing "H:\Examples\coder-ex19875030\my_msvc_32bit_tc"...
Executed "H:\Examples\coder-ex19875030\my_msvc_32bit_tc".

Register the Toolchain

Before the code generator can use a toolchain for the build process, the
RTW.TargetRegistry must contain the toolchain registration. This registration can
come from any rtwTargetInfo.m file on the MATLAB path. MATLAB will load a new
registration if the RTW.TargetRegistry is reset.

Create the rtwTargetInfo.m file from the corresponding text file
myRtwTargetInfo.txt.

function myRtwTargetInfo(tr)
%RTWTARGETINFO Registration file for custom toolchains.

% Copyright 2012-2017 The MathWorks, Inc.

tr.registerTargetInfo(@createToolchainRegistryFor32BitMSVCToolchain);

end

% ---

 Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain

23-27

% Create the ToolchainInfoRegistry entries
% ---
function config = createToolchainRegistryFor32BitMSVCToolchain

config(1) = coder.make.ToolchainInfoRegistry;
config(1).Name = 'Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)';
config(1).FileName = fullfile(fileparts(mfilename('fullpath')), 'my_msvc_32bit_tc.mat');
config(1).TargetHWDeviceType = {'Intel->x86-32 (Windows32)','AMD->x86-32 (Windows32)','Generic->Unspecified (assume 32-bit Generic)'};
config(1).Platform = {'win64'};

end

copyfile myRtwTargetInfo.txt rtwTargetInfo.m
RTW.TargetRegistry.getInstance('reset');

Create Code Generation Configuration Object

To generate the 32-bit dynamic link library (DLL), create a 'dll' code generation
configuration object. Specifying 'dll' directs the linker (a build tool in the toolchain) to
use "Shared Library" linker commands.

cfg = coder.config('dll');

Configure Code Generation for 32-bit Hardware

To successfully generate code that is compatible with 32-bit hardware, the generated
code must use the correct underlying C types (for example, int, signed char, and
others). These types are the basis for typedef statements for sized types (for example,
uint8, int16, and others). Set the configuration with the command:

cfg.HardwareImplementation.ProdHWDeviceType = ...
 'Generic->Unspecified (assume 32-bit Generic)';

Configure Code Generation to Use the 32-bit Toolchain

Set the name of the Toolchain property to match the Name that you specify in the
rtwTargetInfo.m file.

cfg.Toolchain = ...
 'Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)';

Select Verbose Status Reporting

To provide confirmation of compiler flags that the toolchain uses to build the DLL, select
verbose status reporting.

23 Custom Toolchain Registration

23-28

cfg.Verbose = true;

Determine Whether to Generate Code Only

When the Microsoft® compilers are not installed, the code generator generates only code
and the makefile. When the supported compilers are installed, the code generator builds
the 32-bit binary file.

if supportedCompilerInstalled
 cfg.GenCodeOnly = false;
else
 cfg.GenCodeOnly = true;
end

Generate Code and Build a DLL

To use the toolchain for code generation and build the DLL (if build is enabled), at the
command prompt, enter:

codegen -config cfg myMatlabFunction -args { double(1.0) };

Using toolchain: Microsoft Visual C++ 2015 (32 bit) | nmake makefile (64-bit Windows)
Creating 'H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction_rtw.mk' ...
Building 'myMatlabFunction': nmake -f myMatlabFunction_rtw.mk all

H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction>call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\Tools\..\..\VC\vcvarsall.bat" amd64_x86

Microsoft (R) Program Maintenance Utility Version 14.00.24210.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"myMatlabFunction_initialize.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction_initialize.c"
myMatlabFunction_initialize.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"myMatlabFunction_terminate.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction_terminate.c"
myMatlabFunction_terminate.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"myMatlabFunction.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\myMatlabFunction.c"
myMatlabFunction.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"rt_nonfinite.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\rt_nonfinite.c"
rt_nonfinite.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"rtGetNaN.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\rtGetNaN.c"
rtGetNaN.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"rtGetInf.obj" "H:\Examples\coder-ex19875030\codegen\dll\myMatlabFunction\rtGetInf.c"
rtGetInf.c
Creating dynamic library ".\myMatlabFunction.dll" ...
 link /MACHINE:X86 /DEBUG /DEBUGTYPE:cv /INCREMENTAL:NO /NOLOGO -subsystem:console,5.02 kernel32.lib ws2_32.lib mswsock.lib advapi32.lib -dll -def:myMatlabFunction.def -out:.\myMatlabFunction.dll @myMatlabFunction_rtw.rsp
 Creating library .\myMatlabFunction.lib and object .\myMatlabFunction.exp

 Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain

23-29

Created: .\myMatlabFunction.dll
Successfully generated all binary outputs.

Build and Run an Executable

If you have a supported version of the compiler installed, you can build the 32-bit
executable by using a C main function. You can use the executable to test that the
generated code works as expected.

cfge = coder.config('exe');
cfge.CustomInclude = pwd;
cfge.CustomSource = 'myMatlabFunction_main.c';
cfge.GenCodeOnly = cfg.GenCodeOnly;
cfge.Verbose = true;
cfge.Toolchain = ...
 'Microsoft 32 Bit Toolchain | nmake makefile (64-bit Windows)';
codegen -config cfge myMatlabFunction -args { double(1.0) };
if supportedCompilerInstalled
 pause(5); %wait for EXE to get generated
 system('myMatlabFunction 3.1416'); % Expected output: myMatlabFunction(3.1416) = 6.2832
end

Using toolchain: Microsoft Visual C++ 2015 (32 bit) | nmake makefile (64-bit Windows)
Creating 'H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction_rtw.mk' ...
Building 'myMatlabFunction': nmake -f myMatlabFunction_rtw.mk all

H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction>call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\Tools\..\..\VC\vcvarsall.bat" amd64_x86

Microsoft (R) Program Maintenance Utility Version 14.00.24210.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"myMatlabFunction_initialize.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction_initialize.c"
myMatlabFunction_initialize.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"myMatlabFunction_terminate.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction_terminate.c"
myMatlabFunction_terminate.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"myMatlabFunction.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\myMatlabFunction.c"
myMatlabFunction.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"rt_nonfinite.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\rt_nonfinite.c"
rt_nonfinite.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"rtGetNaN.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\rtGetNaN.c"
rtGetNaN.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"rtGetInf.obj" "H:\Examples\coder-ex19875030\codegen\exe\myMatlabFunction\rtGetInf.c"
rtGetInf.c
 cl -c -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -GS -D_X86_=1 -DWIN32 -D_WIN32 -W3 -D_WINNT -D_WIN32_WINNT=0x0502 -DNTDDI_VERSION=0x05020000 -D_WIN32_IE=0x0600 -DWINVER=0x0502 -D_MT -MTd -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DMODEL=myMatlabFunction -DHAVESTDIO -DUSE_RTMODEL -Fo"myMatlabFunction_main.obj" "H:\Examples\coder-ex19875030\myMatlabFunction_main.c"
myMatlabFunction_main.c

23 Custom Toolchain Registration

23-30

Creating standalone executable "H:\Examples\C7WFRE~L\myMatlabFunction.exe" ...
 link /MACHINE:X86 /DEBUG /DEBUGTYPE:cv /INCREMENTAL:NO /NOLOGO -subsystem:console,5.02 kernel32.lib ws2_32.lib mswsock.lib advapi32.lib -out:H:\Examples\C7WFRE~L\myMatlabFunction.exe @myMatlabFunction_rtw.rsp
Created: H:\Examples\C7WFRE~L\myMatlabFunction.exe
Successfully generated all binary outputs.
myMatlabFunction(3.1416) = 6.2832

Optional Step: Unregister the toolchain

To unregister the toolchain, enter:

delete ./rtwTargetInfo.m
RTW.TargetRegistry.getInstance('reset');

See Also

More About
• “Adding a Custom Toolchain” on page 20-225

 See Also

23-31

Deploying Generated Code

• “Using C/C++ Code That MATLAB Coder Generates” on page 24-2
• “C Compiler Considerations for Signed Integer Overflows” on page 24-3
• “Call a Generated C Static Library Function from C Code” on page 24-4
• “Call a C/C++ Static Library Function from MATLAB Code” on page 24-6
• “Call Generated C/C++ Functions” on page 24-8
• “Use a Dynamic Library in a Microsoft Visual Studio Project” on page 24-11
• “Incorporate Generated Code Using an Example Main Function” on page 24-15
• “Use an Example C Main in an Application” on page 24-18
• “Package Code for Other Development Environments” on page 24-41
• “Structure of Generated Example C/C++ Main Function” on page 24-46
• “Troubleshoot Failures in Deployed Code” on page 24-50
• “Using Dynamic Memory Allocation for an "Atoms" Simulation” on page 24-51
• “MATLAB Coder Supported Hardware” on page 24-58

24

Using C/C++ Code That MATLAB Coder Generates
With MATLAB Coder, you can generate C/C++ source code, a static library, a dynamically
linked library, or an executable. How you use the generated code depends on your goal.

Goal See
Package generated files into a zip file for
relocation to another development
environment.

“Package Code for Other Development
Environments” on page 24-41

Call generated code from MATLAB code. “Call Generated C/C++ Functions” on page
24-8

Generate an example C/C++ main function.
Use that function to integrate generated
code into a C application.

“Use an Example C Main in an Application”
on page 24-18

Integrate generated code into a C/C++
application.

“Use a Dynamic Library in a Microsoft
Visual Studio Project” on page 24-11

Integrate generated code that uses
emxArrays.

• “Use an Example C Main in an
Application” on page 24-18

• “C Code Interface for Arrays” on page 6-
16

Generate a C/C++ Executable. “Generating Standalone C/C++
Executables from MATLAB Code” on page
20-15

24 Deploying Generated Code

24-2

C Compiler Considerations for Signed Integer Overflows
The code generator reduces memory usage and enhances performance of code that it
produces by assuming that signed integer C operations wrap on overflow. A signed
integer overflow occurs when the result of an arithmetic operation is outside the range of
values that the output data type can represent. The C programming language does not
define the results of such operations. Some C compilers aggressively optimize signed
operations for in-range values at the expense of overflow conditions. Other compilers
preserve the full wrap-on-overflow behavior. For example, the gcc and MinGW compilers
provide an option to reliably wrap overflow on signed integer overflows.

When you generate code, if you use a supported compiler with the default options
configured by the code generator, the compiler preserves the full wrap-on-overflow
behavior. If you change the compiler options or compile the code in another development
environment, it is possible that the compiler does not preserve the full wrap-on-overflow
behavior. In this case, the executable program can produce unpredictable results.

If this issue is a concern for your application, consider one or more of the following
actions:

• Verify that the compiled code produces the expected results.
• If your compiler has an option to force wrapping behavior, turn it on. For example, for

the gcc compiler or a compiler based on gcc, such as MinGW, configure the build
process to use the compiler option -fwrapv.

• Choose a compiler that wraps on integer overflow.
• If you have Embedded Coder installed, develop and apply a custom code replacement

library to replace code generated for signed integers. For more information, see “Code
Replacement Customization” (Embedded Coder).

See Also

More About
• “Setting Up the C or C++ Compiler”
• Supported and Compatible Compilers

 C Compiler Considerations for Signed Integer Overflows

24-3

https://www.mathworks.com/support/compilers/current_release/
https://www.mathworks.com/support/compilers/current_release/

Call a Generated C Static Library Function from C Code
This example shows how to call a generated C library function from C code. It uses the C
static library function absval described in “Call a C/C++ Static Library Function from
MATLAB Code” on page 24-6.

1 Write a main function in C that does the following:

• Includes the generated header file, which contains the function prototypes for the
library function.

• Calls the initialize function before calling the library function for the first time.
• Calls the terminate function after calling the library function for the last time.

Here is an example of a C main function that calls the library function absval:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "absval.h"

int main(int argc, char *argv[])
{
 absval_initialize();

 printf("absval(-2.75)=%g\n", absval(-2.75));

 absval_terminate();

 return 0;
}

2 Configure your target to integrate this custom C main function with your generated
code, as described in “Configure Build for External C/C++ Code” on page 26-10.

For example, you can define a configuration object that points to the custom C code:

a Create a configuration object. At the MATLAB prompt, enter:

cfg = coder.config('exe');
b Set custom code properties on the configuration object, as in these example

commands:

24 Deploying Generated Code

24-4

cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';

3 Generate the C executable. Use the -args option to specify that the input is a real,
scalar double. At the MATLAB prompt, enter:

codegen -config cfg absval -args {0}
4 Call the executable. For example:

absval(-2.75)

See Also

More About
• “Call Generated C/C++ Functions” on page 24-8
• “Generating Standalone C/C++ Executables from MATLAB Code” on page 20-15

 See Also

24-5

Call a C/C++ Static Library Function from MATLAB Code
This example shows how to call a C/C++ library function from MATLAB code that is
suitable for code generation.

Suppose you have a MATLAB file absval.m that contains the following function:

function y = absval(u) %#codegen
 y = abs(u);
end

To generate a C static library function and call it from MATLAB code:

1 Generate the C library for absval.m.

codegen -config:lib absval -args {0.0}

Here are key points about this command:

• The -config:lib option instructs MATLAB Coder to generate absval as a C
static library function.

The default target language is C. To change the target language to C++, see
“Specify a Language for Code Generation” on page 20-30.

• MATLAB Coder creates the library absval.lib (or absval.a on Linus Torvalds'
Linux) and header file absval.h in the folder /emcprj/rtwlib/absval. It also
generates the functions absval_initialize and absval_terminate in the C
library.

• The -args option specifies the class, size, and complexity of the primary function
input u by example, as described in “Define Input Properties by Example at the
Command Line” on page 20-53.

2 Write a MATLAB function to call the generated library:

%#codegen
function y = callabsval

% Call the initialize function before
% calling the C function for the first time
coder.ceval('absval_initialize');

y = -2.75;
y = coder.ceval('absval',y);

24 Deploying Generated Code

24-6

% Call the terminate function after
% calling the C function for the last time
coder.ceval('absval_terminate');

The MATLAB function callabsval uses the interface coder.ceval to call the
generated C functions absval_initialize, absval, and absval_terminate. You
must use this function to call C functions from generated code. For more information,
see “Call Generated C/C++ Functions” on page 24-8.

3 Convert the code in callabsval.m to a MEX function so that you can call the C
library function absval directly from the MATLAB prompt.

a Generate the MEX function using codegen as follows:

• Create a code generation configuration object for a MEX function:

cfg = coder.config
• On Microsoft Windows platforms, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.lib codegen/lib/absval/absval.h

By default, this command creates, in the current folder, a MEX function
named callabsval_mex

On the Linus Torvalds' Linux platform, use this command:
codegen -config cfg callabsval codegen/lib/absval/absval.a codegen/lib/absval/absval.h

b At the MATLAB prompt, call the C library by running the MEX function. For
example, on Windows:

callabsval_mex

 Call a C/C++ Static Library Function from MATLAB Code

24-7

Call Generated C/C++ Functions
In this section...
“Conventions for Calling Functions in Generated Code” on page 24-8
“How to Call C/C++ Functions from MATLAB Code” on page 24-8
“Calling Initialize and Terminate Functions” on page 24-9
“Calling C/C++ Functions with Multiple Outputs” on page 24-10
“Calling C/C++ Functions that Return Arrays” on page 24-10

Conventions for Calling Functions in Generated Code
When generating code, MATLAB Coder uses the following calling conventions:

• Passes arrays by reference as inputs.
• Returns arrays by reference as outputs.
• Unless you optimize your code by using the same variable as both input and output,

passes scalars by value as inputs. In that case, MATLAB Coder passes the scalar by
reference.

• Returns scalars by value for single-output functions.
• Returns scalars by reference:

• For functions with multiple outputs.
• When you use the same variable as both input and output.

For more information about optimizing your code by using the same variable as both
input and output, see “Eliminate Redundant Copies of Function Inputs” on page 27-7.

How to Call C/C++ Functions from MATLAB Code
You can call the C/C++ functions generated for libraries as custom C/C++ code from
MATLAB functions that are suitable for code generation. For static libraries, you must use
the coder.ceval function to wrap the function calls, as in this example:

function y = callmyCFunction %#codegen
 y = 1.5;
 y = coder.ceval('myCFunction',y);
end

24 Deploying Generated Code

24-8

Here, the MATLAB function callmyCFunction calls the custom C function
myCFunction, which takes one input argument.

For dynamically-linked libraries, you can also use coder.ceval.

There are additional requirements for calling C/C++ functions from the MATLAB code in
the following situations:

• You want to call generated C/C++ libraries or executables from a MATLAB function.
Call housekeeping functions generated by MATLAB Coder, as described in “Calling
Initialize and Terminate Functions” on page 24-9.

• You want to call C/C++ functions that are generated from MATLAB functions that
have more than one output, as described in “Calling C/C++ Functions with Multiple
Outputs” on page 24-10.

• You want to call C/C++ functions that are generated from MATLAB functions that
return arrays, as described in “Calling C/C++ Functions that Return Arrays” on page
24-10.

Calling Initialize and Terminate Functions
When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates two housekeeping functions that you
must call along with the C/C++ function.

Housekeeping Function When to Call
primary_function_name_initialize Before you call your C/C++

executable or library function for the
first time

primary_function_name_terminate After you call your C/C++ executable
or library function for the last time

From C/C++ code, you can call these functions directly. However, to call them from
MATLAB code that is suitable for code generation, you must use the coder.ceval
function. coder.ceval is a MATLAB Coder function, but is not supported by the native
MATLAB language. Therefore, if your MATLAB code uses this function, use
coder.target to disable these calls in MATLAB and replace them with equivalent
functions.

 Call Generated C/C++ Functions

24-9

Calling C/C++ Functions with Multiple Outputs
Although MATLAB Coder can generate C/C++ code from MATLAB functions that have
multiple outputs, the generated C/C++ code cannot return multiple outputs directly
because the C/C++ language does not support multiple return values. Instead, you can
achieve the effect of returning multiple outputs from your C/C++ function by using
coder.wref with coder.ceval.

Calling C/C++ Functions that Return Arrays
Although MATLAB Coder can generate C/C++ code from MATLAB functions that return
values as arrays, the generated code cannot return arrays by value because the C/C++
language is limited to returning single, scalar values. Instead, you can return arrays from
your C/C++ function by reference as pointers by using coder.wref with coder.ceval.

24 Deploying Generated Code

24-10

Use a Dynamic Library in a Microsoft Visual Studio
Project

This example shows how to create and configure a simple Microsoft Visual Studio project
that calls a dynamic library (DLL) generated by MATLAB Coder. The example uses
Microsoft Visual Studio 2017. In other versions of Microsoft Visual Studio, you might
encounter a different procedure.

Generate a C Dynamic Library

1 Create a MATLAB function foo.

function c = foo(a)
%#codegen
 c = sqrt(a);
end

2 Save it as foo.m in a local writable folder, for example, C:\dll_test.
3 Use the same version of the same compiler to generate your DLL that you use to

build your Microsoft Visual Studio project. Otherwise, you can encounter linking
errors.

For this example, use the Microsoft Visual Studio 2017 compiler. To select the
compiler that the code generator uses, enter mex -setup at the command line. For
more information, see Supported and Compatible Compilers.

4 Generate a DLL for the MATLAB function foo. The -args option specifies that the
input a is a real double.

codegen -config:dll foo -args {0} -report

On Microsoft Windows systems, codegen generates a C dynamic library, foo.dll,
and supporting files in the default folder, C:\dll_test\codegen\dll\foo.

Create a Microsoft Visual Studio Project

In Microsoft Visual Studio, create an Empty Project:

1 Select File > New > Project.
2 Select Installed > Visual C++ > General and select Empty project. Enter a

project name.
3 Click OK.

 Use a Dynamic Library in a Microsoft Visual Studio Project

24-11

https://www.mathworks.com/support/compilers.html

Create a main.c File That Uses the Library

Write a main.c file that uses foo.dll. The main.c function must:

• Include the generated header files, which contain the function prototypes for the
library functions.

• Call the initialize function before calling the library function for the first time.
• Call the terminate function after calling the library function for the last time.

To create the file:

1 From the Solution Explorer, right-click the Source Files folder and select Add >
New Item

2 Select C++ File (.cpp). In the Name field, enter main.c.
3 Click Add.
4 Enter the code:

#include "foo.h"
#include "foo_initialize.h"
#include "foo_terminate.h"
#include <stdio.h>

int main()
{
 foo_initialize();
 printf("%f\n", foo(26));
 foo_terminate();
 getchar();
 return 0;
}

Configure the Platform

MATLAB Coder automatically uses a toolchain configured to build a 64-bit DLL. By
default, Microsoft Visual Studio is configured to build for the Win32 platform. You must
change the build platform to x64 to match the generated 64-bit DLL. In Microsoft Visual
Studio:

1 Select Build > Configuration Manager.
2 Set Active solution platform to x64.

24 Deploying Generated Code

24-12

If you want to build a 32-bit DLL on a 64-bit platform, you must use a 32-bit toolchain
definition. See “Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain”
on page 23-26.

Specify External Dependencies

To build your project, the compiler requires the associated header files. The linker
requires the generated .lib files.

1 Highlight your project in the Solution Explorer, and then select Project >
Properties.

2 The code generator produces types in the file rtwtypes.h, which includes the file
tmwtypes.h. This file is stored in matlabroot\extern\include, where
matlabroot is the root directory of the MATLAB installation. To return the root
directory, enter matlabroot in the Command Window.

Under Configuration Properties > C/C++ > General, add the folders C:
\dll_test\codegen\dll\foo and matlabroot\extern\include to Additional
Include Directories. Separate the entries with a semicolon.

3 Under Configuration Properties > Linker > Input, add foo.lib to Additional
Dependencies.

4 Under Configuration Properties > Linker > General, add the folder C:
\dll_test\codegen\dll\foo to Additional Library Directories.

Build and Run the Executable

1 Build the executable. Select Build > Build Solution.
2 Make the DLL accessible to the executable. Either copy foo.dll to the folder

containing the executable or add the folder containing foo.dll to your path.
3 Run the executable. Verify that the output appears as you expect.

See Also

More About
• “Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain” on page 23-

26
• “Call Generated C/C++ Functions” on page 24-8

 See Also

24-13

• “Generating C/C++ Dynamically Linked Libraries from MATLAB Code” on page 20-
10

24 Deploying Generated Code

24-14

Incorporate Generated Code Using an Example Main
Function

In this section...
“Workflow for Using an Example Main Function” on page 24-15
“Control Example Main Generation Using the MATLAB Coder App” on page 24-16
“Control Example Main Generation Using the Command-Line Interface” on page 24-17

When you build an application that uses generated C/C++ code, you must provide a C/C+
+ main function that calls the generated code.

By default, for code generation of C/C++ source code, static libraries, dynamic libraries,
and executables, MATLAB Coder generates an example C/C++ main function. This
function is a template that can help you incorporate generated C/C++ code into your
application. The example main function declares and initializes data, including
dynamically allocated data. It calls entry-point functions but does not use values that the
entry point functions return.

MATLAB Coder generates source and header files for the example main function in the
examples subfolder of the build folder. For C code generation, it generates the files
main.c and main.h. For C++ code generation, it generates the files main.cpp and
main.h.

Do not modify the files main.c and main.h in the examples subfolder. If you do, when
you regenerate code, MATLAB Coder does not regenerate the example main files. It
warns you that it detects changes to the generated files. Before using the example main
function, copy the example main source and header files to a location outside of the build
folder. Modify the files in the new location to meet the requirements of your application.

The packNGo function and the Package option of the MATLAB Coder app do not package
the example main source and header files when you generate the files using the default
configuration settings. To package the example main files, configure code generation to
generate and compile the example main function, generate your code, and then package
the build files.

Workflow for Using an Example Main Function
1 Prepare your MATLAB code for code generation.

 Incorporate Generated Code Using an Example Main Function

24-15

2 Check for run-time issues.
3 Make sure that example main generation is enabled.
4 Generate C/C++ code for the entry-point functions.
5 Copy the example main files from the examples subfolder to a different folder.
6 Modify the example main files in the new folder to meet the requirements of your

application.
7 Deploy the example main and generated code for the platform that you want.
8 Build the application.

For an example that shows how to generate an example main and use it to build an
executable, see “Use an Example C Main in an Application” on page 24-18.

Control Example Main Generation Using the MATLAB Coder
App
1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 In the Generate dialog box, set the Build Type to one of the following:

• Source Code
• Static Library
• Dynamic Library
• Executable

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Generate example main to one of

the following:

Set To For
Do not generate an example
main function

Not generating an example C/C++
main function

Generate, but do not compile,
an example main function
(default)

Generating an example C/C++ main
function but not compiling it

Generate and compile an
example main function

Generating an example C/C++ main
function and compiling it

24 Deploying Generated Code

24-16

Control Example Main Generation Using the Command-Line
Interface
1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib'); % or dll or exe
2 Set the GenerateExampleMain property.

Set To For
'DoNotGenerate' Not generating an example C/C++

main function
'GenerateCodeOnly' (default) Generating an example C/C++ main

function but not compiling it
'GenerateCodeAndCompile' Generating an example C/C++ main

function and compiling it

For example:

cfg.GenerateExampleMain = 'GenerateCodeOnly';

See Also

Related Examples
• “Structure of Generated Example C/C++ Main Function” on page 24-46
• “Call a Generated C Static Library Function from C Code” on page 24-4

More About
• “Specifying main Functions for C/C++ Executables” on page 20-25

 See Also

24-17

Use an Example C Main in an Application
This example shows how to build a C executable from MATLAB code that implements a
simple Sobel filter to perform edge detection on images. The executable reads an image
from the disk, applies the Sobel filtering algorithm, and then saves the modified image.

The example shows how to generate and modify an example main function that you can
use when you build the executable.

In this section...
“Prerequisites” on page 24-18
“Create a Folder and Copy Relevant Files” on page 24-19
“Run the Sobel Filter on the Image” on page 24-21
“Generate and Test a MEX Function” on page 24-23
“Generate an Example Main Function for sobel.m” on page 24-23
“Copy the Example Main Files” on page 24-26
“Modify the Generated Example Main Function” on page 24-26
“Generate the Sobel Filter Application” on page 24-38
“Run the Sobel Filter Application” on page 24-39
“Display the Resulting Image” on page 24-39

Prerequisites
To complete this example, install the following products:

• MATLAB
• MATLAB Coder
• C compiler (for most platforms, a default C compiler is supplied with MATLAB). For a

list of supported compilers, see https://www.mathworks.com/support/
compilers/current_release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

24 Deploying Generated Code

24-18

Create a Folder and Copy Relevant Files
The files you use in this example are:

File Name File Type Description
sobel.m Function code MATLAB implementation of

a Sobel filtering algorithm.
sobel.m takes an image
(represented as a double
matrix) and a threshold
value as inputs. The
algorithm detects edges in
the image (based on the
threshold value). sobel.m
returns a modified image
displaying the edges.

hello.jpg Image file Image that the Sobel filter
modifies.

Contents of File sobel.m

function edgeImage = sobel(originalImage, threshold) %#codegen

% edgeImage = sobel(originalImage, threshold)
% Sobel edge detection. Given a normalized image (with double values)
% return an image where the edges are detected w.r.t. threshold value.

assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

k = [1 2 1; 0 0 0; -1 -2 -1];
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

 Use an Example C Main in an Application

24-19

Contents of hello.jpg

To copy the example files to a local working folder:

1 Create a local working folder. For example, c:\coder\edge_detection.
2 Navigate to the working folder.
3 Copy the files sobel.m and hello.jpg from the examples folder sobel to your

working folder.

copyfile(fullfile(docroot, 'toolbox', 'coder', 'examples', 'sobel'))

24 Deploying Generated Code

24-20

Run the Sobel Filter on the Image
1 Read the original image into a MATLAB matrix and display it.

im = imread('hello.jpg');
2 Display the image as a basis for comparison to the result of the Sobel filter.

image(im);

3 The Sobel filtering algorithm operates on grayscale images. Convert the color image
to an equivalent grayscale image with normalized values (0.0 for black, 1.0 for white).
gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

 Use an Example C Main in an Application

24-21

4 To run the MATLAB function for the Sobel filter, pass the grayscale image matrix
gray and a threshold value to the function sobel. This example uses 0.7 for a
threshold value.

edgeIm = sobel(gray, 0.7);
5 To display the modified image, reformat the matrix edgeIm with the function repmat

so that you can pass it to the image command.

im3 = repmat(edgeIm, [1 1 3]);
image(im3);

24 Deploying Generated Code

24-22

Generate and Test a MEX Function
1 To test that generated code is functionally equivalent to the original MATLAB code

and that run-time errors do not occur, generate a MEX function.

codegen -report sobel

codegen generates a MEX function named sobel_mex in the current working folder.
2 To run the MEX function for the Sobel filter, pass the grayscale image matrix gray

and a threshold value to the function sobel_mex. This example uses 0.7 for a
threshold value.

edgeImMex = sobel_mex(gray, 0.7);
3 To display the modified image, reformat the matrix edgeImMex with the function

repmat so that you can pass it to the image command.

im3Mex = repmat(edgeImMex, [1 1 3]);
image(im3Mex);

This image is the same as the image created using the MATLAB function.

Generate an Example Main Function for sobel.m
Although you can write a custom main function for your application, an example main
function provides a template to help you incorporate the generated code.

To generate an example main function for the Sobel filter:

1 Create a configuration object for a C static library.

cfg = coder.config('lib');

For configuration objects for C/C++ source code, static libraries, dynamic libraries,
and executables, the setting GenerateExampleMain controls generation of the
example main function. The setting is set to 'GenerateCodeOnly' by default, which
generates the example main function but does not compile it. For this example, do
not change the value of the GenerateExampleMain setting.

2 Generate a C static library using the configuration object.

codegen -report -config cfg sobel

 Use an Example C Main in an Application

24-23

The generated files for the static library are in the folder codegen/lib/sobel. The
example main files are in the subfolder codegen/lib/sobel/examples.

Contents of Example Main File main.c

/*
 * main.c
 *
 * Code generation for function 'main'
 *
 */

/***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */
/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */
/* */
/* After you copy the file, and before you deploy it, you must make the */
/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/
/* Include files */
#include "rt_nonfinite.h"
#include "sobel.h"
#include "main.h"
#include "sobel_terminate.h"
#include "sobel_emxAPI.h"
#include "sobel_initialize.h"

24 Deploying Generated Code

24-24

/* Function Declarations */
static emxArray_real_T *argInit_d1024xd1024_real_T(void);
static double argInit_real_T(void);
static void main_sobel(void);

/* Function Definitions */
static emxArray_real_T *argInit_d1024xd1024_real_T(void)
{
 emxArray_real_T *result;
 static int iv2[2] = { 2, 2 };

 int b_j0;
 int b_j1;

 /* Set the size of the array.
 Change this size to the value that the application requires. */
 result = emxCreateND_real_T(2, iv2);

 /* Loop over the array to initialize each element. */
 for (b_j0 = 0; b_j0 < result->size[0U]; b_j0++) {
 for (b_j1 = 0; b_j1 < result->size[1U]; b_j1++) {
 /* Set the value of the array element.
 Change this value to the value that the application requires. */
 result->data[b_j0 + result->size[0] * b_j1] = argInit_real_T();
 }
 }

 return result;
}

static double argInit_real_T(void)
{
 return 0.0;
}

static void main_sobel(void)
{
 emxArray_uint8_T *edgeImage;
 emxArray_real_T *originalImage;
 emxInitArray_uint8_T(&edgeImage, 2);

 /* Initialize function 'sobel' input arguments. */
 /* Initialize function input argument 'originalImage'. */
 originalImage = argInit_d1024xd1024_real_T();

 Use an Example C Main in an Application

24-25

 /* Call the entry-point 'sobel'. */
 sobel(originalImage, argInit_real_T(), edgeImage);
 emxDestroyArray_uint8_T(edgeImage);
 emxDestroyArray_real_T(originalImage);
}

int main(int argc, const char * const argv[])
{
 (void)argc;
 (void)argv;

 /* Initialize the application.
 You do not need to do this more than one time. */
 sobel_initialize();

 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_sobel();

 /* Terminate the application.
 You do not need to do this more than one time. */
 sobel_terminate();
 return 0;
}

/* End of code generation (main.c) */

Copy the Example Main Files
Do not modify the files main.c and main.h in the examples subfolder. If you do, when
you regenerate code, MATLAB Coder does not regenerate the example main files. It
warns you that it detects changes to the generated files.

Copy the files main.c and main.h from the folder codegen/lib/sobel/examples to
another location. For this example, copy the files to the current working folder. Modify the
files in the new location.

Modify the Generated Example Main Function
• “Modify the Function main” on page 24-27

24 Deploying Generated Code

24-26

• “Modify the Initialization Function argInit_d1024xd1024_real_T” on page 24-29
• “Write the Function saveImage” on page 24-31
• “Modify the Function main_sobel” on page 24-32
• “Modify the Function Declarations” on page 24-34
• “Modify the Include Files” on page 24-34
• “Contents of Modified File main.c” on page 24-35

The example main function declares and initializes data, including dynamically allocated
data, to zero values. It calls entry-point functions with arguments set to zero values, but it
does not use values returned from the entry-point functions.

The C main function must meet the requirements of your application. This example
modifies the example main function to meet the requirements of the Sobel filter
application.

This example modifies the file main.c so that the Sobel filter application:

• Reads in the grayscale image from a binary file.
• Applies the Sobel filtering algorithm.
• Saves the modified image to a binary file.

Modify the Function main

Modify the function main to:

• Accept the file containing the grayscale image data and a threshold value as input
arguments.

• Call the function main_sobel with the address of the grayscale image data stream
and the threshold value as input arguments.

In the function main:

1 Remove the declarations void(argc) and (void)argv.
2 Declare the variable filename to hold the name of the binary file containing the

grayscale image data.

const char *filename;
3 Declare the variable threshold to hold the threshold value.

double threshold;

 Use an Example C Main in an Application

24-27

4 Declare the variable fd to hold the address of the grayscale image data that the
application reads in from filename.

FILE *fd;
5 Add an if statement that checks for three arguments.

if (argc != 3) {
 printf("Expected 2 arguments: filename and threshold\n");
 exit(-1);
}

6 Assign the input argument argv[1] for the file containing the grayscale image data
to filename.

filename = argv[1];
7 Assign the input argument argv[2] for the threshold value to threshold,

converting the input from a string to a numeric double.

threshold = atof(argv[2]);
8 Open the file containing the grayscale image data whose name is specified in

filename. Assign the address of the data stream to fd.

fd = fopen(filename, "rb");
9 To verify that the executable can open filename, write an if-statement that exits

the program if the value of fd is NULL.

if (fd == NULL) {
 exit(-1);
}

10 Replace the function call for main_sobel by calling main_sobel with input
arguments fd and threshold.

main_sobel(fd, threshold);
11 Close the grayscale image file after calling sobel_terminate.

fclose(fd);

Modified Function main

int main(int argc, const char * const argv[])
{
 const char *filename;
 double threshold;

24 Deploying Generated Code

24-28

 FILE *fd;

 if (argc != 3) {
 printf("Expected 2 arguments: filename and threshold\n");
 exit(-1);
 }

 filename = argv[1];
 threshold = atof(argv[2]);
 fd = fopen(filename, "rb");
 if (fd == NULL) {
 exit(-1);
 }
 /* Initialize the application.
 You do not need to do this more than one time. */
 sobel_initialize();

 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_sobel(fd, threshold);

 /* Terminate the application.
 You do not need to do this more than one time. */
 sobel_terminate();

 fclose(fd);

 return 0;
}

Modify the Initialization Function argInit_d1024xd1024_real_T

In the example main file, the function argInit_d1024xd1024_real_T creates a
dynamically allocated variable-size array (emxArray) for the image that you pass to the
Sobel filter. This function initializes the emxArray to a default size and the elements of the
emxArray to 0. It returns the initialized emxArray.

For the Sobel filter application, modify the function to read the grayscale image data from
a binary file into the emxArray.

In the function argInit_d1024xd1024_real_T:

1 Replace the input argument void with the argument FILE *fd. This variable points
to the grayscale image data that the function reads in.

 Use an Example C Main in an Application

24-29

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)
2 Change the values of the variable iv2 to match the dimensions of the grayscale

image matrix gray. iv2 holds the size values for the dimensions of the emxArray
that argInit_d1024xd1024_real_T creates.

static int iv2[2] = { 484, 648 };

MATLAB stores matrix data in column-major format, while C stores matrix data in
row-major format. Declare the dimensions accordingly.

3 Define a variable element to hold the values read in from the grayscale image data.

double element;
4 Change the for-loop construct to read data points from the normalized image into

element by adding an fread command to the inner for-loop.

fread(&element, 1, sizeof(element), fd);
5 Inside the for-loop, assign element as the value set for the emxArray data.

result->data[b_j0 + result->size[0] * b_j1] = element;

Modified Initialization Function argInit_d1024xd1024_real_T

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)
{
 emxArray_real_T *result;
 static int iv2[2] = { 484, 648 };

 int b_j0;
 int b_j1;
 double element;

 /* Set the size of the array.
 Change this size to the value that the application requires. */
 result = emxCreateND_real_T(2, iv2);

 /* Loop over the array to initialize each element. */
 for (b_j0 = 0; b_j0 < result->size[0U]; b_j0++) {
 for (b_j1 = 0; b_j1 < result->size[1U]; b_j1++) {
 /* Set the value of the array element.
 Change this value to the value that the application requires. */
 fread(&element, 1, sizeof(element), fd);
 result->data[b_j0 + result->size[0] * b_j1] = element;
 }

24 Deploying Generated Code

24-30

 }

 return result;
}

Write the Function saveImage

The MATLAB function sobel.m interfaces with MATLAB arrays, but the Sobel filter
application interfaces with binary files.

To save the image modified by the Sobel filtering algorithm to a binary file, create a
function saveImage. The function saveImage writes data from an emxArray into a
binary file. It uses a construction that is similar to the one used by the function
argInit_d1024xd1024_real_T.

In the file main.c:

1 Define the function saveImage that takes the address of emxArray edgeImage as an
input and has output type void.

static void saveImage(emxArray_uint8_T *edgeImage)
{
}

2 Define the variables b_j0 and b_j1 like they are defined in the function
argInit_d1024xd1024_real_T.

int b_j0;
int b_j1;

3 Define the variable element to store data read from the emxArray.

uint8_T element;
4 Open a binary file edge.bin for writing the modified image. Assign the address of

edge.bin to FILE *fd.

FILE *fd = fopen("edge.bin", "wb");
5 To verify that the executable can open edge.bin, write an if-statement that exits

the program if the value of fd is NULL.

if (fd == NULL) {
 exit(-1);
}

6 Write a nested for-loop construct like the one in the function
argInit_d1024xd1024_real_T.

 Use an Example C Main in an Application

24-31

for (b_j0 = 0; b_j0 < edgeImage->size[0U]; b_j0++)
{
 for (b_j1 = 0; b_j1 < edgeImage->size[1U]; b_j1++)
 {
 }
}

7 Inside the inner for-loop, assign the values from the modified image data to
element.

element = edgeImage->data[b_j0 + edgeImage->size[0] * b_j1];
8 After the assignment for element, write the value from element to the file

edge.bin.

fwrite(&element, 1, sizeof(element), fd);
9 After the for-loop construct, close fd.

fclose(fd);

Function saveImage
static void saveImage(emxArray_uint8_T *edgeImage)
{
 int b_j0;
 int b_j1;
 uint8_T element;

 FILE *fd = fopen("edge.bin", "wb");
 if (fd == NULL) {
 exit(-1);
 }
 /* Loop over the array to save each element. */
 for (b_j0 = 0; b_j0 < edgeImage->size[0U]; b_j0++) {
 for (b_j1 = 0; b_j1 < edgeImage->size[1U]; b_j1++) {
 element = edgeImage->data[b_j0 + edgeImage->size[0] * b_j1];
 fwrite(&element, 1, sizeof(element), fd);
 }
 }
 fclose(fd);
}

Modify the Function main_sobel

In the example main function, the function main_sobel creates emxArrays for the data
for the grayscale and modified images. It calls the function

24 Deploying Generated Code

24-32

argInit_d1024xd1024_real_T to initialize the emxArray for the grayscale image.
main_sobel passes both emxArrays and the threshold value of 0 that the initialization
function argInit_real_T returns to the function sobel. When the function
main_sobel ends, it discards the result of the function sobel.

For the Sobel filter application, modify the function main_sobel to:

• Take the address of the grayscale image data and the threshold value as inputs.
• Read the data from the address using argInit_d1024xd1024_real_T.
• Pass the data to the Sobel filtering algorithm with the threshold value threshold.
• Save the result using saveImage.

In the function main_sobel:

1 Replace the input arguments to the function with the arguments FILE *fd and
double threshold.

static void main_sobel(FILE *fd, double threshold)
2 Pass the input argument fd to the function call for argInit_d1024xd1024_real_T.

originalImage = argInit_d1024xd1024_real_T(fd);
3 Replace the threshold value input in the function call to sobel with threshold.

sobel(originalImage, threshold, edgeImage);
4 After calling the function sobel, call the function saveImage with the input

edgeImage.

saveImage(edgeImage);

Modified Function main_sobel

static void main_sobel(FILE *fd, double threshold)
{
 emxArray_uint8_T *edgeImage;
 emxArray_real_T *originalImage;
 emxInitArray_uint8_T(&edgeImage, 2);

 /* Initialize function 'sobel' input arguments. */
 /* Initialize function input argument 'originalImage'. */
 originalImage = argInit_d1024xd1024_real_T(fd);

 /* Call the entry-point 'sobel'. */

 Use an Example C Main in an Application

24-33

 sobel(originalImage, threshold, edgeImage);

 saveImage(edgeImage);

 emxDestroyArray_uint8_T(edgeImage);
 emxDestroyArray_real_T(originalImage);
}

Modify the Function Declarations

To match the changes that you made to the function definitions, make the following
changes to the function declarations:

1 Change the input of the function *argInit_d1024xd1024_real_T to FILE *fd.

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);
2 Change the inputs of the function main_sobel to FILE *fd and double

threshold.

static void main_sobel(FILE *fd, double threshold);
3 Add the function saveImage.

static void saveImage(emxArray_uint8_T *edgeImage);

Modified Function Declarations

/* Function Declarations */
static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);
static void saveImage(emxArray_uint8_T *edgeImage);
static double argInit_real_T(void);
static void main_sobel(FILE *fd, double threshold);

Modify the Include Files

For input/output functions that you use in main.c, add the header file stdio.h to the
included files list.

#include <stdio.h>

Modified Include Files

/* Include Files */
#include <stdio.h>

24 Deploying Generated Code

24-34

#include "rt_nonfinite.h"
#include "sobel.h"
#include "main.h"
#include "sobel_terminate.h"
#include "sobel_emxAPI.h"
#include "sobel_initialize.h"

Contents of Modified File main.c

main.c

/*
 * main.c
 *
 * Code generation for function 'main'
 *
 */

/***/
/* This automatically generated example C main file shows how to call */
/* entry-point functions that MATLAB Coder generated. You must customize */
/* this file for your application. Do not modify this file directly. */
/* Instead, make a copy of this file, modify it, and integrate it into */
/* your development environment. */
/* */
/* This file initializes entry-point function arguments to a default */
/* size and value before calling the entry-point functions. It does */
/* not store or use any values returned from the entry-point functions. */
/* If necessary, it does pre-allocate memory for returned values. */
/* You can use this file as a starting point for a main function that */
/* you can deploy in your application. */
/* */
/* After you copy the file, and before you deploy it, you must make the */
/* following changes: */
/* * For variable-size function arguments, change the example sizes to */
/* the sizes that your application requires. */
/* * Change the example values of function arguments to the values that */
/* your application requires. */
/* * If the entry-point functions return values, store these values or */
/* otherwise use them as required by your application. */
/* */
/***/
/* Include Files */
#include <stdio.h>

 Use an Example C Main in an Application

24-35

#include "rt_nonfinite.h"
#include "sobel.h"
#include "main.h"
#include "sobel_terminate.h"
#include "sobel_emxAPI.h"
#include "sobel_initialize.h"

/* Function Declarations */
static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd);
static void saveImage(emxArray_uint8_T *edgeImage);
static double argInit_real_T(void);
static void main_sobel(FILE *fd, double threshold);

/* Function Definitions */

static emxArray_real_T *argInit_d1024xd1024_real_T(FILE *fd)
{
 emxArray_real_T *result;
 static int iv2[2] = { 484, 648 };

 int b_j0;
 int b_j1;
 double element;

 /* Set the size of the array.
 Change this size to the value that the application requires. */
 result = emxCreateND_real_T(2, iv2);

 /* Loop over the array to initialize each element. */
 for (b_j0 = 0; b_j0 < result->size[0U]; b_j0++) {
 for (b_j1 = 0; b_j1 < result->size[1U]; b_j1++) {
 /* Set the value of the array element.
 Change this value to the value that the application requires. */
 fread(&element, 1, sizeof(element), fd);
 result->data[b_j0 + result->size[0] * b_j1] = element;
 }
 }

 return result;
}

static void saveImage(emxArray_uint8_T *edgeImage)
{
 int b_j0;

24 Deploying Generated Code

24-36

 int b_j1;
 uint8_T element;

 FILE *fd = fopen("edge.bin", "wb");
 if (fd == NULL) {
 exit(-1);
 }
 /* Loop over the array to save each element. */
 for (b_j0 = 0; b_j0 < edgeImage->size[0U]; b_j0++) {
 for (b_j1 = 0; b_j1 < edgeImage->size[1U]; b_j1++) {
 element = edgeImage->data[b_j0 + edgeImage->size[0] * b_j1];
 fwrite(&element, 1, sizeof(element), fd);
 }
 }
 fclose(fd);
}

/*
 * Arguments : void
 * Return Type : double
 */
static double argInit_real_T(void)
{
 return 0.0;
}

static void main_sobel(FILE *fd, double threshold)
{
 emxArray_uint8_T *edgeImage;
 emxArray_real_T *originalImage;
 emxInitArray_uint8_T(&edgeImage, 2);

 /* Initialize function 'sobel' input arguments. */
 /* Initialize function input argument 'originalImage'. */
 originalImage = argInit_d1024xd1024_real_T(fd);

 /* Call the entry-point 'sobel'. */
 sobel(originalImage, threshold, edgeImage);

 saveImage(edgeImage);

 emxDestroyArray_uint8_T(edgeImage);
 emxDestroyArray_real_T(originalImage);
}

 Use an Example C Main in an Application

24-37

int main(int argc, const char * const argv[])
{
 const char *filename;
 double threshold;
 FILE *fd;

 if (argc != 3) {
 printf("Expected 2 arguments: filename and threshold\n");
 exit(-1);
 }

 filename = argv[1];
 threshold = atof(argv[2]);
 fd = fopen(filename, "rb");
 if (fd == NULL) {
 exit(-1);
 }
 /* Initialize the application.
 You do not need to do this more than one time. */
 sobel_initialize();

 /* Invoke the entry-point functions.
 You can call entry-point functions multiple times. */
 main_sobel(fd, threshold);

 /* Terminate the application.
 You do not need to do this more than one time. */
 sobel_terminate();

 fclose(fd);

 return 0;
}

/* End of code generation (main.c) */

Generate the Sobel Filter Application
1 Navigate to the working folder if you are not currently in it.
2 Create a configuration object for a C standalone executable.

cfg = coder.config('exe');

24 Deploying Generated Code

24-38

3 Generate a C standalone executable for the Sobel filter using the configuration object
and the modified main function.

codegen -report -config cfg sobel main.c main.h

By default, if you are running MATLAB on a Windows platform, the executable
sobel.exe is generated in the current working folder. If you are running MATLAB on a
platform other than Windows, the file extension is the corresponding extension for that
platform. By default, the code generated for the executable is in the folder
codegen/exe/sobel.

Run the Sobel Filter Application
1 Create the MATLAB matrix gray if it is not currently in your MATLAB workspace:

im = imread('hello.jpg');

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 * double(im(:,:,3)))/255;

2 Write the matrix gray into a binary file using the fopen and fwrite commands. The
application reads in this binary file.

fid = fopen('gray.bin', 'w');
fwrite(fid, gray, 'double');
fclose(fid);

3 Run the executable, passing to it the file gray.bin and the threshold value 0.7.

To run the example in MATLAB on a Windows platform:

system('sobel.exe gray.bin 0.7');

The executable generates the file edge.bin.

Display the Resulting Image
1 Read the file edge.bin into a MATLAB matrix edgeImExe using the fopen and

fread commands.

fd = fopen('edge.bin', 'r');
edgeImExe = fread(fd, size(gray), 'uint8');
fclose(fd);

2 Pass the matrix edgeImExe to the function repmat and display the image.

 Use an Example C Main in an Application

24-39

im3Exe = repmat(edgeImExe, [1 1 3]);
image(im3Exe);

The image matches the images from the MATLAB and MEX functions.

See Also

Related Examples
• “Structure of Generated Example C/C++ Main Function” on page 24-46
• “Incorporate Generated Code Using an Example Main Function” on page 24-15
• “Call a Generated C Static Library Function from C Code” on page 24-4

24 Deploying Generated Code

24-40

Package Code for Other Development Environments
In this section...
“When to Package Code” on page 24-41
“Package Generated Code Using the MATLAB Coder App” on page 24-41
“Package Generated Code at the Command Line” on page 24-43
“Specify packNGo Options” on page 24-44

When to Package Code
To relocate the generated code files to another development environment, such as a
system or an integrated development environment (IDE) that does not include MATLAB,
use the packNGo function at the command line or the Package option in the MATLAB
Coder app. The files are packaged in a compressed file that you can relocate and unpack
using a standard zip utility.

See “Package Generated Code Using the MATLAB Coder App” on page 24-41 and
“Package Generated Code at the Command Line” on page 24-43.

Package Generated Code Using the MATLAB Coder App
This example shows how to package generated code into a zip file for relocation using the
Package option in the MATLAB Coder app. By default, MATLAB Coder creates the zip file
in the current working folder.

1 In a local writable folder, for example c:\work, write a function foo that takes two
double inputs.

function y = foo(A,B)
 y = A + B;
end

2 Open the MATLAB Coder app. On the MATLAB Toolstrip Apps tab, under Code
Generation, click the MATLAB Coder app icon.

3 On the Select Source Files page, enter the name of the entry-point function foo.
Click Next to go to the Define Input Types page.

4 Specify that inputs A and B are scalar doubles. Click Next to go to the Check for
Run-Time Issues page.

 Package Code for Other Development Environments

24-41

5 Check for run-time issues. In the Check for Run-Time Issues dialog box, enter code
that calls foo with scalar double inputs. For example:

foo(1,2)

Click Check for Issues.

To check for run-time issues, the app generates and runs a MEX function. The app
does not find issues for foo. Click Next to go to the Generate Code page.

6 In the Generate dialog box, set the Build Type to Source Code, Static Library,
Dynamic Library, or Executable. You cannot package the code generated for
MEX targets.

7 Click Generate. Click Next to go to the Finish Workflow page.
8 On the Finish Workflow page, click Package.
9 In the Package dialog box, specify the package file name and packaging type. By

default, the app derives the name of the package file from the project name. The app
saves the file in the current working folder. By default, the app packages the
generated files as a single, flat folder. For this example, use the default values, and
then click Save.

This zip file contains the C code and header files required for relocation. It does not
contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile

the example main function. See “Incorporate Generated Code Using an Example
Main Function” on page 24-15.

10 Inspect the contents of foo_pkg.zip in your working folder to verify that it is ready
for relocation to the destination system. Depending on the zip tool that you use, you
can potentially open and inspect the file without unpacking it.

You can now relocate the resulting zip file to the desired development environment
and unpack the file.

24 Deploying Generated Code

24-42

Package Generated Code at the Command Line
This example shows how to package generated code into a zip file for relocation using the
packNGo function at the command line.

1 In a local writable folder, for example c:\work, write a function foo that takes two
double inputs.

function y = foo(A,B)
 y = A + B;
end

2 Generate a static library for function foo. (packNGo does not package MEX function
code.)

codegen -report -config:lib foo -args {0,0}

codegen generates code in the c:\work\codegen\lib\foo folder.
3 Load the buildInfo object.

load('c:\work\codegen\lib\foo\buildInfo.mat')
4 Create the zip file.

packNGo(buildInfo, 'fileName', 'foo.zip');

Alternatively, use the notation:

buildInfo.packNGo('fileName', 'foo.zip');

The packNGo function creates a zip file, foo.zip, in the current working folder. This
zip file contains the C code and header files required for relocation. It does not
contain:

• Compile flags
• Defines
• Makefiles
• Example main files, unless you configure code generation to generate and compile

the example main function. See “Incorporate Generated Code Using an Example
Main Function” on page 24-15.

In this example, you specify only the file name. Optionally, you can specify additional
packaging options. See “Specify packNGo Options” on page 24-44.

 Package Code for Other Development Environments

24-43

5 Inspect the contents of foo.zip to verify that it is ready for relocation to the
destination system. Depending on the zip tool that you use, you can potentially open
and inspect the file without unpacking it. If you need to unpack the file and you
packaged the generated code files as a hierarchical structure, you will need to
unpack the primary and secondary zip files. When you unpack the secondary zip files,
relative paths of the files are preserved.

You can now relocate the resulting zip file to the desired development environment
and unpack the file.

Specify packNGo Options
You can specify options for the packNGo function.

To Specify
Change the structure of the file
packaging to hierarchical

packNGo(buildInfo, {'packType'
'hierarchical'});

Change the structure of the file
packaging to hierarchical and
rename the primary zip file

packNGo(buildInfo, {'packType'
'hierarchical'...
'fileName' 'zippedsrcs'});

Include all header files found on
the include path in the zip file
(rather than the minimal header
files required to build the code)

packNGo(buildInfo, {'minimalHeaders'
false});

Generate warnings for parse
errors and missing files

packNGo(buildInfo, {'ignoreParseError'
true...
'ignoreFileMissing' true});

For more information, see packNGo.

Choose a Structure for the Zip File

Before you generate and package the files, decide whether you want to package the files
in a flat or hierarchical folder structure. By default, the packNGo function packages the
files in a single, flat folder structure. This approach is the simplest and might be the
optimal choice.

24 Deploying Generated Code

24-44

If Use
You are relocating files to an IDE that does
not use the generated makefile, or the code
is not dependent on the relative location of
required static files

A single, flat folder structure

The target development environment must
maintain the folder structure of the source
environment because it uses the generated
makefile, or the code is dependent on the
relative location of files

A hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels of zip files.
There is a primary zip file, which in turn contains the following secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree
• sDirFiles.zip — files in and under your build folder where you initiated code

generation
• otherFiles.zip — required files not in the matlabroot or start folder trees

Paths for the secondary zip files are relative to the root folder of the primary zip file,
maintaining the source development folder structure.

 Package Code for Other Development Environments

24-45

Structure of Generated Example C/C++ Main Function

In this section...
“Contents of the File main.c or main.cpp” on page 24-46
“Contents of the File main.h” on page 24-49

When you build an application that uses generated C/C++ code, you must provide a C/C+
+ main function that calls the generated code.

By default, for code generation of C/C++ source code, static libraries, dynamic libraries,
and executables, MATLAB Coder generates an example C/C++ main function. This
function is a template that can help you incorporate generated C/C++ code into your
application. The example main function declares and initializes data, including
dynamically allocated data. It calls entry-point functions but does not use values that the
entry point functions return. To use the example main function, copy the example main
source and header files to a location outside of the build folder, and then modify the files
in the new location to meet the requirements of your application.

MATLAB Coder generates source and header files for the example main function in the
examples subfolder of the build folder. For C code generation, it generates the files
main.c and main.h. For C++ code generation, it generates the files main.cpp and
main.h.

Contents of the File main.c or main.cpp
For the example main source file main.c or main.cpp, MATLAB Coder generates the
following sections:

• “Include Files” on page 24-47
• “Function Declarations” on page 24-47
• “Argument Initialization Functions” on page 24-47
• “Entry-Point Functions” on page 24-48
• “Main Function” on page 24-48

By default, MATLAB Coder also generates comments in the example main source file that
can help you modify the example main function to use in your application.

24 Deploying Generated Code

24-46

Include Files

This section includes the header files required to call code that is not in the example main
source file. If you call external functions when you modify the example main source file,
include any other required header files.

Function Declarations

This section declares the function prototypes for the argument initialization and entry-
point functions that are defined in the example main source file. Modify the function
prototypes to match modifications that you make in the function definitions. Declare new
function prototypes for functions that you define in the example main source file.

Argument Initialization Functions

This section defines an initialization function for each data type that the entry-point
functions use as an argument. The argument initialization function initializes the size of
the argument to a default value and the values of the data to zero. The function then
returns the initialized data. Change these size and data values to meet the requirements
of your application.

For an argument with dimensions of size <dimSizes> and MATLAB C/C++ data type
<baseType>, the example main source file defines an initialization function with the
name argInit_<dimSizes>_<baseType>. For example, for a 5-by-5 array with data of
MATLAB type double, the example main source file defines the argument initialization
function argInit_5x5_real_T.

MATLAB Coder alters the name of the argument initialization functions as follows:

• If any of the dimensions are variable-size, MATLAB Coder designates the size of these
dimensions as d<maxSize>, where <maxSize> is the maximum size of that
dimension. For example, for an array with data of MATLAB type double with a first
dimension of static size 2 and a second dimension that can vary in size up to 10, the
example main source file defines the argument initialization function
argInit_2xd10_real_T.

• If any of the dimensions are unbounded, MATLAB Coder designates the size of these
dimensions as Unbounded.

• If the return type of the initialization function is an emxArray, MATLAB Coder defines
the function as returning a pointer to the emxArray.

• If the length of the initialization function name exceeds the maximum number of
characters set for function names in the configuration settings, MATLAB Coder

 Structure of Generated Example C/C++ Main Function

24-47

prepends an identifier to the front of the function name. MATLAB Coder then
truncates the function name to the maximum allowed number of characters for
identifier length.

Note By default, the maximum number of characters allowed for generated identifiers
is 31. To specify the value set for the maximum identifier length using the MATLAB
Coder app, select the Maximum identifier length value on the Code Appearance
tab of the code generation settings. To specify the value set for the maximum identifier
using the command-line interface, change the value of the MaxIdLength
configuration object setting.

Entry-Point Functions

This section defines a function for each MATLAB entry-point function. For a MATLAB
function foo.m, the example main source file defines an entry-point function main_foo.
This function creates the variables and calls the data initialization functions that the C/C+
+ source function foo.c or foo.cpp requires. It calls this C/C++ source function but
does not return the result. Modify main_foo so that it takes inputs and returns outputs
as required by your application.

Main Function

This section defines a main function that does the following:

• If your output language is C, it declares and names the variables argc and argv but
casts them to void. If your output language is C++, the generated example main
declares, but does not name, the variables argc and argv.

• Calls the initialize function foo_initialize, which is named for the alphabetically
first entry-point function foo declared for code generation. Call the initialize function
only once, even if you have multiple entry-point functions called in the function main.

• Calls each of the entry-point functions once.
• Calls the terminate function foo_terminate, which is named for the alphabetically
first entry-point function foo declared for code generation. Call the terminate function
only once, even if you have multiple entry-point functions called in the function main.

• Returns zero.

Modify the function main, including the inputs and outputs of main and of the entry-point
functions, to meet the requirements of your application.

24 Deploying Generated Code

24-48

Contents of the File main.h
For the example main header file main.h, MATLAB Coder generates the following:

• “Include Guard” on page 24-49
• “Include Files” on page 24-49
• “Function Declarations” on page 24-49

By default, MATLAB Coder also generates comments in main.h that can help you modify
the example main function to use in your application.

Include Guard

main.h uses an include guard to prevent the contents of the file from being included
multiple times. The include guard contains the include files and function declarations
within an #ifndef construct.

Include Files

main.h includes the header files required to call code that is not defined within it.

Function Declarations

main.h declares the function prototype for the main function that is defined in the
example main source file main.c or main.cpp.

See Also

Related Examples
• “Incorporate Generated Code Using an Example Main Function” on page 24-15
• “Use an Example C Main in an Application” on page 24-18

More About
• “Mapping MATLAB Types to Types in Generated Code” on page 26-18

 See Also

24-49

Troubleshoot Failures in Deployed Code
If your deployed code fails, consider regenerating the code with run-time error detection
enabled. When you enable run-time error detection, the generated code includes code
that detects and reports errors, such as out-of-bounds array indexing. If the code detects
one of these errors, it reports a message and terminates the program. Running the code
that includes the error checks helps you to see if one of these errors caused the failure.

Run-time error detection can affect the performance of the generated code. If
performance is a consideration for your application, when you finish troubleshooting,
regenerate the code with run-time error detection disabled.

See “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 21-17
and “Generate Standalone Code That Detects and Reports Run-Time Errors” on page 21-
19.

24 Deploying Generated Code

24-50

Using Dynamic Memory Allocation for an "Atoms"
Simulation

This example shows how to generate code for a MATLAB algorithm that runs a simulation
of bouncing "atoms" and returns the result after a number of iterations. There are no
upper bounds on the number of atoms that the algorithm accepts, so this example takes
advantage of dynamic memory allocation.

Prerequisites

There are no prerequisites for this example.

About the run_atoms Function

The run_atoms.m function runs a simulation of bouncing atoms (also applying gravity
and energy loss).

help run_atoms

 atoms = run_atoms(atoms,n)
 atoms = run_atoms(atoms,n,iter)
 Where 'atoms' the initial and final state of atoms (can be empty)
 'n' is the number of atoms to simulate.
 'iter' is the number of iterations for the simulation
 (if omitted it is defaulted to 3000 iterations.)

Set Up Code Generation Options

Create a code generation configuration object

cfg = coder.config;
% Enable dynamic memory allocation for variable size matrices.
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Set Up Example Inputs

Create a template structure 'Atom' to provide the compiler with the necessary information
about input parameter types. An atom is a structure with four fields (x,y,vx,vy) specifying
position and velocity in Cartesian coordinates.

atom = struct('x', 0, 'y', 0, 'vx', 0, 'vy', 0);

 Using Dynamic Memory Allocation for an "Atoms" Simulation

24-51

Generate a MEX Function for Testing

Use the command codegen with the following arguments:

-args {coder.typeof(atom, [1 Inf]),0,0} indicates that the first argument is a
row vector of atoms where the number of columns is potentially infinite. The second and
third arguments are scalar double values.

-config cfg enables dynamic memory allocation, defined by workspace variable cfg

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),0,0} -config cfg -o run_atoms_mex

Run the MEX Function

The MEX function simulates 10000 atoms in approximately 1000 iteration steps given an
empty list of atoms. The return value is the state of all the atoms after simulation is
complete.

atoms = repmat(atom,1,0);
atoms = run_atoms_mex(atoms,10000,1000)

Iteration: 50
Iteration: 100
Iteration: 150
Iteration: 200
Iteration: 250
Iteration: 300
Iteration: 350
Iteration: 400
Iteration: 450
Iteration: 500
Iteration: 550
Iteration: 600
Iteration: 650
Iteration: 700
Iteration: 750
Iteration: 800
Iteration: 850
Iteration: 900
Iteration: 950
Iteration: 1000
Completed iterations: 1000

atoms = 1x10000 struct array with fields:
 x

24 Deploying Generated Code

24-52

 y
 vx
 vy

Run the MEX Function Again

Continue the simulation with another 500 iteration steps

atoms = run_atoms_mex(atoms,10000,500)

Iteration: 50
Iteration: 100
Iteration: 150
Iteration: 200
Iteration: 250
Iteration: 300
Iteration: 350
Iteration: 400
Iteration: 450
Iteration: 500
Completed iterations: 500

atoms = 1x10000 struct array with fields:
 x
 y
 vx
 vy

Generate a Standalone C Code Library

To generate a C library, create a standard configuration object for libraries:

cfg = coder.config('lib');

Enable dynamic memory allocation

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

In MATLAB the default data type is double. However, integers are usually used in C code,
so pass int32 integer example values to represent the number of atoms and iterations.

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -config cfg

 Using Dynamic Memory Allocation for an "Atoms" Simulation

24-53

Inspect Generated Code

When creating a library the code is generated in the folder codegen/lib/run_atoms/.
The code in this folder is self contained. To interface with the compiled C code you need
only the generated header files and the library file.

dir codegen/lib/run_atoms

. rt_nonfinite.obj run_atoms_initialize.obj

.. rtw_proj.tmw run_atoms_ref.rsp
buildInfo.mat rtwtypes.h run_atoms_rtw.bat
codeInfo.mat run_atoms.c run_atoms_rtw.mk
codedescriptor.dmr run_atoms.h run_atoms_rtw.rsp
examples run_atoms.lib run_atoms_rtw_comp.rsp
interface run_atoms.obj run_atoms_rtw_ref.rsp
rtGetInf.c run_atoms_emxAPI.c run_atoms_terminate.c
rtGetInf.h run_atoms_emxAPI.h run_atoms_terminate.h
rtGetInf.obj run_atoms_emxAPI.obj run_atoms_terminate.obj
rtGetNaN.c run_atoms_emxutil.c run_atoms_types.h
rtGetNaN.h run_atoms_emxutil.h setup_msvc150.bat
rtGetNaN.obj run_atoms_emxutil.obj
rt_nonfinite.c run_atoms_initialize.c
rt_nonfinite.h run_atoms_initialize.h

Write a C Main Function

Typically, the main function is platform-dependent code that performs rendering or some
other processing. In this example, a pure ANSI-C function produces a file
run_atoms_state.m which (when run) contains the final state of the atom simulation.

type run_atoms_main.c

/* Include standard C libraries */
#include <stdio.h>

/* The interface to the main function we compiled. */
#include "codegen/exe/run_atoms/run_atoms.h"

/* The interface to EMX data structures. */
#include "codegen/exe/run_atoms/run_atoms_emxAPI.h"

int main(int argc, char **argv)
{
 FILE *fid;
 int i;

24 Deploying Generated Code

24-54

 emxArray_Atom *atoms;

 /* Main arguments unused */
 (void) argc;
 (void) argv;

 /* Initially create an empty row vector of atoms (1 row, 0 columns) */
 atoms = emxCreate_Atom(1, 0);

 /* Call the function to simulate 10000 atoms in 1000 iteration steps */
 run_atoms(atoms, 10000, 1000);

 /* Call the function again to do another 500 iteration steps */
 run_atoms(atoms, 10000, 500);

 /* Print the result to a file */
 fid = fopen("atoms_state.txt", "w");
 for (i = 0; i < atoms->size[1]; i++) {
 fprintf(fid, "%f %f %f %f\n",
 atoms->data[i].x, atoms->data[i].y, atoms->data[i].vx, atoms->data[i].vy);
 }

 /* Close the file */
 fclose(fid);

 /* Free memory */
 emxDestroyArray_Atom(atoms);
 return(0);
}

Create a Configuration Object for Executables

cfg = coder.config('exe');
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Generate a Standalone Executable

You must pass the function (run_atoms.m) as well as custom C code
(run_atoms_main.c) The codegen command automatically generates C code from the
MATLAB code, then calls the C compiler to bundle this generated code with the custom C
code (run_atoms_main.c).

codegen run_atoms run_atoms_main.c -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -config cfg

 Using Dynamic Memory Allocation for an "Atoms" Simulation

24-55

Run the Executable

After simulation is complete, this produces the file atoms_state.txt. The TXT file is a
10000x4 matrix, where each row is the position and velocity of an atom (x, y, vx, vy)
representing the current state of the whole system.

system(['.' filesep 'run_atoms']);

Fetch the State

Running the executable produced atoms_state.txt. Now, recreate the structure array
from the saved matrix:

load atoms_state.txt -ascii
clear atoms
for i = 1:size(atoms_state,1)
 atoms(1,i).x = atoms_state(i,1);
 atoms(1,i).y = atoms_state(i,2);
 atoms(1,i).vx = atoms_state(i,3);
 atoms(1,i).vy = atoms_state(i,4);
end

Render the State

Call run_atoms_mex with zero iterations to render only.

run_atoms_mex(atoms, 10000, 0);

24 Deploying Generated Code

24-56

 Using Dynamic Memory Allocation for an "Atoms" Simulation

24-57

MATLAB Coder Supported Hardware

MATLAB Coder generates ANSI/ISO C and C++ code that can be compiled and executed
on any processor by manually integrating the generated code with the RTOS, I/O devices,
and build tools for your processor.

MATLAB Coder extends the support packages in this table to help automate integration,
execution, and verification of generated code.

Support
Package

Base Product Vendor Earliest
Release for
MATLAB Coder
Support

Last Release
Available

Raspberry Pi MATLAB Raspberry Pi R2018b Current

For a complete list of hardware support packages, see Hardware Support.

24 Deploying Generated Code

24-58

matlab:matlab.addons.supportpackage.internal.explorer.showSupportPackages('RASPPIIO','tripwire');
https://www.mathworks.com/hardware-support.html?fq=product:ME

Accelerating MATLAB Algorithms

• “Workflow for Accelerating MATLAB Algorithms” on page 25-2
• “Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms”

on page 25-4
• “Accelerate MATLAB Algorithms” on page 25-7
• “Modifying MATLAB Code for Acceleration” on page 25-8
• “Profile MEX Functions by Using MATLAB Profiler” on page 25-9
• “Control Run-Time Checks” on page 25-17
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 25-20
• “Control Compilation of parfor-Loops” on page 25-26
• “Reduction Assignments in parfor-Loops” on page 25-27
• “Classification of Variables in parfor-Loops” on page 25-28
• “Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)” on page 25-37
• “Specify Maximum Number of Threads in parfor-Loops” on page 25-38
• “Troubleshooting parfor-Loops” on page 25-39
• “Accelerating Simulation of Bouncing Balls” on page 25-40
• “General Relativity” on page 25-45
• “Reverberation Using MATLAB Classes” on page 25-51
• “Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm”

on page 25-53
• “Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler”

on page 25-64

25

Workflow for Accelerating MATLAB Algorithms

25 Accelerating MATLAB Algorithms

25-2

See Also
• “Set Up a MATLAB Coder Project” on page 17-2
• “Workflow for Preparing MATLAB Code for Code Generation” on page 18-2
• “Workflow for Testing MEX Functions in MATLAB” on page 19-3
• “Modifying MATLAB Code for Acceleration” on page 25-8

 Workflow for Accelerating MATLAB Algorithms

25-3

Best Practices for Using MEX Functions to Accelerate
MATLAB Algorithms

In this section...
“Accelerate Code That Dominates Execution Time” on page 25-4
“Include Loops Inside MEX Function” on page 25-4
“Avoid Generating MEX Functions from Unsupported Functions” on page 25-5
“Avoid Generating MEX Functions if Built-In MATLAB Functions Dominate Run Time” on
page 25-6
“Minimize MEX Function Calls” on page 25-6

When you choose a section of MATLAB code to accelerate, the following practices are
recommended.

Accelerate Code That Dominates Execution Time
Find the section of MATLAB code that dominates run time. Accelerate this section of the
code using a MEX function as follows:

1 Place this section of the code inside a separate MATLAB function.
2 From this MATLAB function, generate a MEX function.
3 From your original MATLAB code, call the MEX function.

To find the execution time of each MATLAB instruction, use MATLAB Profiler.

• To open the Profiler from the command line, type profile viewer.
• To open Profiler from the MATLAB Editor window, under the Editor tab, click Run

and Time.

For more information about using the Profiler to measure run time of MATLAB code, see
“Profile to Improve Performance” (MATLAB).

Include Loops Inside MEX Function
Instead of calling a MEX function inside a loop in the MATLAB code, include the loop
inside the MEX function. Including the loop eliminates the overheads in calling the MEX
function for every run of the loop.

25 Accelerating MATLAB Algorithms

25-4

For example, the following code finds the greatest element in every row of a 1000–by–
1000 matrix, mat. You can accelerate sections 1,2, and 3 using a MEX function.:

% Section 1 begins
for i = 1:10000

 % Section 2 begins
 max = mat(i,0); % Initialize max
 for j = 1:10000

 % Section 3 begins
 if (mat(i,j) > max)
 max = mat(i,j) % Store the current maximum
 end
 % Section 3 ends

 end
 % Section 2 ends

end
% Section 1 ends

Accelerate section 1 using a MEX function. Accelerate section 1 first so that the MEX
function is called only once.. If you cannot accelerate section 1 first, then accelerate
sections 2 or 3, in that order. If section 2 (or 3) is accelerated using a MEX function, the
function is called 10000 (or 10000 × 10000) times.

Avoid Generating MEX Functions from Unsupported Functions
Check that the section of MATLAB code that you accelerate does not contain many
functions and language features that are unsupported by MATLAB Coder. For a list of
supported functions, see “Functions and Objects Supported for C/C++ Code Generation
— Alphabetical List” on page 3-2.

Note In certain situations, you might have to accelerate sections of code even though
they contain a few unsupported functions. Declare an unsupported function as extrinsic to
invoke the original MATLAB function instead of the code generated for the function. You
can declare a function as extrinsic by using coder.extrinsic or wrapping it in an
feval statement. See “Extrinsic Functions” on page 13-9.

 Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms

25-5

Avoid Generating MEX Functions if Built-In MATLAB Functions
Dominate Run Time
Use MEX functions to accelerate MATLAB code only if user-generated code dominates the
run time.

Avoid generating MEX functions if computationally intensive, built-in MATLAB functions
dominate the run time. These functions are pre-compiled and optimized, so the MATLAB
code is not accelerated significantly using a MEX function. Examples of such functions
include svd, eig ,fft, qr, lu.

Tip You can invoke computationally intensive, built-in MATLAB functions from your MEX
function. Declare the MATLAB function as extrinsic using coder.extrinsic or wrap it
in an feval statement. For more information, see “Extrinsic Functions” on page 13-9.

Minimize MEX Function Calls
Accelerate as much of the MATLAB code as possible using one MEX function instead of
several MEX functions called at lower levels. This minimizes the overheads in calling the
MEX functions.

For example, consider the function,testfunc,which calls two functions,testfunc_1 and
testfunc_2:

function [y1,y2] = testfunc(x1,x2)
 y1 = testfunc_1(x1,x2);
 y2 = testfunc_2(x1,x2);
end

Instead of generating MEX functions individually for testfunc_1 and testfunc_2, and
then calling the MEX functions in testfunc, generate a MEX function for testfunc
itself.

25 Accelerating MATLAB Algorithms

25-6

Accelerate MATLAB Algorithms
For many applications, you can generate MEX functions to accelerate MATLAB
algorithms. If you have a Fixed-Point Designer license, you can generate MEX functions to
accelerate fixed-point MATLAB algorithms. After generating a MEX function, test it in
MATLAB to verify that its operation is functionally equivalent to the original MATLAB
algorithm. Then compare the speed of execution of the MEX function with that of the
MATLAB algorithm. If the MEX function speed is not sufficiently fast, you might improve
it using one of the following methods:

• Choosing a different C/C++ compiler.

It is important that you use a C/C++ compiler that is designed to generate high
performance code.

Note The default MATLAB compiler for Windows 64-bit platforms, lcc, is designed to
generate code quickly. It is not designed to generate high performance code.

• “Modifying MATLAB Code for Acceleration” on page 25-8
• “Control Run-Time Checks” on page 25-17

 Accelerate MATLAB Algorithms

25-7

Modifying MATLAB Code for Acceleration

How to Modify Your MATLAB Code for Acceleration
You might improve the efficiency of the generated code using one of the following
optimizations:

• “Unroll for-Loops” on page 27-37
• “Inline Code” on page 27-10
• “Eliminate Redundant Copies of Function Inputs” on page 27-7

25 Accelerating MATLAB Algorithms

25-8

Profile MEX Functions by Using MATLAB Profiler
You can profile execution times for MEX functions generated by MATLAB Coder by using
the MATLAB Profiler. The profile for the generated code shows the number of calls and
the time spent for each line of the corresponding MATLAB function. Use the Profiler to
identify the lines of MATLAB code that produce generated code that take the most time.
This information can help you identify and correct performance issues early in the
development cycle. For more information on the MATLAB Profiler, see profile and
“Profile to Improve Performance” (MATLAB).

MEX Profile Generation
You can use the MATLAB Profiler with a generated MEX function. Alternatively, if you
have a test file that calls your MATLAB function, you can generate the MEX function and
profile it in one step. You can perform these operations at the command line or in the
MATLAB Coder app.

To use the Profiler with a generated MEX function:

1 Enable MEX profiling by setting the configuration object property
EnableMexProfiling to true.

Alternatively, you can use codegen with the -profile option.

The equivalent setting in the MATLAB Coder app is Enable execution profiling in
the Generate step.

2 Generate the MEX file MyFunction_mex.
3 Run the MATLAB Profiler and view the Profile Summary Report, which opens in a

separate window.

profile on;
MyFunction_mex;
profile viewer;

Make sure that you have not changed or moved the original MATLAB file
MyFunction.m. Otherwise, the Profiler does not consider MyFunction_mex for
profiling.

If you have a test file MyFunctionTest.m that calls your MATLAB function, you can:

 Profile MEX Functions by Using MATLAB Profiler

25-9

• Generate the MEX function and profile it in one step by using codegen with the -
test and the -profile options. If you turned on the MATLAB Profiler before, turn it
off before you use these two options together.

codegen MyFunction -test MyFunctionTest -profile
• Profile the MEX function by selecting Enable execution profiling in the Verify step

of the app. If you turned on the MATLAB Profiler before, turn it off before you perform
this action.

Example
You use the Profiler to identify the functions or the lines of the MATLAB code that
produce generated code that take the most time. Following is an example of a MATLAB
function that converts the representation of its input matrices A and B from row-major to
column-major layout in one of its lines. Such a conversion has a long execution time for
large matrices. Avoiding the conversion by modifying that particular line makes the
function more efficient.

Consider the MATLAB function:

function [y] = MyFunction(A,B) %#codegen

% Generated code uses row-major representation of matrices A and B
coder.rowMajor;
length = size(A,1);

% Summing absolute values of all elements of A and B by traversing over the
% matrices row by row
sum_abs = 0;
for row = 1:length
 for col = 1:length
 sum_abs = sum_abs + abs(A(row,col)) + abs(B(row,col));
 end
end

% Calling external C function 'foo.c' that returns the sum of all elements
% of A and B
sum = 0;
sum = coder.ceval('foo',coder.ref(A),coder.ref(B),length);

% Returning the difference of sum_abs and sum
y = sum_abs - sum;
end

25 Accelerating MATLAB Algorithms

25-10

The generated code for this function uses a row-major representation of the square
matrices A and B. The code first computes sum_abs (the sum of absolute values of all
elements of A and B) by traversing over the matrices row by row. This algorithm is
optimized for matrices that are represented in a row-major layout. The code then uses
coder.ceval to call the external C function foo.c:

#include <stdio.h>
#include <stdlib.h>
#include "foo.h"

double foo(double *A, double *B, double length)
{
 int i,j,s;
 double sum = 0;
 s = (int)length;

 /*Summing all the elements of A and B*/
 for(i=0;i<s*s;i++)
 {
 sum += A[i] + B[i];
 }
 return(sum);
}

The corresponding C header file foo.h is:

#include "rtwtypes.h"

double foo(double *A, double *B, double length);

foo.c returns the variable sum, which is the sum of all elements of A and B. The
performance of the function foo.c is independent of whether the matrices A and B are
represented in row-major or column-major layouts. MyFunction returns the difference of
sum_abs and sum.

You can measure the performance of MyFunction for large input matrices A and B, and
then optimize it further:

1 Enable MEX profiling and generate MEX code for MyFunction. Run
MyFunction_mex for two large random matrices A and B. View the Profile Summary
Report.

A = rand(20000);
B = rand(20000);

 Profile MEX Functions by Using MATLAB Profiler

25-11

codegen MyFunction -args {A,B} foo.c foo.h -profile

profile on;
MyFunction_mex(A,B);
profile viewer;

A separate window opens showing the Profile Summary Report.

The Profile Summary Report shows the total time and the self time for the MEX file
and its child, which is the generated code for the original MATLAB function.

2 Under Function Name, click the first link to view the Profile Detail Report for the
generated code for MyFunction. You can see the lines where the most time was
spent:

25 Accelerating MATLAB Algorithms

25-12

3 The line calling coder.ceval takes the most time (21.152 s). This line has the
longest execution time because coder.ceval converts the representation of the
matrices A and B from row-major layout to column-major layout before passing them
to the external C function. You can avoid this conversion by using an additional
argument -layout:rowMajor in coder.ceval:

sum = coder.ceval('-layout:rowMajor','foo',coder.ref(A),coder.ref(B),length);
4 Generate the MEX function and profile again using the modified MyFunction.

A = rand(20000);
B = rand(20000);

codegen MyFunction -args {A,B} foo.c foo.h -profile

profile on;
MyFunction_mex(A,B);
profile viewer;

The Profile Detail Report for MyFunction shows that the line calling coder.ceval
now takes only 0.456 s:

 Profile MEX Functions by Using MATLAB Profiler

25-13

Effect of Folding Expressions on MEX Code Coverage
When you use coder.const to fold expressions into constants, it causes a difference in
the code coverage between the MATLAB function and the MEX function. For example,
consider the function:

function y = MyFunction %#codegen
a = 1;
b = 2;
c = a + b;
y = 5 + coder.const(c);
end

Profiling the MATLAB function MyFunction shows this code coverage in the Profile
Detail Report:

25 Accelerating MATLAB Algorithms

25-14

However, profiling the MEX function MyFunction_mex shows a different code coverage:

Lines 2, 3, and 4 are not executed in the generated code because you have folded the
expression c = a + b into a constant for code generation.

This example uses user-defined expression folding. The code generator sometimes
automatically folds certain expressions to optimize the performance of the generated
code. Such optimizations also cause the coverage of the MEX function to be different from
the MATLAB function.

See Also
codegen | coder.MexCodeConfig | coder.ceval | coder.const | coder.rowMajor
| profile

 See Also

25-15

More About
• “Profile to Improve Performance” (MATLAB)
• “Generate Code That Uses Row-Major Array Layout” on page 30-4

25 Accelerating MATLAB Algorithms

25-16

Control Run-Time Checks
In this section...
“Types of Run-Time Checks” on page 25-17
“When to Disable Run-Time Checks” on page 25-17
“How to Disable Run-Time Checks” on page 25-18

Types of Run-Time Checks
The code generated for your MATLAB functions includes the following run-time checks
and external calls to MATLAB functions.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for MATLAB
functions and stop execution with a diagnostic message.

Caution These checks are enabled by default. Without memory integrity checks,
violations result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated for MATLAB
functions. Enabling responsiveness checks also enables graphics refreshing.

Caution These checks are enabled by default. Without these checks, the only way to
end a long-running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results, are enabled by
default for debugging purposes. For more information about extrinsic functions, see
“Declaring MATLAB Functions as Extrinsic Functions” on page 13-10.

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more generated code
and slower MEX function execution than generating code with the checks disabled.

 Control Run-Time Checks

25-17

Similarly, extrinsic calls are time consuming and increase memory usage and execution
time. Disabling run-time checks and extrinsic calls usually results in streamlined
generated code and faster MEX function execution. The following table lists issues to
consider when disabling run-time checks and extrinsic calls.

Consider disabling... Only if...
Memory integrity checks You have already verified that array bounds

and dimension checking is unnecessary.
Responsiveness checks You are sure that you will not need to stop

execution of your application using Ctrl+C.
Extrinsic calls You are using extrinsic calls only for

functions that do not affect application
results.

How to Disable Run-Time Checks
You can disable run-time checks explicitly from the project settings dialog box, the
command line, or a MEX configuration dialog box.

Disabling Run-Time Checks Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to MEX.
3 Click More Settings.
4 On the Speed tab, clear Ensure memory integrity, Enable responsiveness to

CTRL+C and graphics refreshing, or Keep Extrinsic calls, as applicable.

Disabling Run-Time Checks From the Command Line

1 In the MATLAB workspace, define the MEX configuration object:

mexcfg = coder.config('mex');

2 At the command line, set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties to false, as applicable:

25 Accelerating MATLAB Algorithms

25-18

mexcfg.IntegrityChecks = false;
mexcfg.ExtrinsicCalls = false;
mexcfg.ResponsivenessChecks = false;

 Control Run-Time Checks

25-19

Algorithm Acceleration Using Parallel for-Loops (parfor)
In this section...
“Parallel for-Loops (parfor) in Generated Code” on page 25-20
“How parfor-Loops Improve Execution Speed” on page 25-21
“When to Use parfor-Loops” on page 25-21
“When Not to Use parfor-Loops” on page 25-21
“parfor-Loop Syntax” on page 25-22
“parfor Restrictions” on page 25-22

Parallel for-Loops (parfor) in Generated Code
To potentially accelerate execution, you can generate MEX functions or C/C++ code from
MATLAB code that contains parallel for-loops (parfor-loops).

A parfor-loop, like the standard MATLAB for-loop, executes a series of statements (the
loop body) over a range of values. Unlike the for-loop, however, the iterations of the
parfor-loop can run in parallel on multiple cores on the target hardware.

Running the iterations in parallel might significantly improve execution speed of the
generated code. For more information, see “How parfor-Loops Improve Execution Speed”
on page 25-21.

Note The parallel execution occurs only in generated MEX functions or C/C++ code; not
the original MATLAB code. To accelerate your MATLAB code, generate a MEX function
from the parfor-loop. Then, call the MEX function from your code. For more information,
see “Workflow for Accelerating MATLAB Algorithms” on page 25-2.

MATLAB Coder software uses the Open Multiprocessing (OpenMP) application interface
to support shared-memory, multicore code generation. If you want distributed parallelism,
use the Parallel Computing Toolbox™ product. By default, MATLAB Coder uses up to as
many cores as it finds available. If you specify the number of threads to use, MATLAB
Coder uses at most that number of cores for the threads, even if additional cores are
available. For more information, see parfor.

Because the loop body can execute in parallel on multiple threads, it must conform to
certain restrictions. If MATLAB Coder software detects loops that do not conform to

25 Accelerating MATLAB Algorithms

25-20

parfor specifications, it produces an error. For more information, see “parfor
Restrictions” on page 25-22.

How parfor-Loops Improve Execution Speed
A parfor-loop might provide better execution speed than its analogous for-loop because
several threads can compute concurrently on the same loop.

Each execution of the body of a parfor-loop is called an iteration. The threads evaluate
iterations in arbitrary order and independently of each other. Because each iteration is
independent, they do not have to be synchronized. If the number of threads is equal to the
number of loop iterations, each thread performs one iteration of the loop. If there are
more iterations than threads, some threads perform more than one loop iteration.

For example, when a loop of 100 iterations runs on 20 threads, each thread executes five
iterations of the loop simultaneously. If your loop takes a long time to run because of the
large number of iterations or individual iterations being lengthy, you can reduce the run
time significantly using multiple threads. In this example, you might not, however, get 20
times improvement in speed because of parallelization overheads, such as thread creation
and deletion.

When to Use parfor-Loops
Use parfor when you have:

• Many iterations of a simple calculation. parfor divides the loop iterations into groups
so that each thread executes one group of iterations.

• A loop iteration that takes a long time to execute. parfor executes the iterations
simultaneously on different threads. Although this simultaneous execution does not
reduce the time spent on an individual iteration, it might significantly reduce overall
time spent on the loop.

When Not to Use parfor-Loops
Do not use parfor when:

• An iteration of your loop depends on other iterations. Running the iterations in parallel
can lead to erroneous results.

To help you avoid using parfor when an iteration of your loop depends on other
iterations, MATLAB Coder specifies a rigid classification of variables. For more

 Algorithm Acceleration Using Parallel for-Loops (parfor)

25-21

information, see “Classification of Variables in parfor-Loops” on page 25-28. If
MATLAB Coder detects loops that do not conform to the parfor specifications, it does
not generate code and produces an error.

Reductions are an exception to the rule that loop iterations must be independent. A
reduction variable accumulates a value that depends on all the iterations together, but
is independent of the iteration order. For more information, see “Reduction Variables”
on page 25-30.

• There are only a few iterations that perform some simple calculations.

Note For small number of loop iterations, you might not accelerate execution due to
parallelization overheads. Such overheads include time taken for thread creation, data
synchronization between threads, and thread deletion.

parfor-Loop Syntax
• For a parfor-loop, use this syntax:

parfor i = InitVal:EndVal
parfor (i = InitVal:EndVal)

• To specify the maximum number of threads, use this syntax:

parfor (i = InitVal:EndVal,NumThreads)

For more information, see parfor.

parfor Restrictions
• The parfor loop does not support the syntax:

parfor (i=initVal:step:endVal)
parfor i=initVal:step:endVal

• You must use a compiler that supports the Open Multiprocessing (OpenMP)
application interface. See https://www.mathworks.com/support/compilers/
current_release/. If you use a compiler that does not support OpenMP, MATLAB
Coder treats the parfor-loops as for-loops. In the generated MEX function or C/C++
code, the loop iterations run on a single thread.

• The OpenMP application interface is not compatible with JIT MEX compilation. See
“JIT Compilation Does Not Support OpenMP” on page 29-3.

25 Accelerating MATLAB Algorithms

25-22

• The type of the loop index must be representable by an integer type on the target
hardware. Use a type that does not require a multiword type in the generated code.

• parfor for standalone code generation requires the toolchain approach for building
executables or libraries. Do not change settings that cause the code generator to use
the template makefile approach. See “Project or Configuration is Using the Template
Makefile” on page 23-22.

• Do not use the following constructs in the body of a parfor loop:

• Nested parfor-loops

You can have a parfor loop inside another parfor-loop. However, the inner
parfor loop will be executed on a single thread as an ordinary for-loop.

Inside a parfor loop, you can call a function that contains another parfor-loop.
• Break and return statements

You cannot use break or return statements inside a parfor-loop.
• Global variables

You cannot write to a global variable inside a parfor-loop.
• Reductions on MATLAB classes

You cannot use reductions on MATLAB classes inside a parfor-loop.
• Reductions on char variables

You cannot use reductions on char variables inside a parfor-loop.

For example, you cannot generate C code for the following MATLAB code:

c = char(0);
parfor i=1:10
 c = c + char(1);
end

In the parfor-loop, MATLAB makes c a double. For code generation, c cannot
change type.

• Reductions using external C code

You cannot use coder.ceval in reductions inside a parfor-loop.. For example,
you cannot generate code for the following parfor-loop:

 Algorithm Acceleration Using Parallel for-Loops (parfor)

25-23

parfor i=1:4
 y=coder.ceval('myCFcn',y,i);
end

Instead, write a local function that calls the C code using coder.ceval and call
this function in the parfor-loop. For example:

parfor i=1:4
 y = callMyCFcn(y,i);
end
...
function y = callMyCFcn(y,i)
 y = coder.ceval('mCyFcn', y , i);
end

• Extrinsic function calls

You cannot call extrinsic functions using coder.extrinsic inside a parfor-loop.
Calls to functions that contain extrinsic calls result in a run-time error.

• Inlining functions

MATLAB Coder does not inline functions into parfor-loops, including functions
that use coder.inline('always').

• Unrolling loops

You cannot use coder.unroll inside a parfor-loop.

If a loop is unrolled inside a parfor-loop, MATLAB Coder cannot classify the
variable. For example:

for j=coder.unroll(3:6)
 y(i,j)=y(i,j)+i+j;
end

This code is unrolled to:

y(i,3)=y(i,3)+i+3;
...
y(i,6)=y(i,6)+i+6;

In the unrolled code, MATLAB Coder cannot classify the variable y because y is
indexed in different ways inside the parfor-loop.

MATLAB Coder does not support variables that it cannot classify. For more
information, see “Classification of Variables in parfor-Loops” on page 25-28.

25 Accelerating MATLAB Algorithms

25-24

• varargin/varargout

You cannot use varargin or varargout inside a parfor-loop.

 Algorithm Acceleration Using Parallel for-Loops (parfor)

25-25

Control Compilation of parfor-Loops
By default, MATLAB Coder generates code that can run the parfor-loop on multiple
threads. To treat the parfor-loops as for-loops that run on a single thread, disable
parfor with one of these methods:

• By using the codegen function with -O disable:openmp option at the command
line.

• By using a code generation configuration object with the property EnableOpenMP set
to false. For example:

cfg = coder.config('lib');
cfg.EnableOpenMP = false;
codegen myFunction -config cfg

• By setting Enable OpenMP library if possible to No under All Settings tab in the
project settings dialog box.

When to Disable parfor
Disable parfor if you want to:

• Compare the execution times of the serial and parallel versions of the generated code.
• Investigate failures. If the parallel version of the generated code fails, disable parfor

and generate a serial version to facilitate debugging.
• Use C compilers that do not support OpenMP.

See Also
parfor

More About
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 25-20
• “Configure Build Settings” on page 20-28

25 Accelerating MATLAB Algorithms

25-26

Reduction Assignments in parfor-Loops

What are Reduction Assignments?
Reduction assignments, or reductions, are an exception to the rule that loop iterations
must be independent. A reduction variable accumulates a value that depends on all the
loop iterations together, but is independent of the iteration order. For a list of supported
reduction variables see “Reduction Variables” on page 25-30.

Multiple Reductions in a parfor-Loop
You can perform the same reduction assignment multiple times within a parfor-loop
provided that you use the same data type each time.

For example, in the following parfor-loop, u(i) and v(i) must be the same type.

parfor i = 1:10;
 X = X + u(i);
 X = X + v(i);
end

Similarly, the following example is valid provided that u(i) and v(i) are the same type.

parfor i=1:10
 r = foo(r,u(i));
 r = foo(r,v(i));
end

 Reduction Assignments in parfor-Loops

25-27

Classification of Variables in parfor-Loops
In this section...
“Overview” on page 25-28
“Sliced Variables” on page 25-29
“Broadcast Variables” on page 25-30
“Reduction Variables” on page 25-30
“Temporary Variables” on page 25-35

Overview
MATLAB Coder classifies variables inside a parfor-loop into one of the categories in the
following table. It does not support variables that it cannot classify. If a parfor-loop
contains variables that cannot be uniquely categorized or if a variable violates its
category restrictions, the parfor-loop generates an error.

Classification Description
Loop Serves as a loop index for arrays
Sliced An array whose segments are operated on by different iterations of

the loop
Broadcast A variable defined before the loop whose value is used inside the

loop, but not assigned inside the loop
Reduction Accumulates a value across iterations of the loop, regardless of

iteration order
Temporary A variable created inside the loop, but unlike sliced or reduction

variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

a=0;
c=pi;
z=0;
r=rand(1,10);
parfor i=1:10
 a=i; % 'a' is a temporary variable
 z=z+i; % 'z' is a reduction variable

25 Accelerating MATLAB Algorithms

25-28

 b(i)=r(i); % 'b' is a sliced output variable;
 % 'r' a sliced input variable
 if i<=c % 'c' is a broadcast variable
 d=2*a; % 'd' is a temporary variable
 end
end

Sliced Variables
A sliced variable is one whose value can be broken up into segments, or slices, which are
then operated on separately by different threads. Each iteration of the loop works on a
different slice of the array.

In the next example, a slice of A consists of a single element of that array:

parfor i = 1:length(A)
 B(i) = f(A(i));
end

Characteristics of a Sliced Variable

A variable in a parfor-loop is sliced if it has the following characteristics:

• Type of First-Level Indexing — The first level of indexing is parentheses, ().
• Fixed Index Listing — Within the first-level parenthesis, the list of indices is the same

for all occurrences of a given variable.
• Form of Indexing — Within the list of indices for the variable, exactly one index

involves the loop variable.
• Shape of Array — In assigning to a sliced variable, the right-hand side of the

assignment is not [] or '' (these operators indicate deletion of elements).

Type of First-Level Indexing. For a sliced variable, the first level of indexing is enclosed in
parentheses, (). For example, A(...). If you reference a variable using dot notation,
A.x, the variable is not sliced.

Variable A on the left is not sliced; variable A on the right is sliced:

A.q(i,12) A(i,12).q

Fixed Index Listing. Within the first-level parentheses of a sliced variable's indexing, the
list of indices is the same for all occurrences of a given variable.

 Classification of Variables in parfor-Loops

25-29

Variable B on the left is not sliced because B is indexed by i and i+1 in different places.
Variable B on the right is sliced.

parfor i = 1:10
 B(i) = B(i+1) + 1;
end

parfor i = 1:10
 B(i+1) = B(i+1) + 1;
end

Form of Indexing. Within the list of indices for a sliced variable, one index is of the form
i, i+k, i-k, k+i, or k-i.

• i is the loop variable.
• k is a constant or a simple (nonindexed) variable.
• Every other index is a constant, a simple variable, colon, or end.

When you use other variables along with the loop variable to index an array, you cannot
set these variables inside the loop. These variables are constant over the execution of the
entire parfor statement. You cannot combine the loop variable with itself to form an
index expression.

In the following examples, i is the loop variable, j and k are nonindexed variables.

Variable A Is Not Sliced Variable A Is Sliced
A(i+f(k),j,:,3)
A(i,20:30,end)
A(i,:,s.field1)

A(i+k,j,:,3)
A(i,:,end)
A(i,:,k)

Shape of Array. A sliced variable must maintain a constant shape. In the following
examples, the variable A is not sliced:

A(i,:) = [];
A(end + 1) = i;

Broadcast Variables
A broadcast variable is a variable other than the loop variable or a sliced variable that is
not modified inside the loop.

Reduction Variables
A reduction variable accumulates a value that depends on all the iterations together, but
is independent of the iteration order.

25 Accelerating MATLAB Algorithms

25-30

This example shows a parfor-loop that uses a scalar reduction assignment. It uses the
reduction variable x to accumulate a sum across 10 iterations of the loop. The execution
order of the iterations on the threads does not matter.

x = 0;
parfor i = 1:10
 x = x + i;
end
x

Where expr is a MATLAB expression, reduction variables appear on both sides of an
assignment statement.

X = X + expr X = expr + X
X = X - expr See “Reduction Assignments, Associativity,

and Commutativity of Reduction Functions”
on page 25-34

X = X .* expr X = expr .* X
X = X * expr X = expr * X
X = X & expr X = expr & X
X = X | expr X = expr | X
X = min(X, expr) X = min(expr, X)
X = max(X, expr) X = max(expr, X)
X=f(X, expr)
Function f must be a user-defined
function.

X = f(expr, X)
See “Reduction Assignments, Associativity,
and Commutativity of Reduction Functions”
on page 25-34

Each of the allowed statements is referred to as a reduction assignment. A reduction
variable can appear only in assignments of this type.

The following example shows a typical usage of a reduction variable X:

X = ...; % Do some initialization of X
parfor i = 1:n
 X = X + d(i);
end

This loop is equivalent to the following, where each d(i) is calculated by a different
iteration:

 Classification of Variables in parfor-Loops

25-31

X = X + d(1) + ... + d(n)

If the loop were a regular for-loop, the variable X in each iteration would get its value
either before entering the loop or from the previous iteration of the loop. However, this
concept does not apply to parfor-loops.

In a parfor-loop, the value of X is not updated directly inside each thread. Rather,
additions of d(i) are done in each thread, with i ranging over the subset of 1:n being
performed on that thread. The software then accumulates the results into X.

Similarly, the reduction:

r=r<op> x(i)

is equivalent to:

r=r<op>x(1)] <op>x(2)...<op>x(n)

The operation <op> is first applied to x(1)...x(n), then the partial result is applied to
r.

If operation <op> takes two inputs, it should meet one of the following criteria:

• Take two arguments of typeof(x(i)) and return typeof(x(i))
• Take one argument of typeof(r) and one of typeof(x(i)) and return typeof(r)

Rules for Reduction Variables
Use the same reduction function or operation in all reduction assignments

For a reduction variable, you must use the same reduction function or operation in all
reduction assignments for that variable. In the following example, the parfor-loop on the
left is not valid because the reduction assignment uses + in one instance, and * in
another.

Invalid Use of Reduction Variable Valid Use of Reduction Variable
parfor i = 1:n
 if A > 5*k
 A = A + 1;
 else
 A = A * 2;
 end

parfor i = 1:n
 if A > 5*k
 A = A * 3;
 else
 A = A * 2;
 end

25 Accelerating MATLAB Algorithms

25-32

Restrictions on reduction function parameter and return types

A reduction r=r<op> x(i), should take arguments of typeof(x(i)) and return
typeof(x(i)) or take arguments of typeof(r) and typeof(x(i)) and return
typeof(r).

In the following example, in the invalid loop, r is a fixed-point type and 2 is not. To fix this
issue, cast 2 to be the same type as r.

Invalid Use of Reduction Variable Valid Use of Reduction Variable
function r = fiops(in)
r=fi(in,'WordLength',20,...
 'FractionLength',14,...
 'SumMode','SpecifyPrecision',...
 'SumWordLength',20,...
 'SumFractionLength',14,...
 'ProductMode', 'SpecifyPrecision',...
 'ProductWordLength',20,...
 'ProductFractionLength',14);
parfor i = 1:10
 r = r*2;
end

r=fi(in,'WordLength',20,...
 'FractionLength',14,...
 'SumMode','SpecifyPrecision',...
 'SumWordLength',20,...
 'SumFractionLength',14,...
 'ProductMode','SpecifyPrecision',...
 'ProductWordLength',20,...
 'ProductFractionLength',14);
T = r.numerictype;
F = r.fimath;
parfor i = 1:10
 r = r*fi(2,T,F);
end

In the following example, the reduction function fcn is invalid because it does not handle
the case when input u is fixed point. (The + and * operations are automatically
polymorphic.) You must write a polymorphic version of fcn to handle the expected input
types.

 Classification of Variables in parfor-Loops

25-33

Invalid Use of Reduction Variable Valid Use of Reduction Variable
function [y0, y1, y2] = pfuserfcn(u)
 y0 = 0;
 y1 = 1;
 [F, N] = fiprops();
 y2 = fi(1,N,F);
 parfor (i=1:numel(u),12)
 y0 = y0 + u(i);
 y1 = y1 * u(i);
 y2 = fcn(y2, u(i));
 end
end

function y = fcn(u, v)
 y = u * v;
end

function [y0, y1, y2] = pfuserfcn(u)
 y0 = 0;
 y1 = 1;
 [F, N] = fiprops();
 y2 = fi(1,N,F);
 parfor (i=1:numel(u),12)
 y0 = y0 + u(i);
 y1 = y1 * u(i);
 y2 = fcn(y2, u(i));
 end
end
% fcn handles inputs of type double
% and fi
function y = fcn(u, v)
 if isa(u,'double')
 y = u * v;
 else
 [F, N] = fiprops();
 y = u * fi(v,N,F);
 end
end

function [F, N] = fiprops()
 N = numerictype(1,96,30);
 F = fimath('ProductMode',...
 'SpecifyPrecision',...
 'ProductWordLength',96);
end

Reduction Assignments, Associativity, and Commutativity of Reduction Functions

Reduction Assignments. MATLAB Coder does not allow reduction variables to be read
anywhere in the parfor-loop except in reduction statements. In the following example,
the call foo(r) after the reduction statement r=r+i causes the loop to be invalid.

function r = temp %#codegen
 r = 0;
 parfor i=1:10
 r = r + i;
 foo(r);
 end
end

25 Accelerating MATLAB Algorithms

25-34

Associativity in Reduction Assignments. If you use a user-defined function f in the
definition of a reduction variable, to get deterministic behavior of parfor-loops, the
reduction function f must be associative.

Note If f is not associative, MATLAB Coder does not generate an error. You must write
code that meets this recommendation.

To be associative, the function f must satisfy the following for all a, b, and c:

f(a,f(b,c)) = f(f(a,b),c)

Commutativity in Reduction Assignments. Some associative functions, including +, ., min,
and max, are also commutative. That is, they satisfy the following for all a and b:

f(a,b) = f(b,a)

The function f of a reduction assignment must be commutative. If f is not commutative,
different executions of the loop might result in different answers.

Unless f is a known noncommutative built-in, the software assumes that it is
commutative.

Temporary Variables
A temporary variable is a variable that is the target of a direct, nonindexed assignment,
but is not a reduction variable. In the following parfor-loop, a and d are temporary
variables:

a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10
 a = i; % Variable a is temporary
 z = z + i;
 if i <= 5
 d = 2*a; % Variable d is temporary
 end
end

In contrast to the behavior of a for-loop, before each iteration of a parfor-loop,
MATLAB Coder effectively clears temporary variables. Because the iterations must be

 Classification of Variables in parfor-Loops

25-35

independent, the values of temporary variables cannot be passed from one iteration of the
loop to another. Therefore, temporary variables must be set inside the body of a parfor-
loop, so that their values are defined separately for each iteration.

A temporary variable in the context of the parfor statement is different from a variable
with the same name that exists outside the loop.

Uninitialized Temporaries

Because temporary variables are cleared at the beginning of every iteration, MATLAB
Coder can detect certain cases in which an iteration through the loop uses the temporary
variable before it is set in that iteration. In this case, MATLAB Coder issues a static error
rather than a run-time error, because there is little point in allowing execution to proceed
if a run-time error will occur. For example, suppose you write:

 b = true;
 parfor i = 1:n
 if b && some_condition(i)
 do_something(i);
 b = false;
 end
 ...
 end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a temporary
variable because it occurs directly as the target of an assignment inside the loop.
Therefore, it is cleared at the start of each iteration, so its use in the condition of the if is
uninitialized. (If you change parfor to for, the value of b assumes sequential execution
of the loop, so that do_something(i) is executed for only the lower values of i until b is
set false.)

25 Accelerating MATLAB Algorithms

25-36

Accelerate MATLAB Algorithms That Use Parallel for-
Loops (parfor)

This example shows how to generate a MEX function for a MATLAB algorithm that
contains a parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10
 a(i,:)=real(fft(r(i,:)));
end

2 Generate a MEX function for test_parfor. At the MATLAB command line, enter:

codegen test_parfor

codegen generates a MEX function, test_parfor_mex, in the current folder.
3 Run the MEX function. At the MATLAB command line, enter:

test_parfor_mex

Because you did not specify the maximum number of threads to use, the generated
MEX function executes the loop iterations in parallel on the maximum number of
available cores.

 Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)

25-37

Specify Maximum Number of Threads in parfor-Loops
This example shows how to specify the maximum number of threads to use for a parfor-
loop. Because you specify the maximum number of threads to use, the generated MEX
function executes the loop iterations in parallel on as many cores as available, up to the
maximum number that you specify. If you specify more threads than there are cores
available, the MEX function uses the available cores.

1 Write a MATLAB function, specify_num_threads, that uses one input to specify
the maximum number of threads to execute a parfor-loop in the generated MEX
function. For example:

function y = specify_num_threads(u) %#codegen
 y = ones(1,100);
 % u specifies maximum number of threads
 parfor (i = 1:100,u)
 y(i) = i;
 end
end

2 Generate a MEX function for specify_num_threads. Use -args {0} to specify
that input u is a scalar double. Use -report to generate a code generation report. At
the MATLAB command line, enter:

codegen -report specify_num_threads -args {0}

codegen generates a MEX function, specify_num_threads_mex, in the current
folder.

3 Run the MEX function, specifying that it try to run in parallel on four threads. At the
MATLAB command line, enter:

specify_num_threads_mex(4)

The generated MEX function runs on up to four cores. If less than four cores are
available, the MEX function runs on the maximum number of cores available at the
time of the call.

25 Accelerating MATLAB Algorithms

25-38

Troubleshooting parfor-Loops

Global or Persistent Declarations in parfor-Loop
The body of a parfor-loop cannot contain a global or persistent variable declaration.

Compiler Does Not Support OpenMP
The MATLAB Coder software uses the Open Multiprocessing (OpenMP) application
interface to support shared-memory, multicore code generation. To generate a loop that
runs in parallel on shared-memory, multicore platforms, use a compiler that supports
OpenMP. OpenMP is enabled by default. If your compiler does not support OpenMP,
MATLAB Coder generates a warning.

Install a compiler that supports OpenMP. See https://www.mathworks.com/
support/compilers/current_release/.

 Troubleshooting parfor-Loops

25-39

Accelerating Simulation of Bouncing Balls
This example shows how to accelerate MATLAB algorithm execution using a generated
MEX function. It uses the codegen command to generate a MEX function for a
complicated application that uses multiple MATLAB files. You can use codegen to check
that your MATLAB code is suitable for code generation and, in many cases, to accelerate
your MATLAB algorithm. You can run the MEX function to check for run-time errors.

Prerequisites

There are no prerequisites for this example.

About the run_balls Function

The run_balls.m function takes a single input to specify the number of bouncing balls
to simulate. The simulation runs and plots the balls bouncing until there is no energy left
and returns the state (positions) of all the balls.

type run_balls

% balls = run_balls(n)
% Given 'n' number of balls, run a simulation until the balls come to a
% complete halt (or when the system has no more kinetic energy).
function balls = run_balls(n) %#codegen

coder.extrinsic('fprintf');

% Copyright 2010-2013 The MathWorks, Inc.

% Seeding the random number generator will guarantee that we get
% precisely the same simulation every time we call this function.
old_settings = rng(1283,'V4');

% The 'cdata' variable is a matrix representing the colordata bitmap which
% will be rendered at every time step.
cdata = zeros(400,600,'uint8');

% Setup figure windows
im = setup_figure_window(cdata);

% Get the initial configuration for 'n' balls.
balls = initialize_balls(cdata, n);

25 Accelerating MATLAB Algorithms

25-40

energy = 2; % Something greater than 1
iteration = 1;
while energy > 1
 % Clear the bitmap
 cdata(:,:) = 0;
 % Apply one iteration of movement
 [cdata,balls,energy] = step_function(cdata,balls);
 % Render the current state
 cdata = draw_balls(cdata, balls);
 iteration = iteration + 1;
 if mod(iteration,10) == 0
 fprintf(1, 'Iteration %d\n', iteration);
 end
 refresh_image(im, cdata);
end
fprintf(1, 'Completed iterations: %d\n', iteration);

% Restore RNG settings.
rng(old_settings);

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the name of the
MATLAB file to compile. Pass an example input (-args 0) to indicate that the generated
MEX function will be called with an input of type double.

codegen run_balls -args 0

The run_balls function calls other MATLAB functions, but you need to specify only the
entry-point function when calling codegen.

By default, codegen generates a MEX function named run_balls_mex in the current
folder. This allows you to test the MATLAB code and MEX function and compare the
results.

Compare Results

Run and time the original run_balls function followed by the generated MEX function.

tic, run_balls(50); t1 = toc;
tic, run_balls_mex(50); t2 = toc;

Iteration 10
Iteration 20
Iteration 30

 Accelerating Simulation of Bouncing Balls

25-41

matlab:doc('codegen');

Iteration 40
Iteration 50
Iteration 60
Iteration 70
Iteration 80
Iteration 90
Iteration 100
Iteration 110
Iteration 120
Iteration 130
Iteration 140
Iteration 150
Iteration 160
Iteration 170
Iteration 180
Iteration 190
Iteration 200
Iteration 210
Iteration 220
Iteration 230
Iteration 240
Iteration 250
Iteration 260
Iteration 270
Iteration 280
Completed iterations: 281
Iteration 10
Iteration 20
Iteration 30
Iteration 40
Iteration 50
Iteration 60
Iteration 70
Iteration 80
Iteration 90
Iteration 100
Iteration 110
Iteration 120
Iteration 130
Iteration 140
Iteration 150
Iteration 160
Iteration 170
Iteration 180

25 Accelerating MATLAB Algorithms

25-42

Iteration 190
Iteration 200
Iteration 210
Iteration 220
Iteration 230
Iteration 240
Iteration 250
Iteration 260
Iteration 270
Iteration 280
Completed iterations: 281

Estimated speed up is:

fprintf(1, 'Speed up: x ~%2.1f\n', t1/t2);

 Accelerating Simulation of Bouncing Balls

25-43

Speed up: x ~3.3

25 Accelerating MATLAB Algorithms

25-44

General Relativity
These examples are using Einstein's General Relativity to calculate geodesics in curved
space-time.

Prerequisites

There are no prerequisites for this example.

Example: Computing the Precession of the Planet Mercury

This example computes the precession of the planet Mercury numerically. The precession
is a slight rotation of the elliptical orbit around the sun. Analytically, using the equations
of general relativity the value is extremely small, an extra 43" (arc seconds) per century.
An arc second is 1/3600th of one degree (counting 360 degrees for a complete
revolution.) Even though the extra precession is extremely small it matches exactly with
observation. Pure Newtonian mechanics (if we choose to ignore all the other planets of
our solar system) predicts no precession.

This application is using Euler's method with variable time step where the major time
step is .5 seconds. We reduce the time step as we approach one complete revolution. The
precession is computed as the planet is reaching its maximum distance from the sun for
which we compute its relative angle to the coordinate axis.

Generate the MEX Function: Precession of the Planet Mercury

Generate a MEX function using the command codegen followed by the name of the
MATLAB file to compile.

codegen gr_mercury_precession

The gr_mercury_precession function calls other MATLAB functions, but you need to
specify only the entry-point function when calling codegen.

By default, codegen generates a MEX function named gr_mercury_precession_mex
in the current folder. This allows you to test the MATLAB code and MEX function and
compare the results.

Run the MEX Function: Precession of the Planet Mercury

Run the generated MEX function.

gr_mercury_precession_mex

 General Relativity

25-45

matlab:doc('codegen');

Progress: 5%
Progress: 10%
Progress: 15%
Progress: 20%
Progress: 25%
Progress: 30%
Progress: 35%
Progress: 40%
Progress: 45%
Progress: 50%
Progress: 55%
Progress: 60%
Progress: 65%
Progress: 70%
Progress: 75%

25 Accelerating MATLAB Algorithms

25-46

Progress: 80%
Progress: 85%
Progress: 90%
Progress: 95%
Progress: 100%
precession: 0.10468" (0 years 87.87009 days) => 43.481"/century

Example: Ray-tracing a Black Hole

Einstein's equations of motion in general relativity can handle any object at any speed, so
let's apply it to photons that travel with the speed of light. In this configuration we have a
black hole in front of a background image. To make the effect more visible, we increase
the mass of the black hole to astronomical proportions as well as the background image.
In this way we can study the effects of gravitational lensing; the background image
becomes distorted by the curved space-time produced by the black hole.

Generate a MEX Function: Ray-tracing a Black Hole

codegen gr_raytrace

Run the MEX Function: Ray-tracing a Black Hole

Ray-tracing the picture takes a minute or two on a 2 GHz x86 machine. On your screen,
you see the original picture (the Vittorio Emanuele Mall in Milano, Italy) and, to the right,
the rendered image of the same picture with a black hole in front of it.

gr_raytrace_mex('mall.jpg');

 General Relativity

25-47

25 Accelerating MATLAB Algorithms

25-48

Progress: 5%
Progress: 10%
Progress: 15%
Progress: 20%
Progress: 25%
Progress: 30%
Progress: 35%

 General Relativity

25-49

Progress: 40%
Progress: 45%
Progress: 50%
Progress: 55%
Progress: 60%
Progress: 65%
Progress: 70%
Progress: 75%
Progress: 80%
Progress: 85%
Progress: 90%
Progress: 95%
Progress: 100%

25 Accelerating MATLAB Algorithms

25-50

Reverberation Using MATLAB Classes
This example shows how to accelerate the execution of a MATLAB algorithm that uses
MATLAB classes. The classes create a reverberation effect, that is, the "echo" you hear in
a large empty room.

Implementing a Simple Reverberation Effect

There are many ways to implement a reverberation effect with different characteristics.
In terms of audio quality, this is not an advanced effect, but shows the capabilities of
using MATLAB classes with MATLAB Coder.

This reverberation effect is implemented based on the following block diagram:

The diagram shows only the first delay line. Imagine another seven delay lines being
repeated in the diagram but each delay line has an individual delay and associated
feedback gain block. The Householder reflection (i.e. hhreflect function) is essentially
mixing/permuting the signals without changing the energy of the total signal. Therefore,
we are essentially duplicating the incoming signal and feeding it back with small time
displacements. The result is a reverberation effect.

Files Used

• reverb_test.m: Main file testing the reverberation effect
• do_reverb.m: Function abstraction of the Reverb class
• Reverb.m: Effect implementation implemented as a MATLAB class

 Reverberation Using MATLAB Classes

25-51

• Delay.m: Delay effect for Reverb.m implemented as a MATLAB class
• hhreflect.m: Householder reflection for Reverb.m
• get_prime.m: Function to compute prime numbers (for Reverb.m)
• speech_dft.mat: Test sample file

Generate a MEX Function

codegen do_reverb

Run the MEX Function

This processes the sample file (speech_dft.mat), applies the reverberation effect, and
outputs the result to the computer's audio output.

reverb_test;

Running time = 22 milliseconds

Generate a Faster MEX Function

Disable the integrity checks (e.g. out of bound checks for matrices) to obtain a faster but
potentially unsafe MEX function.

cfg = coder.config;
cfg.IntegrityChecks = false;
codegen -config cfg do_reverb

Retry the MEX Function

reverb_test;

Running time = 7 milliseconds

25 Accelerating MATLAB Algorithms

25-52

Using PARFOR to Speed Up an Image Contrast
Enhancement Algorithm

This example shows how to generate a standalone C library from MATLAB code that
applies a simple histogram equalization function to images to improve image contrast.
The example uses parfor to process each of the standard three RGB image planes on
separate threads. The example also shows how to generate and run a MEX function in
MATLAB prior to generating C code to verify that the MATLAB code is suitable for code
generation.

MATLAB Coder uses the OpenMP portable shared memory parallel programming
standard to implement its support for parfor. See The OpenMP API Specification for
Parallel Programming. Whereas MATLAB supports parfor by creating multiple worker
sessions, MATLAB Coder uses OpenMP to create multiple threads running on the same
machine.

Prerequisites

In order to support parallelization, the compiler must support the OpenMP shared
memory parallel programming standard. If your compiler does not have this support, then
you can still run this example, but the generated code will run serially.

About the histequalize Function

The histequalize.m function takes an image (represented as an NxMx3 matrix) and
returns an image with enhanced contrast.

type histequalize

function equalizedImage = histequalize(originalImage) %#codegen
% equalizedImage = histequalize(originalImage)
% Histogram equalization (or linearization) for improving image contrast.
% Given an NxMx3 image, equalizes the histogram of each of the three image
% planes in order to improve image contrast.

 assert(size(originalImage,1) <= 8192);
 assert(size(originalImage,2) <= 8192);
 assert(size(originalImage,3) == 3);
 assert(isa(originalImage, 'uint8'));

 [L, originalHist] = computeHistogram(originalImage);
 equalizedImage = equalize(L, originalHist, originalImage);

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

25-53

http://www.openmp.org/
http://www.openmp.org/

end

function [L, originalHist] = computeHistogram(originalImage)
 L = double(max(max(max(originalImage)))) + 1;
 originalHist = coder.nullcopy(zeros(3,L));
 sz = size(originalImage);
 N = sz(1);
 M = sz(2);
 parfor plane = 1:sz(3)
 planeHist = zeros(1,L);
 for y = 1:N
 for x = 1:M
 r = originalImage(y,x,plane);
 planeHist(r+1) = planeHist(r+1) + 1;
 end
 end
 originalHist(plane,:) = planeHist;
 end
end

function equalizedImage = equalize(L, originalHist, originalImage)
 equalizedImage = coder.nullcopy(originalImage);
 sz = size(originalImage);
 N = sz(1);
 M = sz(2);
 normalizer = (L - 1)/(N*M);
 parfor plane = 1:sz(3)
 planeHist = originalHist(plane,:);
 for y = 1:N
 for x = 1:M
 r = originalImage(y,x,plane);
 s = 0;
 for j = 0:int32(r)
 s = s + planeHist(j+1);
 end
 s = normalizer * s;
 equalizedImage(y,x,plane) = s;
 end
 end
 end
end

25 Accelerating MATLAB Algorithms

25-54

Generate the MEX Function

Generate a MEX function using the codegen command.

codegen histequalize

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\mex\histequalize\html\report.mldatx').

Before generating C code, you should first test the MEX function in MATLAB to ensure
that it is functionally equivalent to the original MATLAB code and that no run-time errors
occur. By default, codegen generates a MEX function named histequalize_mex in the
current folder. This allows you to test the MATLAB code and MEX function and compare
the results.

Read in the Original Image

Use the standard imread command to read the low-contrast image.

lcIm = imread('LowContrast.jpg');
image(lcIm);

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

25-55

Run the MEX Function (The Histogram Equalization Algorithm)

Pass the low-contrast image.

hcIm = histequalize_mex(lcIm);

Display the Result

image(hcIm);

25 Accelerating MATLAB Algorithms

25-56

Generate Standalone C Code

codegen -config:lib histequalize

Warning: C Compiler produced warnings. See the build log for further details.

Code generation successful (with warnings): To view the report, open('codegen\lib\histequalize\html\report.mldatx').

Using codegen with the -config:lib option produces a standalone C library. By
default, the code generated for the library is in the folder codegen/lib/
histequalize/.

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

25-57

Inspect the Generated Function

Notice that the generated code contains OpenMP pragmas that control parallelization of
the code using multiple threads.

type codegen/lib/histequalize/histequalize.c

/*
 * File: histequalize.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 12:59:55
 */

/* Include Files */
#include <string.h>
#include <math.h>
#include "histequalize.h"
#include "histequalize_emxutil.h"

/* Function Declarations */
static void computeHistogram(const emxArray_uint8_T *originalImage, double *L,
 double originalHist_data[], int originalHist_size[2]);
static void equalize(double L, const double originalHist_data[], const int
 originalHist_size[2], const emxArray_uint8_T *originalImage,
 emxArray_uint8_T *equalizedImage);
static double rt_roundd_snf(double u);

/* Function Definitions */

/*
 * Arguments : const emxArray_uint8_T *originalImage
 * double *L
 * double originalHist_data[]
 * int originalHist_size[2]
 * Return Type : void
 */
static void computeHistogram(const emxArray_uint8_T *originalImage, double *L,
 double originalHist_data[], int originalHist_size[2])
{
 int maxval_size_idx_1;
 int vlen;
 int npages;
 int p;
 unsigned char maxval_data[24576];

25 Accelerating MATLAB Algorithms

25-58

 int xPageOffset;
 unsigned char maxval;
 unsigned char b_maxval[3];
 int i;
 int xOffset;
 unsigned int sz_idx_0;
 unsigned int sz_idx_1;
 int plane;
 unsigned char r;
 double planeHist_data[256];
 int y;
 int x;
 int i0;
 int i1;
 maxval_size_idx_1 = originalImage->size[1];
 if (originalImage->size[1] == 0) {
 for (vlen = 0; vlen < 3; vlen++) {
 for (npages = 0; npages < maxval_size_idx_1; npages++) {
 maxval_data[npages + maxval_size_idx_1 * vlen] = 0U;
 }
 }
 } else {
 vlen = originalImage->size[0];
 npages = originalImage->size[1];
 npages *= originalImage->size[2];
 for (p = 0; p < npages; p++) {
 xPageOffset = p * vlen;
 maxval_data[p] = originalImage->data[xPageOffset];
 for (i = 2; i <= vlen; i++) {
 xOffset = (xPageOffset + i) - 1;
 if (maxval_data[p] < originalImage->data[xOffset]) {
 maxval_data[p] = originalImage->data[xOffset];
 }
 }
 }
 }

 for (p = 0; p < 3; p++) {
 xPageOffset = p * maxval_size_idx_1;
 b_maxval[p] = maxval_data[xPageOffset];
 for (i = 2; i <= maxval_size_idx_1; i++) {
 xOffset = (xPageOffset + i) - 1;
 if (b_maxval[p] < maxval_data[xOffset]) {
 b_maxval[p] = maxval_data[xOffset];

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

25-59

 }
 }
 }

 maxval = b_maxval[0];
 if (b_maxval[0] < b_maxval[1]) {
 maxval = b_maxval[1];
 }

 if (maxval < b_maxval[2]) {
 maxval = b_maxval[2];
 }

 *L = (double)maxval + 1.0;
 originalHist_size[0] = 3;
 originalHist_size[1] = maxval + 1;
 sz_idx_0 = (unsigned int)originalImage->size[0];
 sz_idx_1 = (unsigned int)originalImage->size[1];
 vlen = (int)sz_idx_0;
 npages = (int)sz_idx_1;

#pragma omp parallel for \
 num_threads(omp_get_max_threads()) \
 private(r,planeHist_data,y,x,i0,i1)

 for (plane = 0; plane < 3; plane++) {
 memset(&planeHist_data[0], 0, (unsigned int)((int)*L * (int)sizeof(double)));
 for (y = 0; y < vlen; y++) {
 for (x = 0; x < npages; x++) {
 r = originalImage->data[(y + originalImage->size[0] * x) +
 originalImage->size[0] * originalImage->size[1] * plane];
 i0 = (int)(r + 1U);
 i1 = i0;
 if ((unsigned int)i0 > 255U) {
 i1 = 255;
 i0 = 255;
 }

 planeHist_data[i1 - 1] = planeHist_data[i0 - 1] + 1.0;
 }
 }

 y = (int)*L;
 for (i0 = 0; i0 < y; i0++) {

25 Accelerating MATLAB Algorithms

25-60

 originalHist_data[plane + 3 * i0] = planeHist_data[i0];
 }
 }
}

/*
 * Arguments : double L
 * const double originalHist_data[]
 * const int originalHist_size[2]
 * const emxArray_uint8_T *originalImage
 * emxArray_uint8_T *equalizedImage
 * Return Type : void
 */
static void equalize(double L, const double originalHist_data[], const int
 originalHist_size[2], const emxArray_uint8_T *originalImage,
 emxArray_uint8_T *equalizedImage)
{
 int N;
 unsigned int sz_idx_0;
 unsigned int sz_idx_1;
 int M;
 double normalizer;
 int plane;
 double s;
 unsigned char r;
 double planeHist_data[256];
 int loop_ub;
 int i2;
 int x;
 int j;
 N = equalizedImage->size[0] * equalizedImage->size[1] * equalizedImage->size[2];
 equalizedImage->size[0] = originalImage->size[0];
 equalizedImage->size[1] = originalImage->size[1];
 equalizedImage->size[2] = originalImage->size[2];
 emxEnsureCapacity_uint8_T(equalizedImage, N);
 sz_idx_0 = (unsigned int)originalImage->size[0];
 sz_idx_1 = (unsigned int)originalImage->size[1];
 N = (int)sz_idx_0;
 M = (int)sz_idx_1;
 normalizer = (L - 1.0) / ((double)sz_idx_0 * (double)sz_idx_1);

#pragma omp parallel for \
 num_threads(omp_get_max_threads()) \
 private(s,r,planeHist_data,loop_ub,i2,x,j)

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

25-61

 for (plane = 0; plane < 3; plane++) {
 loop_ub = originalHist_size[1];
 for (i2 = 0; i2 < loop_ub; i2++) {
 planeHist_data[i2] = originalHist_data[plane + 3 * i2];
 }

 for (loop_ub = 0; loop_ub < N; loop_ub++) {
 for (x = 0; x < M; x++) {
 r = originalImage->data[(loop_ub + originalImage->size[0] * x) +
 originalImage->size[0] * originalImage->size[1] * plane];
 s = 0.0;
 i2 = r;
 for (j = 0; j <= i2; j++) {
 s += planeHist_data[j];
 }

 s *= normalizer;
 s = rt_roundd_snf(s);
 if (s < 256.0) {
 if (s >= 0.0) {
 r = (unsigned char)s;
 } else {
 r = 0U;
 }
 } else if (s >= 256.0) {
 r = MAX_uint8_T;
 } else {
 r = 0U;
 }

 equalizedImage->data[(loop_ub + equalizedImage->size[0] * x) +
 equalizedImage->size[0] * equalizedImage->size[1] * plane] = r;
 }
 }
 }
}

/*
 * Arguments : double u
 * Return Type : double
 */
static double rt_roundd_snf(double u)
{

25 Accelerating MATLAB Algorithms

25-62

 double y;
 if (fabs(u) < 4.503599627370496E+15) {
 if (u >= 0.5) {
 y = floor(u + 0.5);
 } else if (u > -0.5) {
 y = u * 0.0;
 } else {
 y = ceil(u - 0.5);
 }
 } else {
 y = u;
 }

 return y;
}

/*
 * equalizedImage = histequalize(originalImage)
 * Histogram equalization (or linearization) for improving image contrast.
 * Given an NxMx3 image, equalizes the histogram of each of the three image
 * planes in order to improve image contrast.
 * Arguments : const emxArray_uint8_T *originalImage
 * emxArray_uint8_T *equalizedImage
 * Return Type : void
 */
void histequalize(const emxArray_uint8_T *originalImage, emxArray_uint8_T
 *equalizedImage)
{
 double L;
 double originalHist_data[768];
 int originalHist_size[2];
 computeHistogram(originalImage, &L, originalHist_data, originalHist_size);
 equalize(L, originalHist_data, originalHist_size, originalImage,
 equalizedImage);
}

/*
 * File trailer for histequalize.c
 *
 * [EOF]
 */

 Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm

25-63

Use Generated Code to Accelerate an Application
Deployed with MATLAB Compiler

This example shows how to use generated code to accelerate an application that you
deploy with MATLAB® Compiler. The example accelerates an algorithm by using
MATLAB® Coder™ to generate a MEX version of the algorithm. It uses MATLAB
Compiler to deploy a standalone application that calls the MEX function. The deployed
application uses the MATLAB® Runtime which enables royalty-free deployment to
someone who does not have MATLAB.

This workflow is useful when:

• You want to deploy an application to a platform that the MATLAB Runtime supports.
• The application includes a computationally intensive algorithm that is suitable for code

generation.
• The generated MEX for the algorithm is faster than the original MATLAB algorithm.
• You do not need to deploy readable C/C++ source code for the application.

The example application uses a DSP algorithm that requires the DSP System Toolbox™.

Create the MATLAB Application

For acceleration, it is a best practice to separate the computationally intensive algorithm
from the code that calls it.

In this example, myRLSFilterSystemIDSim implements the algorithm.
myRLSFilterSystemIDApp provides a user interface that calls
myRLSFilterSystemIDSim.

myRLSFilterSystemIDSim simulates system identification by using recursive least-
squares (RLS) adaptive filtering. It uses dsp.VariableBandwidthFIRFilter to model
the unidentified system and dsp.RLSFilter to identify the FIR filter.

myRLSFilterSystemIDApp provides a user interface that you use to dynamically tune
simulation parameters. It runs the simulation for a specified number of time steps or until
you stop the simulation. It plots the results on scopes.

For details about this application, see “System Identification Using RLS Adaptive
Filtering” (DSP System Toolbox) in the DSP System Toolbox documentation.

25 Accelerating MATLAB Algorithms

25-64

In a writable folder, create myRLSFilterSystemIDSim and
myRLSFilterSystemIDApp. Alternatively, to access these files, click Open Script.

myRLSFilterSystemIDSim

function [tfe,err,cutoffFreq,ff] = ...
 myRLSFilterSystemIDSim(tuningUIStruct)
% myRLSFilterSystemIDSim implements the algorithm used in
% myRLSFilterSystemIDApp.
% This functions instantiates, initializes and steps through the System
% objects used in the algorithm.
%
% You can tune the cutoff frequency of the desired system and the
% forgetting factor of the RLS filter through the GUI that appears when
% myRLSFilterSystemIDApp is executed.

% Copyright 2013-2017 The MathWorks, Inc.

%#codegen

% Instantiate and initialize System objects. The objects are declared
% persistent so that they are not recreated every time the function is
% called inside the simulation loop.
persistent rlsFilt sine unknownSys transferFunctionEstimator
if isempty(rlsFilt)
 % FIR filter models the unidentified system
 unknownSys = dsp.VariableBandwidthFIRFilter('SampleRate',1e4,...
 'FilterOrder',30,...
 'CutoffFrequency',.48 * 1e4/2);
 % RLS filter is used to identify the FIR filter
 rlsFilt = dsp.RLSFilter('ForgettingFactor',.99,...
 'Length',28);
 % Sine wave used to generate input signal
 sine = dsp.SineWave('SamplesPerFrame',1024,...
 'SampleRate',1e4,...
 'Frequency',50);
 % Transfer function estimator used to estimate frequency responses of
 % FIR and RLS filters.
 transferFunctionEstimator = dsp.TransferFunctionEstimator(...
 'FrequencyRange','centered',...
 'SpectralAverages',10,...
 'FFTLengthSource','Property',...
 'FFTLength',1024,...

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

25-65

 'Window','Kaiser');
end

if tuningUIStruct.Reset
 % reset System objects
 reset(rlsFilt);
 reset(unknownSys);
 reset(transferFunctionEstimator);
 reset(sine);
end

% Tune FIR cutoff frequency and RLS forgetting factor
if tuningUIStruct.ValuesChanged
 param = tuningUIStruct.TuningValues;
 unknownSys.CutoffFrequency = param(1);
 rlsFilt.ForgettingFactor = param(2);
end

% Generate input signal - sine wave plus Gaussian noise
inputSignal = sine() + .1 * randn(1024,1);

% Filter input though FIR filter
desiredOutput = unknownSys(inputSignal);

% Pass original and desired signals through the RLS Filter
[rlsOutput , err] = rlsFilt(inputSignal,desiredOutput);

% Prepare system input and output for transfer function estimator
inChans = repmat(inputSignal,1,2);
outChans = [desiredOutput,rlsOutput];

% Estimate transfer function
tfe = transferFunctionEstimator(inChans,outChans);

% Save the cutoff frequency and forgetting factor
cutoffFreq = unknownSys.CutoffFrequency;
ff = rlsFilt.ForgettingFactor;

end

myRLSFilterSystemIDApp

function scopeHandles = myRLSFilterSystemIDApp(numTSteps)

25 Accelerating MATLAB Algorithms

25-66

% myRLSFilterSystemIDApp initialize and execute RLS Filter
% system identification example. Then, display results using
% scopes. The function returns the handles to the scope and UI objects.
%
% Input:
% numTSteps - number of time steps
% Outputs:
% scopeHandles - Handle to the visualization scopes

% Copyright 2013-2017 The MathWorks, Inc.

if nargin == 0
 numTSteps = Inf; % Run until user stops simulation.
end

% Create scopes
tfescope = dsp.ArrayPlot('PlotType','Line',...
 'Position',[8 696 520 420],...
 'YLimits',[-80 30],...
 'SampleIncrement',1e4/1024,...
 'YLabel','Amplitude (dB)',...
 'XLabel','Frequency (Hz)',...
 'Title','Desired and Estimated Transfer Functions',...
 'ShowLegend',true,...
 'XOffset',-5000);

msescope = dsp.TimeScope('SampleRate',1e4,'TimeSpan',.01,...
 'Position',[8 184 520 420],...
 'YLimits',[-300 10],'ShowGrid',true,...
 'YLabel','Mean-Square Error (dB)',...
 'Title','RLSFilter Learning Curve');

screen = get(0,'ScreenSize');
outerSize = min((screen(4)-40)/2, 512);
tfescope.Position = [8, screen(4)-outerSize+8, outerSize+8,...
 outerSize-92];
msescope.Position = [8, screen(4)-2*outerSize+8, outerSize+8, ...
 outerSize-92];

% Create UI to tune FIR filter cutoff frequency and RLS filter
% forgetting factor
Fs = 1e4;
param = struct([]);

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

25-67

param(1).Name = 'Cutoff Frequency (Hz)';
param(1).InitialValue = 0.48 * Fs/2;
param(1).Limits = Fs/2 * [1e-5, .9999];
param(2).Name = 'RLS Forgetting Factor';
param(2).InitialValue = 0.99;
param(2).Limits = [.3, 1];
hUI = HelperCreateParamTuningUI(param, 'RLS FIR Demo');
set(hUI,'Position',[outerSize+32, screen(4)-2*outerSize+8, ...
 outerSize+8, outerSize-92]);

% Execute algorithm
while(numTSteps>=0)

 S = HelperUnpackUIData(hUI);

 drawnow limitrate; % needed to process UI callbacks

 [tfe,err] = myRLSFilterSystemIDSim(S);

 if S.Stop % If "Stop Simulation" button is pressed
 break;
 end
 if S.Pause
 continue;
 end

 % Plot transfer functions
 tfescope(20*log10(abs(tfe)));
 % Plot learning curve
 msescope(10*log10(sum(err.^2)));
 numTSteps = numTSteps - 1;
end

if ishghandle(hUI) % If parameter tuning UI is open, then close it.
 delete(hUI);
 drawnow;
 clear hUI
end

scopeHandles.tfescope = tfescope;
scopeHandles.msescope = msescope;
end

25 Accelerating MATLAB Algorithms

25-68

Test the MATLAB Application

Run the system identification application for 100 time steps. The application runs the
simulation for 100 time steps or until you click Stop Simulation. It plots the results on
scopes.

scope1 = myRLSFilterSystemIDApp(100);
release(scope1.tfescope);
release(scope1.msescope);

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

25-69

Prepare Algorithm for Acceleration

When you use MATLAB Coder to accelerate a MATLAB algorithm, the code must be
suitable for code generation.

1. Make sure that myRLSFilterSystemIDSim.m includes the %#codegen directive after
the function signature.

25 Accelerating MATLAB Algorithms

25-70

This directive indicates that you intend to generate code for the function. In the MATLAB
Editor, it enables the code analyzer to detect code generation issues.

2. Screen the algorithm for unsupported functions or constructs.

coder.screener('myRLSFilterSystemIDSim');

The code generation readiness tool does not find code generation issues in this algorithm.

Accelerate the Algorithm

To accelerate the algorithm, this example use the MATLAB Coder codegen command.
Alternatively, you can use the MATLAB Coder app. For code generation, you must specify
the type, size, and complexity of the input arguments. The function
myRLSFilterSystemIDSim takes a structure that stores tuning information. Define an
example tuning struncture and pass it to codegen by using the -args option.

ParamStruct.TuningValues = [2400 0.99];
ParamStruct.ValuesChanged = false;
ParamStruct.Reset = false;
ParamStruct.Pause = false;
ParamStruct.Stop = false;
codegen myRLSFilterSystemIDSim -args {ParamStruct};

codegen creates the MEX function myRLSFilterSystemIDSim_mex in the current
folder.

Compare MEX Function and MATLAB Function Performance

1. Time 100 executions of myRLSFilterSystemIDSim.

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

25-71

clear myRLSFilterSystemIDSim
disp('Running the MATLAB function ...')
tic
nTimeSteps = 100;
for ind = 1:nTimeSteps
 myRLSFilterSystemIDSim(ParamStruct);
end
tMATLAB = toc;

Running the MATLAB function ...

2. Time 100 executions of myRLSFilterSystemIDSim_mex.

clear myRLSFilterSystemIDSim
disp('Running the MEX function ...')
tic
for ind = 1:nTimeSteps
 myRLSFilterSystemIDSim_mex(ParamStruct);
end
tMEX = toc;

disp('RESULTS:')
disp(['Time for original MATLAB function: ', num2str(tMATLAB),...
 ' seconds']);
disp(['Time for MEX function: ', num2str(tMEX), ' seconds']);
disp(['The MEX function is ', num2str(tMATLAB/tMEX),...
 ' times faster than the original MATLAB function.']);

Running the MEX function ...
RESULTS:
Time for original MATLAB function: 4.8166 seconds
Time for MEX function: 0.3797 seconds
The MEX function is 12.6852 times faster than the original MATLAB function.

Optimize the MEX code

You can sometimes generate faster MEX by using a different C/C++ compiler or by using
certain options or optimizations. See “Accelerate MATLAB Algorithms” on page 25-7.

For this example, the MEX is sufficiently fast without further optimization.

Modify the Application to Call the MEX Function

Modify myRLSFilterSystemIDApp so that it calls myRLSFilterSystemIDSim_mex
instead of myRLSFilterSystemIDSim.

25 Accelerating MATLAB Algorithms

25-72

Save the modified function in myRLSFilterSystemIDApp_acc.m.

Test the Application with the Accelerated Algorithm

clear myRLSFilterSystemIDSim_mex;
scope2 = myRLSFilterSystemIDApp_acc(100);
release(scope2.tfescope);
release(scope2.msescope);

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

25-73

The behavior of the application that calls the MEX function is the same as the behavior of
the application that calls the original MATLAB function. However, the plots update more
quickly because the simulation is faster.

Create the Standalone Application

1. To open the Application Compiler App, on the Apps tab, under Application
Deployment, click the app icon.

25 Accelerating MATLAB Algorithms

25-74

2. Specify that the main file is myRLSFilterSystemIDApp_acc.

The app determines the required files for this application. The app can find the MATLAB
files and MEX-files that an application uses. You must add other types of files, such as
MAT-files or images, as required files.

3. In the Packaging Options section of the toolstrip, make sure that the Runtime
downloaded from web check box is selected.

This option creates an application installer that downloads and installs the MATLAB
Runtime with the deployed MATLAB application.

4. Click Package and save the project.

5. In the Package window, make sure that the Open output folder when process
completes check box is selected.

 Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler

25-75

When the packaging is complete, the output folder opens.

Install the Application

1. Open the for_redistribution folder.

2. Run MyAppInstaller_web.

3. If you connect to the internet by using a proxy server, enter the server settings.

4. Advance through the pages of the installation wizard.

• On the Installation Options page, use the default installation folder.
• On the Required Software page, use the default installation folder.
• On the License agreement page, read the license agreement and accept the license.
• On the Confirmation page, click Install.

If the MATLAB Runtime is not already installed, the installer installs it.

5. Click Finish.

Run the Application

1. Open a terminal window.

2. Navigate to the folder where the application is installed.

25 Accelerating MATLAB Algorithms

25-76

• For Windows®, navigate to C:\Program Files\myRLSFilterSystemIDApp_acc.
• For macOS, navigate to /Applications/myRLSFilterSystemIDApp_acc.
• For Linux, navigate to /usr/myRLSFilterSystemIDApp_acc.

3. Run the application by using the appropriate command for your platform.

• For Windows, use application\myRLSFilterSystemIDApp_acc.
• For macOS, use myRLSFilterSystemIDApp_acc.app/Contents/MacOS/

myRLSFilterSystemIDApp_acc.
• For Linux, use /myRLSFilterSystemIDApp_acc.

Starting the application takes approximately the same amount of time as starting
MATLAB.

See Also

More About
• “System Identification Using RLS Adaptive Filtering” (DSP System Toolbox)
• “Workflow for Accelerating MATLAB Algorithms” on page 25-2
• “Accelerate MATLAB Algorithms” on page 25-7
• “Create Standalone Application from MATLAB” (MATLAB Compiler)
• “About the MATLAB Runtime” (MATLAB Compiler)
• MATLAB Compiler Support for MATLAB and toolboxes.

 See Also

25-77

https://www.mathworks.com/products/compiler/supported/compiler_support.html;jsessionid=452f743d96e4913b142ef83d8d66

External Code Integration

• “Call C/C++ Code from MATLAB Code” on page 26-2
• “Configure Build for External C/C++ Code” on page 26-10
• “Develop Interface for External C/C++ Code” on page 26-14
• “Mapping MATLAB Types to Types in Generated Code” on page 26-18
• “Read a Text File” on page 26-23

26

Call C/C++ Code from MATLAB Code
In this section...
“Call C Code” on page 26-2
“Return Multiple Values from a C Function” on page 26-4
“Pass Data by Reference” on page 26-4
“Integrate External Code that Uses Custom Data Types” on page 26-6
“Integrate External Code that Uses Pointers, Structures, and Arrays” on page 26-7

From within your MATLAB code you can directly call external C/C++ code, also called
custom code or legacy code. The code generator integrates your C/C++ code into the C/C
++ code generated from MATLAB. Integrate code when you have external libraries,
optimized code, or object files developed in C/C++. Following are some of the primary
workflows for external code integration. For more examples, see the coder.ceval
reference page.

Note By using coder.ceval, you gain unrestricted access to external code. Misuse of
these functions or errors in your code can destabilize MATLAB and cause it to stop
working. To debug your code and analyze error messages from compilation, view the
Build Logs tab in the code generation report.

Call C Code
This example shows how to integrate a simple C function with MATLAB® code by using
coder.ceval. Consider the MATLAB function, mathOps:

function [added, multed] = mathOps(in1, in2)
added = in1+in2;
multed = in1*in2;
end

For this example, suppose that you want to implement the addition operation by using
external C code. Consider the C function, adder, implemented in the file adder.c:

#include <stdio.h>

26 External Code Integration

26-2

#include <stdlib.h>
#include "adder.h"

double adder(double in1, double in2)
{
 return in1 + in2;
}

To integrate adder with your MATLAB code, you need a header file that contains the
function prototype. See the file adder.h:

double adder(double in1, double in2);

Use the coder.ceval command to call the C function in mathOpsIntegrated.m.
Include the header file by using coder.cinclude.

function [added, multed] = mathOpsIntegrated(in1, in2)
%#codegen
% for code generation, preinitialize the output variable
% data type, size, and complexity
added = 0;
% generate an include in the C code
coder.cinclude('adder.h');
% evaluate the C function
added = coder.ceval('adder', in1, in2);
multed = in1*in2;
end

To generate code, use the codegen command. Specify the source file adder.c as an
input. To test the C code, execute the MEX function and inspect the output results.

codegen mathOpsIntegrated -args {1, 2} adder.c

[test1, test2] = mathOpsIntegrated_mex(10, 20)

test1 =

 30

test2 =

 Call C/C++ Code from MATLAB Code

26-3

 200

Return Multiple Values from a C Function
The C language restricts functions from returning multiple outputs. Instead, they return
only a single, scalar value. The MATLAB functions coder.ref, coder.rref and
coder.wref allow you to return multiple outputs from an external C/C++ function.

For example, suppose you write a MATLAB function foo that takes two inputs x and y
and returns three outputs a, b, and c. In MATLAB, you call this function as follows:

[a,b,c] = foo(x,y)

If you rewrite foo as a C function, you cannot return three separate values a, b, and c
through a return statement. Instead, create a C function with multiple pointer type
arguments and pass the output parameters by reference. For example:

void foo(double x,double y,double *a,double *b,double *c)

Then you can call the C function from a MATLAB function by using the coder.ceval
function.

coder.ceval('foo',x,y,coder.ref(a),coder.ref(b),coder.ref(c));

If your external C function only writes to or only reads from the memory that is passed by
reference, you can use the coder.wref or coder.rref functions instead of coder.ref.
Under certain circumstances, these functions can enable further optimization of the
generated code. When you use coder.wref(arg) to pass arg by reference, your
external C/C++ function must fully initialize the memory referenced by arg.

Pass Data by Reference
This example shows how to pass data by reference to and from an external C function.

Pass by reference is an important technique for C/C++ code integration. When you pass
data by reference, the program does not need to copy data from one function to another.
With pass by value, C code can return only a single scalar variable. With pass by
reference, C code can return multiple variables, including arrays.

26 External Code Integration

26-4

Consider the MATLAB function adderRef. This function uses external C code to add two
arrays. The coder.rref and coder.wref commands instruct the code generator to pass
pointers to the arrays, rather than copy them.

function out = adderRef(in1, in2)
%#codegen
out = zeros(size(in1));
% the input numel(in1) is converted to integer type
% to match the cAdd function signature
coder.ceval('cAdd', coder.rref(in1), coder.rref(in2), coder.wref(out), int32(numel(in1)));
end

The C code, cAdd.c, uses linear indexing to access the elements of the arrays:

#include <stdio.h>
#include <stdlib.h>
#include "cAdd.h"

void cAdd(const double* in1, const double* in2, double* out, int numel)
{
 int i;
 for (i=0; i<numel; i++) {
 out[i] = in1[i] + in2[i];
 }
}

To build the C code you must provide a header file, cAdd.h, with the function signature:

void cAdd(const double* in1, const double* in2, double* out, int numel);

Test the C code by generating a MEX function and comparing its output with the output
from the addition operation in MATLAB.

A = rand(2,2)+1;
B = rand(2,2)+10;

codegen adderRef -args {A, B} cAdd.c cAdd.h -report

if (adderRef_mex(A,B) - (A+B) == 0)
 fprintf(['\n' 'adderRef was successful.']);
end

 Call C/C++ Code from MATLAB Code

26-5

Code generation successful: To view the report, open('codegen\mex\adderRef\html\report.mldatx').

adderRef was successful.

Integrate External Code that Uses Custom Data Types
This example shows how to call a C function that uses data types that are not natively
defined within MATLAB®.

For example, if your C code performs file input or output on a C 'FILE *' type, there is no
corresponding type within MATLAB. To interact with this data type in your MATLAB code,
you must initialize it by using the function coder.opaque. In the case of structure types,
you can use coder.cstructname.

For example, consider the MATLAB function addCTypes.m. This function uses
coder.ceval with input types defined in external code. The function coder.opaque
initializes the type in MATLAB.

function [out] = addCTypes(a,b)
%#codegen
% generate include statements for header files
coder.cinclude('MyStruct.h');
coder.cinclude('createStruct.h');
coder.cinclude('useStruct.h');
% initialize variables before use
in = coder.opaque('MyStruct');
out = 0;
% call C functions
in = coder.ceval('createStruct',a,b);
out = coder.ceval('useStruct',in);
end

The createStruct function outputs a C structure type:

#include <stdio.h>
#include <stdlib.h>
#include "MyStruct.h"
#include "createStruct.h"

26 External Code Integration

26-6

struct MyStruct createStruct(double a, double b) {
 struct MyStruct out;
 out.p1 = a;
 out.p2 = b;
 return out;
}

The useStruct function performs an operation on the C type:

#include "MyStruct.h"
#include "useStruct.h"

double useStruct(struct MyStruct in) {
 return in.p1 + in.p2;
}

To generate code, specify the source (.c) files as inputs:

codegen addCTypes -args {1,2} -report createStruct.c useStruct.c

Code generation successful: To view the report, open('codegen\mex\addCTypes\html\report.mldatx').

Integrate External Code that Uses Pointers, Structures, and
Arrays
This example shows how to integrate external code that operates on a C style array with
MATLAB® code. The external code computes a summation over array data. You can
customize the code to change the input data or computation.

This example shows how to combine multiple different elements of external code
integration functionality. For example, you:

• Interface with an external structure type by using coder.cstructname
• Interface with an external pointer type by using coder.opaque
• Execute external code by using coder.ceval
• Pass data by reference to external code by using coder.ref

Explore the Integrated Code

The extSum function uses external C code to compute a summation operation on an array
of 32-bit integers. The array size is controlled by a user input.

 Call C/C++ Code from MATLAB Code

26-7

function x = extSum(u)
%#codegen
% set bounds on input type to use static memory allocation
u = int32(u);
assert(0 < u && u < 101);
% initialize an array
temparray = int32(1):u;
% declare an external structure and use it
s = makeStruct(u);
x = callExtCode(s, temparray);

To simplify the generated code, you set bounds on the size of the array. The bounds
prevents the use of dynamic memory allocation in the generated code.

The function makeStruct declares a MATLAB structure type and initializes one of the
fields to a pointer type by using coder.opaque. The C structure corresponding to this
definition is contained in a header file that you provide by using the HeaderFile
parameter in the coder.cstructname function. The C structure type provides a simple
representation for an array of integers.

function s = makeStruct(u)
% create structure type based on external header definition
s.numel = u;
s.vals = coder.opaque('int32_T *','NULL');
coder.cstructname(s,'myArrayType','extern','HeaderFile','arrayCode.h');

With the external structure type fully initialized, you pass it as an input to the external
code in the callExtCode function. This function initializes the array, calls an operation
on the array to return a single output, and then frees the initialized memory.

function x = callExtCode(s, temparray)
% declare output type
x = int32(0);
% declare external source file
coder.updateBuildInfo('addSourceFiles','arrayCode.c');
% call c code
coder.ceval('arrayInit',coder.ref(s),coder.ref(temparray));
x = coder.ceval('arraySum',coder.ref(s));

26 External Code Integration

26-8

coder.ceval('arrayDest',coder.ref(s));

The function uses coder.updateBuildInfo to provide the .c file to the code generator.

Generate a MEX Function

To generate a MEX function that you can run and test in MATLAB, enter:

codegen extSum -args {10}

Test the MEX function. Enter:

extSum_mex(10)

ans =

 int32

 55

The external C code, contained in the files arrayCode.c and arrayCode.h, uses the
custom type definition int32_T. The generated MEX code produces and uses this custom
type definition. If you want to generate standalone (lib, dll, or exe) code that uses this
custom data type, then you can modify the DataTypeReplacement property of your
configuration object. See “Mapping MATLAB Types to Types in Generated Code” on page
26-18.

See Also
codegen | coder.ceval | coder.cinclude | coder.cstructname | coder.opaque |
coder.ref | coder.rref | coder.wref

More About
• “Configure Build for External C/C++ Code” on page 26-10
• “Call Generated C/C++ Functions” on page 24-8
• “Call a Generated C Static Library Function from C Code” on page 24-4
• “Unit Test External C Code with MATLAB Coder” on page 21-31

 See Also

26-9

Configure Build for External C/C++ Code
In this section...
“Provide External Files for Code Generation” on page 26-10
“Configure Build from Within a Function” on page 26-10
“Configure Build by Using the Configuration Object” on page 26-11
“Configure Build by Using the MATLAB Coder App” on page 26-12

To integrate your external C/C++ code with MATLAB, you must provide the external files
to the code generator. These files consist of source files, header files, object files, and
library files that are used to build the generated code.

You can configure the build at the command line, within a function, or by setting code
generation configuration object properties. Specify files at the command line for a quick
and simple way to generate code. When you want to preconfigure a function for other
projects and code deployments, configure the build within the function. The configuration
object provides a standardized set of build properties. You can also specify external files
by using the MATLAB Coder App, or by using a class derived from
coder.ExternalDependency. For more information, see “Develop Interface for
External C/C++ Code” on page 26-14.

Provide External Files for Code Generation
Suppose that you want to generate code for a function that uses coder.ceval to call the
C function myCFn. The external source and header files for myCFn reside in the folder C:
\custom. Use this command:

codegen myMatlabFn C:\custom\myCFn.c C:\custom\myCFn.h

Configure Build from Within a Function
This example shows how to configure the build for external C/C++ code from within a
MATLAB® function. Configure the build within a function so that you can more easily
integrate it with other projects.

Suppose that you have a top-level MATLAB function, myFn:

function [out] = myFn(in)

26 External Code Integration

26-10

%#codegen
y = mySubFn(in);
out = y + 10;
end

This function calls another function, mySubFn, that uses the external C code foo.c. By
using coder.updateBuildInfo and coder.cinclude, you set all the necessary
external code dependencies from within mySubFn.

function [y] = mySubFn(x)
%#codegen
coder.cinclude('foo.h');
coder.updateBuildInfo('addSourceFiles', 'foo.c');
% Pre-initialize y to double type.
y = 0;
y = coder.ceval('foo',x);
end

You can generate code containing mySubFn without needing to configure additional build
settings or specify external file inputs at the command line. To generate code for the top-
level function myFn, enter:

codegen myFn -args {5} -report

Code generation successful: To view the report, open('codegen\mex\myFn\html\report.mldatx').

Configure Build by Using the Configuration Object
Customize a build by setting properties of the code generation configuration object. With
these properties you can specify external file locations, custom source code, and other
build parameters.

Custom Code Property Description
CustomHeaderCode Specify code to appear near the top of each C/C++ header file

generated from your MATLAB code.

 Configure Build for External C/C++ Code

26-11

Custom Code Property Description
CustomInclude Specify a list of include directories to add to the include path

when compiling the generated code. Provide an absolute path or a
path relative to the project folder. If your folder path name
contains spaces, you must enclose it in double quotes:

cfg.CustomInclude = '"C:\Program Files\MATLAB\work"'

CustomLibrary Specify a list of static library or object files to link with the
generated code.

CustomSource Specify a list of source files to compile and link with the
generated code. The build process looks for the source files first
in the current folder and then in the include folders that you
specify in CustomInclude.

CustomSourceCode Specify code to appear near the top of the generated C/C++
source file, outside of a function. Do not specify a C static function
definition.

For example, declare a standalone code configuration object and specify these properties:

cfg = coder.config('lib');
cfg.CustomInclude = 'C:\custom\src C:\custom\lib';
cfg.CustomSource = 'cfunction.c';
cfg.CustomLibrary = 'chelper.obj clibrary.lib';
cfg.CustomSourceCode = '#include "cgfunction.h"';

Apply the properties at the command line by using the codegen command with the -
config argument:

codegen -config cfg myMatlabFn

Configure Build by Using the MATLAB Coder App
1 Open the MATLAB Coder App and proceed to the Generate Code step.
2 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
3 Click More Settings.
4 On the Custom Code tab, choose your build configuration settings. Click Help to

display information about the entry fields.

26 External Code Integration

26-12

See Also
codegen | coder.CodeConfig | coder.ExternalDependency |
coder.MexCodeConfig | coder.cinclude | coder.config |
coder.updateBuildInfo

More About
• “Call C/C++ Code from MATLAB Code” on page 26-2
• “Build Process Customization” on page 20-139

 See Also

26-13

Develop Interface for External C/C++ Code
You can develop an interface to external code by using the base class
coder.ExternalDependency. Using a class for external code can provide certain
advantages. You can:

• Place related functions into a single package, without exposing them to the user
(encapsulation).

• Create an extensible interface that can be shared across projects.
• Define custom build configuration settings so that build information is preconfigured.

Create a class from coder.ExternalDependency
To instantiate a class derived from the abstract class coder.ExternalDependency, you
must define the methods getDescriptiveName, isSupportedContext, and
updateBuildInfo. These methods address error reporting, build support, and build
configuration.

Consider an example of a subclass called myExternalMathAPI derived from
coder.ExternalDependency. This subclass assumes that you have all your needed
source and header files contained in your current working folder, with no other
dependencies. If you have additional dependencies, such as source, library, or header
files, you can redefine updateBuildInfo, or derive a subclass from
myExternalMathAPI which overloads the updateBuildInfo method as necessary and
adds new methods to the interface. To assist in build configuration, you can use the build
information and build context objects accessible by the updateBuildInfo method.

classdef myExternalMathAPI < coder.ExternalDependency
 %#codegen

 methods (Static)

 % Provide a name for use in error messages
 function bName = getDescriptiveName(~)
 bName = 'myExternalMathAPI';
 end

 % Error out if build context is not supported
 function supported = isSupportedContext(buildContext)
 myTarget = {'mex','rtw'};
 if buildContext.isCodeGenTarget(myTarget)

26 External Code Integration

26-14

 supported = true;
 else
 error('API only supported for mex, lib, exe, dll');
 end
 end

 % Configure simple build in this example
 % Redefine the method as necessary for your dependencies
 function updateBuildInfo(buildInfo, buildContext)
 src = {'extAdd.c','extSub.c','extDiv.c'};
 buildInfo.addSourceFiles(src);
 end

 % Define class methods
 function c = add(a, b)
 coder.cinclude('extAdd.h');
 c = 0;
 c = coder.ceval('extAdd', a, b);
 end

 function c = subtract(a, b)
 coder.cinclude('extSubtract.h');
 c = 0;
 c = coder.ceval('extSub', a, b);
 end

 function c = divide(a, b)
 coder.cinclude('extDivide.h');
 c = 0;
 c = coder.ceval('extDiv', a, b);
 end
 end
end

Call the external C/C++ code through the interface:

myExternalMathAPI.add(a,b);
myExternalMathAPI.substract(a,b);
myExternalMathAPI.divide(a,b);

 Develop Interface for External C/C++ Code

26-15

Best Practices for Using coder.ExternalDependency
Provide an Error Message for Unsupported Build

The isSupportedContext method returns true if the external code interface is
supported in the build context. If the external code interface is not supported, use error
to terminate code generation with an error message. For example:

function supported = isSupportedContext(buildContext)
 if buildContext.isMatlabHostTarget()
 supported = true;
 else
 error('MyLibrary is not available for this target');
 end
end

Parametrize Methods for MATLAB and Generated Code

Parametrize methods that call external functions so that the methods run in MATLAB. For
example:

function c = add(a, b)
 if coder.target('MATLAB')
 % running in MATLAB, use built-in addition
 c = a + b;
 else
 % running in generated code, call library function
 c = 0;
 c = coder.ceval('extAdd', a, b);
 end
end

Parametrize updateBuildInfo for Multiple Platforms

Parametrize the updateBuildInfo method to support multiple platforms. For example,
use coder.BuildConfig.getStdLibInfo to get the platform-specific library file
extensions.

function updateBuildInfo(buildInfo, buildContext)
 % Get file extensions for the current platform
 [~, linkLibExt, execLibExt, ~] = buildContext.getStdLibInfo();

 % Parametrize library extension
 libName = strcat('myLib', linkLibExt);

26 External Code Integration

26-16

 % Other linking parameters
 libPath = 'c:\Link_Objects';
 libPriority = '';
 libPreCompiled = true;
 libLinkOnly = true;

 % Linking command
 buildInfo.addLinkObjects(libName,libPath,libPriority,libPreCompiled,libLinkOnly);
end

See Also
coder.BuildConfig | coder.ExternalDependency | coder.ceval |
coder.updateBuildInfo | error

More About
• “Build Process Customization” on page 20-139
• “Integrate External/Custom Code” on page 27-44
• “Configure Build for External C/C++ Code” on page 26-10
• “Static Methods” (MATLAB)

 See Also

26-17

Mapping MATLAB Types to Types in Generated Code
The code generator produces data types in C/C++ that correspond to the data types that
you use in your MATLAB code. The data types that are generated depend on the target
platform and compiler. The code generator can produce either built-in C data types, such
as short, long, int, and so on, or custom data types defined by using C typedef
statements. By default, the code generator produces built-in types for standalone code
(lib, dll, or exe) and custom types for MEX code. To use built-in C types, modify the
DataTypeReplacement property of the code generation configuration object or use the
MATLAB Coder App. For more information, see “Specify Data Types Used in Generated
Code” on page 20-40.

To produce custom C/C++ types, the code generator uses predefined data types in the
header file tmwtypes.h, located in fullfile(matlabroot,'extern','include').
The code generator can also produce custom data types based on analysis of your
MATLAB code. Custom data types are defined in the files rtwtypes.h and
myFunction_types.h located in the code generation directory. myFunction is the
name of your top-level function. The code generator cannot produce code for every data
type that exists within MATLAB. See “MATLAB Language Features Supported for C/C++
Code Generation” on page 2-23.

When you do not use built-in C data types, the code generator produces these data types:

MATLAB Data Type Corresponding Custom C/C++ Data
Type

logical boolean_T
char char_T
string rtString
int8 int8_T
int16 int16_T
int32 int32_T
int64 int64_T
uint8 uint8_T
uint16 uint16_T
uint32 uint32_T

26 External Code Integration

26-18

MATLAB Data Type Corresponding Custom C/C++ Data
Type

uint64 uint64_T
single real32_T
double real_T
complex See “Complex Types” on page 26-19.
struct See “Structure Types” on page 26-20.
fi See “Fixed-Point Types” on page 26-20.

When a variable is passed by reference, the corresponding custom data type uses the
dereference operator. For example, the corresponding custom C/C++ data type for int8
when passed by reference is int8_T*.

Dynamically allocated arrays map to a custom emxArray_ type. For example, a
dynamically allocated char array maps to a type of emxArray_char_T. A dynamically
allocated double array maps to the type emxArray_real_T. Dynamic allocation occurs,
for example, when array size is not known at compile time or when you create a variable-
size array by using coder.varsize without specifying explicit upper bounds. For more
information on variable-size arrays, see “C Code Interface for Arrays” on page 6-16.

Complex Types
In MATLAB, complexity is defined as a property of a data type. This table lists the
predefined data types that the code generator uses for MATLAB complex data types.

MATLAB Complex Data Type Corresponding Custom C/C++ Data
Type

int8 cint8_T
int16 cint16_T
int32 cint32_T
int64 cint64_T
uint8 cuint8_T
uint16 cuint16_T
uint32 cuint32_T

 Mapping MATLAB Types to Types in Generated Code

26-19

MATLAB Complex Data Type Corresponding Custom C/C++ Data
Type

uint64 cuint64_T
single creal32_T
double creal_T

The code generator defines each complex value as a structure with a real component re
and an imaginary component im. For example, see the typedef for creal32_T from
tmwtypes.h:

typedef struct {
 real32_T re;/* Real component*/
 real32_T im;/* Imaginary component*/
} creal32_T;

Suppose you define a variable x of type creal32_T. The generated code accesses the
real component as x.re and the imaginary component as x.im.

If your C/C++ library requires a different representation, you can define your own
versions of MATLAB Coder complex types, for example, by using coder.cstructname.
However, you must use the names re for the real components and im for the imaginary
components in your definitions.

For more information, see “Code Generation for Complex Data” on page 5-4.

Structure Types
MATLAB Coder maps structures to C/C++ types field-by-field. The order of the structure
fields in the MATLAB definition is preserved. To control the name of the generated C/C++
structure type, or provide a definition, use the coder.cstructname function. If you are
not using dynamic memory allocation, arrays in structures translate into single-dimension
arrays, not pointers. For more information, see “Structures”.

Fixed-Point Types
The numerictype properties of a fi object determine its C/C++ data type. By default,
the code generator tries to use built-in C/C++ types. However, you can choose to use
custom C/C++ data types instead. The following table shows how the Signedness,
WordLength, and FractionLength properties determine the custom C/C++ data type.

26 External Code Integration

26-20

The custom C/C++ data type is the next larger target word size that can store the fixed-
point value, based on its word length. The sign of the integer type matches the sign of the
fixed-point type.

Signedness Word Length Fraction Length Corresponding
Custom C/C++
Data Type

1 8 7 int8_T
1 13 10 int16_T
1 16 15 int16_T
0 19 15 uint32_T

Character Vectors
The MATLAB Coder software maps MATLAB character vectors to C/C++ character
arrays. These character arrays are not C/C++ strings because they are not null-
terminated. If you pass a MATLAB character vector to external C/C++ code that expects a
C/C++ string, the generated C/C++ character array must be null-terminated. To generate
a null-terminated C/C++ character array, append a zero to the end of the MATLAB
character vector. For example, ['sample text' 0]. Otherwise, generated code that
expects a string can stop working without compiler errors or warnings.

Multiword Types
Multiword types are custom types that are generated when the target hardware cannot
store your MATLAB data type in a built-in C/C++ type. Multiword types are generated as
C/C++ structure types that contain an array of integers. The array dimensions depend on
the size of the widest integer type on the target hardware.

For example, for a 128-bit fixed-point type, if the widest integer type on the target
hardware is 32-bits, the software generates a structure with an array of four 32-bit
integers.

typedef struct
{
 unsigned int chunks[4];
} uint128m_T;

 Mapping MATLAB Types to Types in Generated Code

26-21

If the widest integer type on the target hardware is a long with a size of 64-bits, the code
generator produces a structure with an array of two 64-bit long types.

typedef struct
{
 unsigned long chunks[2];
} uint128m_T;

The C/C++ data type generated from a 64-bit integer MATLAB type depends on the sizes
of the integer types on the target hardware. If a built-in type wide enough to store 64-bits
does not exist, then the 64-bit MATLAB Coder type maps to a custom multiword type.

See Also
coder.cstructname | coder.opaque

More About
• “Fundamental MATLAB Classes” (MATLAB)
• “Integrate External Code that Uses Custom Data Types” on page 26-6

26 External Code Integration

26-22

Read a Text File
This example shows how to generate a standalone C library from MATLAB code that
reads a file from disk using the functions fopen/fread/fclose.

About the readfile Function

The readfile.m function takes a file name (or path) as input and returns a string
containing the contents of the file.

type readfile

% y = readfile(filename)
% Read file 'filename' and return a MATLAB string with the contents
% of the file.
function y = readfile(filename) %#codegen

% Put class and size constraints on function input.
assert(isa(filename, 'char'));
assert(size(filename, 1) == 1);
assert(size(filename, 2) <= 1024);

% Call fopen(filename 'r'), but we need to convert the MATLAB
% string into a C type string (which is the same string with the
% NUL (\0) string terminator).
f = fopen(filename, 'r');

% Call fseek(f, 0, SEEK_END) to set file position to the end of
% the file.
fseek(f, 0, 'eof');

% Call ftell(f) which will return the length of the file in bytes
% (as current file position is at the end of the file).
filelen = int32(ftell(f));

% Reset current file position
fseek(f,0,'bof');

% Initialize a buffer
maxBufferSize = int32(2^16);
buffer = zeros(1, maxBufferSize,'uint8');

% Remaining is the number of bytes to read (from the file)
remaining = filelen;

 Read a Text File

26-23

% Index is the current position to read into the buffer
index = int32(1);

while remaining > 0
 % Buffer overflow?
 if remaining + index > size(buffer,2)
 fprintf('Attempt to read file which is bigger than internal buffer.\n');
 fprintf('Current buffer size is %d bytes and file size is %d bytes.\n', maxBufferSize, filelen);
 break
 end
 % Read as much as possible from the file into internal buffer

 [dataRead, nread] = fread(f,remaining, 'char');
 buffer(index:index+nread-1) = dataRead;
 n = int32(nread);
 if n == 0
 % Nothing more to read
 break;
 end
 % Did something went wrong when reading?
 if n < 0
 fprintf('Could not read from file: %d.\n', n);
 break;
 end
 % Update state variables
 remaining = remaining - n;
 index = index + n;
end

% Close file
fclose(f);

y = char(buffer(1:index));

Generate the MEX Function for Testing

Generate a MEX function using the codegen command.

codegen readfile

Before generating C code, you should first test the MEX function in MATLAB to ensure
that it is functionally equivalent to the original MATLAB code and that no run-time errors
occur. By default, codegen generates a MEX function named readfile_mex in the

26 External Code Integration

26-24

current folder. This allows you to test the MATLAB code and MEX function and compare
the results.

Run the MEX Function

Call the generated MEX function and display the size of the returned string and its first
100 characters.

y = readfile_mex('readfile.m');
size(y)

ans = 1×2

 1 1857

y(1:100)

ans =
 '% y = readfile(filename)
 % Read file 'filename' and return a MATLAB string with the contents
 % of th'

Generate C Code

codegen -config:lib readfile

Using codegen with the specified -config cfg option produces a standalone C library.

Inspect the Generated Code

By default, the code generated for the library is in the folder codegen/lib/readfile/.

The files are:

dir codegen/lib/readfile/

. readfile.obj readfile_rtw.rsp

.. readfile_data.c readfile_rtw_comp.rsp
buildInfo.mat readfile_data.h readfile_rtw_ref.rsp
codeInfo.mat readfile_data.obj readfile_rtwutil.c
codedescriptor.dmr readfile_emxAPI.c readfile_rtwutil.h
examples readfile_emxAPI.h readfile_rtwutil.obj
fclose.c readfile_emxAPI.obj readfile_terminate.c
fclose.h readfile_emxutil.c readfile_terminate.h

 Read a Text File

26-25

fclose.obj readfile_emxutil.h readfile_terminate.obj
fileManager.c readfile_emxutil.obj readfile_types.h
fileManager.h readfile_initialize.c rtw_proj.tmw
fileManager.obj readfile_initialize.h rtwtypes.h
interface readfile_initialize.obj setup_msvc150.bat
readfile.c readfile_ref.rsp
readfile.h readfile_rtw.bat
readfile.lib readfile_rtw.mk

Inspect the C Code for the readfile.c Function

type codegen/lib/readfile/readfile.c

/*
 * File: readfile.c
 *
 * MATLAB Coder version : 4.1
 * C/C++ source code generated on : 27-Aug-2018 12:56:41
 */

/* Include Files */
#include <string.h>
#include "readfile.h"
#include "readfile_emxutil.h"
#include "fclose.h"
#include "fileManager.h"
#include "readfile_rtwutil.h"
#include <stdio.h>

/* Type Definitions */
#include <stddef.h>

/* Function Definitions */

/*
 * Put class and size constraints on function input.
 * Arguments : const char filename_data[]
 * const int filename_size[2]
 * emxArray_char_T *y
 * Return Type : void
 */
void readfile(const char filename_data[], const int filename_size[2],
 emxArray_char_T *y)
{
 signed char fileid;

26 External Code Integration

26-26

 int wherefrom;
 FILE * filestar;
 long position_t;
 double position;
 int i0;
 unsigned char buffer[65536];
 int remaining;
 int b_index;
 emxArray_uint16_T *r0;
 emxArray_uint8_T *A;
 boolean_T exitg1;
 int other2Read;
 size_t nBytes;
 int num2Read;
 int bytesOut;
 short bdims_idx_0;
 int numRead;
 int buf_size_idx_0;
 size_t numReadSizeT;
 char buf_data[1024];

 /* y = readfile(filename) */
 /* Read file 'filename' and return a MATLAB string with the contents */
 /* of the file. */
 /* Call fopen(filename 'r'), but we need to convert the MATLAB */
 /* string into a C type string (which is the same string with the */
 /* NUL (\0) string terminator). */
 fileid = cfopen(filename_data, filename_size, "rb");

 /* Call fseek(f, 0, SEEK_END) to set file position to the end of */
 /* the file. */
 wherefrom = SEEK_END;
 filestar = fileManager(fileid);
 if ((fileid != 0) && (fileid != 1) && (fileid != 2)) {
 } else {
 filestar = NULL;
 }

 if (!(filestar == NULL)) {
 fseek(filestar, (long int)0.0, wherefrom);
 }

 /* Call ftell(f) which will return the length of the file in bytes */
 /* (as current file position is at the end of the file). */

 Read a Text File

26-27

 filestar = fileManager(fileid);
 if ((fileid != 0) && (fileid != 1) && (fileid != 2)) {
 } else {
 filestar = NULL;
 }

 if (filestar == NULL) {
 position = -1.0;
 } else {
 position_t = ftell(filestar);
 position = (double)position_t;
 }

 position = rt_roundd_snf(position);
 if (position < 2.147483648E+9) {
 if (position >= -2.147483648E+9) {
 i0 = (int)position;
 } else {
 i0 = MIN_int32_T;
 }
 } else if (position >= 2.147483648E+9) {
 i0 = MAX_int32_T;
 } else {
 i0 = 0;
 }

 /* Reset current file position */
 wherefrom = SEEK_SET;
 filestar = fileManager(fileid);
 if ((fileid != 0) && (fileid != 1) && (fileid != 2)) {
 } else {
 filestar = NULL;
 }

 if (!(filestar == NULL)) {
 fseek(filestar, (long int)0.0, wherefrom);
 }

 /* Initialize a buffer */
 memset(&buffer[0], 0, sizeof(unsigned char) << 16);

 /* Remaining is the number of bytes to read (from the file) */
 remaining = i0;

26 External Code Integration

26-28

 /* Index is the current position to read into the buffer */
 b_index = 1;
 emxInit_uint16_T(&r0, 2);
 emxInit_uint8_T(&A, 1);
 exitg1 = false;
 while ((!exitg1) && (remaining > 0)) {
 /* Buffer overflow? */
 if (b_index > MAX_int32_T - remaining) {
 other2Read = MAX_int32_T;
 } else {
 other2Read = remaining + b_index;
 }

 if (other2Read > 65536) {
 printf("Attempt to read file which is bigger than internal buffer.\n");
 fflush(stdout);
 printf("Current buffer size is %d bytes and file size is %d bytes.\n",
 65536, i0);
 fflush(stdout);
 exitg1 = true;
 } else {
 /* Read as much as possible from the file into internal buffer */
 nBytes = sizeof(char);
 filestar = fileManager(fileid);
 if ((fileid != 0) && (fileid != 1) && (fileid != 2)) {
 } else {
 filestar = NULL;
 }

 if (filestar == NULL) {
 A->size[0] = 0;
 bytesOut = 0;
 } else {
 num2Read = A->size[0];
 A->size[0] = remaining;
 emxEnsureCapacity_uint8_T(A, num2Read);
 if (remaining > 1024) {
 bdims_idx_0 = 1024;
 } else {
 bdims_idx_0 = (short)remaining;
 }

 bytesOut = 0;
 numRead = 1;

 Read a Text File

26-29

 buf_size_idx_0 = bdims_idx_0;
 while ((bytesOut < remaining) && (numRead > 0)) {
 num2Read = buf_size_idx_0;
 other2Read = remaining - bytesOut;
 if (buf_size_idx_0 > other2Read) {
 num2Read = other2Read;
 }

 buf_size_idx_0 = bdims_idx_0;
 numRead = 0;
 other2Read = 1;
 while ((numRead < num2Read) && (other2Read > 0)) {
 numReadSizeT = fread(&buf_data[numRead], nBytes, num2Read - numRead,
 filestar);
 other2Read = (int)numReadSizeT;
 numRead += (int)numReadSizeT;
 }

 for (other2Read = 0; other2Read < numRead; other2Read++) {
 A->data[other2Read + bytesOut] = (unsigned char)buf_data[other2Read];
 }

 bytesOut += numRead;
 }

 num2Read = bytesOut + 1;
 buf_size_idx_0 = A->size[0];
 for (other2Read = num2Read; other2Read <= buf_size_idx_0; other2Read++)
 {
 A->data[other2Read - 1] = 0U;
 }

 if (bytesOut < remaining) {
 if (1 > bytesOut) {
 A->size[0] = 0;
 } else {
 num2Read = A->size[0];
 A->size[0] = bytesOut;
 emxEnsureCapacity_uint8_T(A, num2Read);
 }
 }
 }

 position = (double)b_index + (double)bytesOut;

26 External Code Integration

26-30

 if (position < 2.147483648E+9) {
 if (position >= -2.147483648E+9) {
 num2Read = (int)position;
 } else {
 num2Read = MIN_int32_T;
 }
 } else {
 num2Read = MAX_int32_T;
 }

 num2Read--;
 if (b_index > num2Read) {
 buf_size_idx_0 = 0;
 num2Read = 0;
 } else {
 buf_size_idx_0 = b_index - 1;
 }

 other2Read = r0->size[0] * r0->size[1];
 r0->size[0] = 1;
 numRead = num2Read - buf_size_idx_0;
 r0->size[1] = numRead;
 emxEnsureCapacity_uint16_T(r0, other2Read);
 for (num2Read = 0; num2Read < numRead; num2Read++) {
 r0->data[num2Read] = (unsigned short)(buf_size_idx_0 + num2Read);
 }

 numRead = r0->size[0] * r0->size[1];
 for (num2Read = 0; num2Read < numRead; num2Read++) {
 buffer[r0->data[num2Read]] = A->data[num2Read];
 }

 if (bytesOut == 0) {
 /* Nothing more to read */
 exitg1 = true;
 } else {
 /* Did something went wrong when reading? */
 if (bytesOut < 0) {
 printf("Could not read from file: %d.\n", bytesOut);
 fflush(stdout);
 exitg1 = true;
 } else {
 /* Update state variables */
 remaining -= bytesOut;

 Read a Text File

26-31

 if ((b_index < 0) && (bytesOut < MIN_int32_T - b_index)) {
 b_index = MIN_int32_T;
 } else if ((b_index > 0) && (bytesOut > MAX_int32_T - b_index)) {
 b_index = MAX_int32_T;
 } else {
 b_index += bytesOut;
 }
 }
 }
 }
 }

 emxFree_uint8_T(&A);
 emxFree_uint16_T(&r0);

 /* Close file */
 b_fclose(fileid);
 i0 = y->size[0] * y->size[1];
 y->size[0] = 1;
 y->size[1] = b_index;
 emxEnsureCapacity_char_T(y, i0);
 for (i0 = 0; i0 < b_index; i0++) {
 y->data[i0] = (signed char)buffer[i0];
 }
}

/*
 * File trailer for readfile.c
 *
 * [EOF]
 */

26 External Code Integration

26-32

Generate Efficient and Reusable
Code

• “Optimization Strategies” on page 27-3
• “Modularize MATLAB Code” on page 27-6
• “Eliminate Redundant Copies of Function Inputs” on page 27-7
• “Inline Code” on page 27-10
• “Control Inlining” on page 27-11
• “Fold Function Calls into Constants” on page 27-14
• “Control Stack Space Usage” on page 27-16
• “Stack Allocation and Performance” on page 27-18
• “Dynamic Memory Allocation and Performance” on page 27-19
• “Minimize Dynamic Memory Allocation” on page 27-20
• “Provide Maximum Size for Variable-Size Arrays” on page 27-21
• “Disable Dynamic Memory Allocation During Code Generation” on page 27-26
• “Set Dynamic Memory Allocation Threshold” on page 27-27
• “Excluding Unused Paths from Generated Code” on page 27-29
• “Prevent Code Generation for Unused Execution Paths” on page 27-30
• “Generate Code with Parallel for-Loops (parfor)” on page 27-33
• “Minimize Redundant Operations in Loops” on page 27-35
• “Unroll for-Loops” on page 27-37
• “Disable Support for Integer Overflow or Nonfinites” on page 27-42
• “Integrate External/Custom Code” on page 27-44
• “MATLAB Coder Optimizations in Generated Code” on page 27-50
• “Use coder.const with Extrinsic Function Calls” on page 27-54
• “memcpy Optimization” on page 27-56
• “memset Optimization” on page 27-58

27

• “Reuse Large Arrays and Structures” on page 27-60
• “LAPACK Calls in Generated Code” on page 27-62
• “Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls”

on page 27-63
• “BLAS Calls in Generated Code” on page 27-67
• “Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls”

on page 27-68
• “Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW

Library Calls” on page 27-73
• “Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code”

on page 27-77
• “Speed Up MEX Generation by Using JIT Compilation” on page 27-82

27 Generate Efficient and Reusable Code

27-2

Optimization Strategies
MATLAB Coder introduces certain optimizations when generating C/C++ code or MEX
functions from your MATLAB code. For more information, see “MATLAB Coder
Optimizations in Generated Code” on page 27-50.

To optimize your generated code further, you can:

• Adapt your MATLAB code.
• Control code generation using the configuration object from the command-line or the

project settings dialog box.

To optimize the execution speed of generated code, for these conditions, perform the
following actions as necessary:

Condition Action
You have for-loops whose iterations are
independent of each other.

“Generate Code with Parallel for-Loops (parfor)”
on page 27-33

You have variable-size arrays in your MATLAB
code.

“Minimize Dynamic Memory Allocation” on page
27-20

You have multiple variable-size arrays in your
MATLAB code. You want dynamic memory
allocation for larger arrays and static allocation
for smaller ones.

“Set Dynamic Memory Allocation Threshold” on
page 27-27

You want your generated function to be called by
reference.

“Eliminate Redundant Copies of Function
Inputs” on page 27-7

You are calling small functions in your MATLAB
code.

“Inline Code” on page 27-10

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for larger
ones.

“Control Inlining” on page 27-11

You do not want to generate code for expressions
that contain constants only.

“Fold Function Calls into Constants” on page 27-
14

You have loop operations in your MATLAB code
that do not depend on the loop index.

“Minimize Redundant Operations in Loops” on
page 27-35

 Optimization Strategies

27-3

Condition Action
You have integer operations in your MATLAB
code. You know beforehand that integer overflow
does not occur during execution of your
generated code.

“Disable Support for Integer Overflow” on page
27-42

You know beforehand that Infs and NaNs do not
occur during execution of your generated code.

“Disable Support for Nonfinite Numbers” on
page 27-43

You have for-loops with few iterations. “Unroll for-Loops” on page 27-37
You already have legacy C/C++ code optimized
for your target environment.

“Integrate External/Custom Code” on page 27-
44

You want to speed up the code generated for
basic vector and matrix functions.

“Speed Up Matrix Operations in Generated
Standalone Code by Using BLAS Calls” on page
27-68

You want to speed up the code generated for
linear algebra functions.

“Speed Up Linear Algebra in Generated
Standalone Code by Using LAPACK Calls” on
page 27-63

To optimize the memory usage of generated code, for these conditions, perform the
following actions as necessary:

Condition Action
You have if/else/elseif statements or
switch/case/otherwise statements in
your MATLAB code. You do not require
some branches of the statements in your
generated code.

“Prevent Code Generation for Unused
Execution Paths” on page 27-30

You want your generated function to be
called by reference.

“Eliminate Redundant Copies of Function
Inputs” on page 27-7

You have limited stack space for your
generated code.

“Control Stack Space Usage” on page 27-
16

You are calling small functions in your
MATLAB code.

“Inline Code” on page 27-10

27 Generate Efficient and Reusable Code

27-4

Condition Action
You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for
larger ones.

“Control Inlining” on page 27-11

You do not want to generate code for
expressions that contain constants only.

“Fold Function Calls into Constants” on
page 27-14

You have loop operations in your MATLAB
code that do not depend on the loop index.

“Minimize Redundant Operations in Loops”
on page 27-35

You have integer operations in your
MATLAB code. You know beforehand that
integer overflow does not occur during
execution of your generated code.

“Disable Support for Integer Overflow” on
page 27-42

You know beforehand that Inf-s and NaN-s
does not occur during execution of your
generated code.

“Disable Support for Nonfinite Numbers”
on page 27-43

Your MATLAB code has variables that are
large arrays or structures. Your variables
are not reused in the generated code. They
are preserved. You want to see if the extra
memory required to preserve the variable
names of the large arrays or structures
affects performance.

“Reuse Large Arrays and Structures” on
page 27-60

 Optimization Strategies

27-5

Modularize MATLAB Code
For large MATLAB code, streamline code generation by modularizing the code:

1 Break up your MATLAB code into smaller, self-contained sections.
2 Save each section in a MATLAB function.
3 Generate C/C++ code for each function.
4 Call the generated C/C++ functions in sequence from a wrapper MATLAB function

using coder.ceval.
5 Generate C/C++ code for the wrapper function.

Besides streamlining code generation for the original MATLAB code, this approach also
supplies you with C/C++ code for the individual sections. You can reuse the code for the
individual sections later by integrating them with other generated C/C++ code using
coder.ceval.

27 Generate Efficient and Reusable Code

27-6

Eliminate Redundant Copies of Function Inputs
You can reduce the number of copies in your generated code by writing functions that use
the same variable as both an input and an output. For example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a variable acts as
both input and output, the generated code passes the variable by reference instead of
redundantly copying the input to a temporary variable. In the preceding example, input A
is passed by reference in the generated code because it also acts as an output for function
foo:

...
/* Function Definitions */
void foo(double *A, double B)
{
 *A *= B;
}
...

The reference parameter optimization reduces memory usage and execution time,
especially when the variable passed by reference is a large data structure. To achieve
these benefits at the call site, call the function with the same variable as both input and
output.

By contrast, suppose that you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

The generated code passes the inputs by value and returns the value of the output:

...
/* Function Definitions */
double foo2(double A, double B)
{
 return A * B;
}
...

 Eliminate Redundant Copies of Function Inputs

27-7

In some cases, the output of the function cannot be a modified version of its inputs. If you
do not use the inputs later in the function, you can modify your code to operate on the
inputs instead of on a copy of the inputs. One method is to create additional return values
for the function. For example, consider the code:

function [y1,u1]=foo(u1) %#codegen
x1=u1+1;
y1=bar(x1);
end

function y2=bar(u2)
% This line prevents a compiler optimization for
% the sake of example
coder.inline('never');
% Since foo does not use u2 later in the function,
% it would be optimal to do this operation in place
x2=u2.*2;
% The change in dimensions in the following code
% means that it cannot be done in place
y2=[x2,x2];
end

You can modify the code to eliminate redundant copies.

function [y1,u1]=foo(u1) %#codegen
u1=u1+1;
[y1,u1]=bar(u1);
end

function [y2,u2]=bar(u2)
% This line prevents a compiler optimization for
% the sake of example
coder.inline('never');
u2=u2.*2;
% The change in dimensions in the following code
% still means that it cannot be done in place
y2=[u2,u2];
end

The reference parameter optimization does not apply to constant inputs. If the same
variable is an input and an output, and the input is constant, the code generator treats
the output as a separate variable. For example, consider the function foo:

27 Generate Efficient and Reusable Code

27-8

function A = foo(A, B) %#codegen
A = A * B;
end

Generate code in which A has a constant value 2.

codegen -config:lib foo -args {coder.Constant(2) 3} -report

The generated code defines the constant A and returns the value of the output.

...
#define A (2.0)
...
double foo(double B)
{
 return A * B;
}
...

See Also

Related Examples
• “Pass Structure Arguments by Reference or by Value in Generated Code” on page

20-169

 See Also

27-9

Inline Code
Inlining is a technique that replaces a function call with the contents (body) of that
function. Inlining eliminates the overhead of a function call, but can produce larger C/C+
+ code. Inlining can create opportunities for further optimization of the generated C/C++
code. The code generator uses internal heuristics to determine whether to inline
functions in the generated code. You can use the coder.inline directive to fine-tune
these heuristics for individual functions. For more information, see coder.inline.

See Also

More About
• “Control Inlining” on page 27-11

27 Generate Efficient and Reusable Code

27-10

Control Inlining
Restrict inlining when:

• Generated code size limits are exceeded due to excessive inlining of functions. For
example, suppose that you include the statement, coder.inline('always'), inside
a certain function. You then call that function at many different sites in your code. The
generated code size increases because the function is inlined every time it is called.
However, the call sites must be different. For instance, inlining does not lead to large
code size if the function to be inlined is called several times inside a loop.

• You have limited RAM or stack space.

You can control inlining or disable inlining altogether. To disable inlining at the command
line, use the -O disable:inline option of the codegen command. This option disables
inlining for all functions.

In this section...
“Control Size of Functions Inlined” on page 27-11
“Control Size of Functions After Inlining” on page 27-12
“Control Stack Size Limit on Inlined Functions” on page 27-12

Control Size of Functions Inlined
You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions that can be inlined. The function size is measured in terms of
an abstract number of instructions, not actual MATLAB instructions or instructions in the
target processor. Experiment with this parameter to obtain the inlining behavior that you
want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the value
of the field, Inline threshold, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThreshold, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineThreshold = 100;

Generate code by using this configuration object.

 Control Inlining

27-11

Control Size of Functions After Inlining
You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions after inlining. The function size is measured in terms of an
abstract number of instructions, not actual MATLAB instructions or instructions in the
target processor. Experiment with this parameter to obtain the inlining behavior that you
want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the value
of the field Inline threshold max to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineThresholdMax = 100;

Generate code by using this configuration object.

Control Stack Size Limit on Inlined Functions
Specifying a limit on the stack space constrains the amount of inlining allowed. For out-of-
line functions, stack space for variables local to the function is released when the function
returns. However, for inlined functions, stack space remains occupied by the local
variables even after the function is executed. The value of the property
InlineStackLimit is measured in bytes. Based on information from the target
hardware settings, the software estimates the number of stack variables that a certain
value of InlineStackLimit can accommodate. This estimate excludes possible C
compiler optimizations such as putting variables in registers.

You can use the MATLAB Coder app or the command-line interface to control the stack
size limit on inlined functions.

• Using the app, in the project settings dialog box, on the All Settings tab, set the value
of the field Inline stack limit to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineStackLimit = 2000;

Generate code by using this configuration object.

27 Generate Efficient and Reusable Code

27-12

See Also
codegen | coder.inline

More About
• “Inline Code” on page 27-10

 See Also

27-13

Fold Function Calls into Constants
This example shows how to specify constants in generated code using coder.const. The
code generator folds an expression or a function call in a coder.const statement into a
constant in generated code. Because the generated code does not have to evaluate the
expression or call the function every time, this optimization reduces the execution time of
the generated code.

Write a function AddShift that takes an input Shift and adds it to the elements of a
vector. The vector consists of the square of the first 10 natural numbers. AddShift
generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

The code generator produces code for creating the vector. It adds Shift to each element
of the vector during vector creation. The definition of AddShift in generated code looks
as follows:

void AddShift(double Shift, double y[10])
{
 int k;
 for (k = 0; k < 10; k++) {
 y[k] = (double)((1 + k) * (1 + k)) + Shift;
 }
}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

27 Generate Efficient and Reusable Code

27-14

codegen -config:lib -launchreport AddShift -args 0

The code generator creates the vector containing the squares of the first 10 natural
numbers. In the generated code, it adds Shift to each element of this vector. The
definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{
 int i0;
 static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,
 49, 64, 81, 100 };

 for (i0 = 0; i0 < 10; i0++) {
 y[i0] = (double)iv0[i0] + Shift;
 }
}

See Also
coder.const

More About
• “Use coder.const with Extrinsic Function Calls” on page 27-54

 See Also

27-15

Control Stack Space Usage
This example shows how to set the maximum stack space that the generated code uses.
Set the maximum stack usage when:

• You have limited stack space, for instance, in embedded targets.
• Your C compiler reports a run-time stack overflow.

The value of the property, StackUsageMax, is measured in bytes. Based on information
from the target hardware settings, the software estimates the number of stack variables
that a certain value of StackUsageMax can accommodate. This estimate excludes
possible C compiler optimizations such as putting variables in registers.

Control Stack Space Usage Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Set Build type to Source Code, Static Library, Dynamic Library, or
Executable (depending on your requirements).

3 Click More Settings.
4 On the Memory tab, set Stack usage max to the value that you want.

Control Stack Space Usage at the Command Line

1 Create a configuration object for code generation.

Use coder.config with arguments 'lib','dll', or 'exe' (depending on your
requirements). For example:

cfg = coder.config('lib');
2 Set the property, StackUsageMax, to the value that you want.

27 Generate Efficient and Reusable Code

27-16

cfg.StackUsageMax=400000;

See Also

More About
• “Stack Allocation and Performance” on page 27-18

 See Also

27-17

Stack Allocation and Performance
By default, local variables are allocated on the stack. Large variables that do not fit on the
stack are statically allocated in memory.

Stack allocation typically uses memory more efficiently than static allocation. However,
stack space is sometimes limited, typically in embedded processors. MATLAB Coder
allows you to manually set a limit on the stack space usage to make your generated code
suitable for your target hardware. You can choose this limit based on the target hardware
configurations. For more information, see “Control Stack Space Usage” on page 27-16.

For limited stack space, you can choose to allocate large variables on the heap instead of
using static allocation. Heap allocation is slower but more memory-efficient than static
allocation. To allocate large variables on the heap, do one of the following:

Allocate Heap Space from Command Line
1 Create a configuration object. Set the property, MultiInstanceCode, to true.

cfg = coder.config('exe');
cfg.MultiInstanceCode = true;

2 Generate code using this configuration object.

Allocate Heap Space Using the MATLAB Coder App
1 Using the MATLAB Coder app, in the project settings dialog box, on the Memory tab,

select the Generate re-entrant code check box.

• Generate code.

27 Generate Efficient and Reusable Code

27-18

Dynamic Memory Allocation and Performance
To achieve faster execution of generated code, minimize dynamic (or run-time) memory
allocation of arrays.

MATLAB Coder does not provide a size for unbounded arrays in generated code. Instead,
such arrays are referenced indirectly through pointers. For such arrays, memory cannot
be allocated during compilation of generated code. Based on storage requirements for the
arrays, memory is allocated and freed at run time as required. This run-time allocation
and freeing of memory leads to slower execution of the generated code.

When Dynamic Memory Allocation Occurs
Dynamic memory allocation occurs when the code generator cannot find upper bounds for
variable-size arrays. The software cannot find upper bounds when you specify the size of
an array using a variable that is not a compile-time constant. An example of such a
variable is an input variable (or a variable computed from an input variable).

Instances in the MATLAB code that can lead to dynamic memory allocation are:

• Array initialization: You specify array size using a variable whose value is known only
at run time.

• After initialization of an array:

• You declare the array as variable-size using coder.varsize without explicit upper
bounds. After this declaration, you expand the array by concatenation inside a loop.
The number of loop runs is known only at run time.

• You use a reshape function on the array. At least one of the size arguments to the
reshape function is known only at run time.

If you know the maximum size of the array, you can avoid dynamic memory allocation. You
can then provide an upper bound for the array and prevent dynamic memory allocation in
generated code. For more information, see “Minimize Dynamic Memory Allocation” on
page 27-20.

 Dynamic Memory Allocation and Performance

27-19

Minimize Dynamic Memory Allocation
When possible, minimize dynamic memory allocation because it leads to slower execution
of generated code. Dynamic memory allocation occurs when the code generator cannot
find upper bounds for variable-size arrays.

If you know the maximum size of a variable-size array, you can avoid dynamic memory
allocation. Follow these steps:

1 “Provide Maximum Size for Variable-Size Arrays” on page 27-21.
2 Depending on your requirements, do one of the following:

• “Disable Dynamic Memory Allocation During Code Generation” on page 27-26.
• “Set Dynamic Memory Allocation Threshold” on page 27-27

Caution If a variable-size array in the MATLAB code does not have a maximum size,
disabling dynamic memory allocation leads to a code generation error. Before disabling
dynamic memory allocation, you must provide a maximum size for variable-size arrays in
your MATLAB code.

See Also

More About
• “Dynamic Memory Allocation and Performance” on page 27-19

27 Generate Efficient and Reusable Code

27-20

Provide Maximum Size for Variable-Size Arrays
To constrain array size for variable-size arrays, do one of the following:

• Constrain Array Size Using assert Statements

If the variable specifying array size is not a compile-time constant, use an assert
statement with relational operators to constrain the variable. Doing so helps the code
generator to determine a maximum size for the array.

The following examples constrain array size using assert statements:

• When Array Size Is Specified by Input Variables

Define a function array_init which initializes an array y with input variable N:

function y = array_init (N)
 assert(N <= 25); % Generates exception if N > 25
 y = zeros(1,N);

The assert statement constrains input N to a maximum size of 25. In the absence
of the assert statement, y is assigned a pointer to an array in the generated code,
thus allowing dynamic memory allocation.

• When Array Size Is Obtained from Computation Using Input Variables

Define a function, array_init_from_prod, which takes two input variables, M
and N, and uses their product to specify the maximum size of an array, y.

function y = array_init_from_prod (M,N)
 size=M*N;
 assert(size <= 25); % Generates exception if size > 25
 y=zeros(1,size);

The assert statement constrains the product of M and N to a maximum of 25.

Alternatively, if you restrict M and N individually, it leads to dynamic memory
allocation:

function y = array_init_from_prod (M,N)
 assert(M <= 5);
 assert(N <= 5);
 size=M*N;
 y=zeros(1,size);

 Provide Maximum Size for Variable-Size Arrays

27-21

This code causes dynamic memory allocation because M and N can both have
unbounded negative values. Therefore, their product can be unbounded and
positive even though, individually, their positive values are bounded.

Tip Place the assert statement on a variable immediately before it is used to
specify array size.

Tip You can use assert statements to restrict array sizes in most cases. When
expanding an array inside a loop, this strategy does not work if the number of loop
runs is known only at run time.

• Restrict Concatenations in a Loop Using coder.varsize with Upper Bounds

You can expand arrays beyond their initial size by concatenation. When you
concatenate additional elements inside a loop, there are two syntax rules for
expanding arrays.

1 Array size during initialization is not a compile-time constant

If the size of an array during initialization is not a compile-time constant, you can
expand it by concatenating additional elements:

function out=ExpandArray(in) % Expand an array by five elements
 out = zeros(1,in);
 for i=1:5
 out = [out 0];
 end

2 Array size during initialization is a compile-time constant

Before concatenating elements, you have to declare the array as variable-size
using coder.varsize:

function out=ExpandArray() % Expand an array by five elements
 out = zeros(1,5);
 coder.varsize('out');
 for i=1:5
 out = [out 0];
 end

Either case leads to dynamic memory allocation. To prevent dynamic memory
allocation in such cases, use coder.varsize with explicit upper bounds. This
example shows how to use coder.varsize with explicit upper bounds:

27 Generate Efficient and Reusable Code

27-22

Example 27.1. Restrict Concatenations Using coder.varsize with Upper Bounds
1 Define a function, RunningAverage, that calculates the running average of an N-

element subset of an array:

 function avg=RunningAverage(N)

% Array whose elements are to be averaged
 NumArray=[1 6 8 2 5 3];

% Initialize average:
% These will also be the first two elements of the function output
 avg=[0 0];

% Place a bound on the argument
 coder.varsize('avg',[1 8]);

% Loop to calculate running average
 for i=1:N
 s=0;
 s=s+sum(NumArray(1:i));
 avg=[avg s/i];
 % Increase the size of avg as required by concatenation
 end

The output, avg, is an array that you can expand as required to accommodate the
running averages. As a new running average is calculated, it is added to the array
avg through concatenation, thereby expanding the array.

Because the maximum number of running averages is equal to the number of
elements in NumArray, you can supply an explicit upper bound for avg in the
coder.varsize statement. In this example, the upper bound is 8 (the two initial
elements plus the six elements of NumArray).

2 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned an array of size 8 (static memory
allocation). The function definition for RunningAverage appears as follows
(using built-in C types):

void RunningAverage (double N, double avg_data[8], int avg_size[2])
3 By contrast, if you remove the explicit upper bound, the generated code

dynamically allocates avg.

 Provide Maximum Size for Variable-Size Arrays

27-23

Replace the statement

coder.varsize('avg',[1 8]);

with:

coder.varsize('avg');
4 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned a pointer to an array, thereby allowing
dynamic memory allocation. The function definition for RunningAverage appears
as follows (using built-in C types):

void Test(double N, emxArray_real_T *avg)

Note Dynamic memory allocation also occurs if you precede
coder.varsize('avg') with the following assert statement:

assert(N < 6);

The assert statement does not restrict the number of concatenations within the
loop.

• Constrain Array Size When Rearranging a Matrix

The statement out = reshape(in,m,n,...) takes an array, in, as an argument
and returns array, out, having the same elements as in, but reshaped as an m-by-n-
by-... matrix. If one of the size variables m,n,.... is not a compile-time constant,
then dynamic memory allocation of out takes place.

To avoid dynamic memory allocation, use an assert statement before the reshape
statement to restrict the size variables m,n,... to numel(in). This example shows
how to use an assert statement before a reshape statement:

Example 27.2. Rearrange a Matrix into Given Number of Rows

1 Define a function, ReshapeMatrix, which takes an input variable, N, and
reshapes a matrix, mat, to have N rows:

 function [out1,out2] = ReshapeMatrix(N)

27 Generate Efficient and Reusable Code

27-24

 mat = [1 2 3 4 5; 4 5 6 7 8]
% Since mat has 10 elements, N must be a factor of 10
% to pass as argument to reshape

 out1 = reshape(mat,N,[]);
% N is not restricted

 assert(N < numel(mat));
% N is restricted to number of elements in mat
 out2 = reshape(mat,N,[]);

2 Generate code for ReshapeArray using the codegen command (the input
argument does not have to be a factor of 10):

codegen -config:lib -report ReshapeArray -args 3

While out1 is dynamically allocated, out2 is assigned an array with size 100 (=10
X 10) in the generated code.

Tip If your system has limited memory, do not use the assert statement in this
way. For an n-element matrix, the assert statement creates an n-by-n matrix,
which might be large.

See Also

Related Examples
• “Minimize Dynamic Memory Allocation” on page 27-20
• “Disable Dynamic Memory Allocation During Code Generation” on page 27-26
• “Set Dynamic Memory Allocation Threshold” on page 27-27

More About
• “Dynamic Memory Allocation and Performance” on page 27-19

 See Also

27-25

Disable Dynamic Memory Allocation During Code
Generation

To disable dynamic memory allocation using the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the Memory tab, under Variable Sizing Support, set Dynamic memory

allocation to Never.

To disable dynamic memory allocation at the command line:

1 In the MATLAB workspace, define the configuration object:

cfg=coder.config('lib');
2 Set the DynamicMemoryAllocation property of the configuration object to Off:

cfg.DynamicMemoryAllocation = 'Off';

If a variable-size array in the MATLAB code does not have a maximum upper bound,
disabling dynamic memory allocation leads to a code generation error. Therefore, you can
identify variable-size arrays in your MATLAB code that do not have a maximum upper
bound. These arrays are the arrays that are dynamically allocated in the generated code.

See Also

Related Examples
• “Minimize Dynamic Memory Allocation” on page 27-20
• “Provide Maximum Size for Variable-Size Arrays” on page 27-21
• “Set Dynamic Memory Allocation Threshold” on page 27-27

More About
• “Dynamic Memory Allocation and Performance” on page 27-19

27 Generate Efficient and Reusable Code

27-26

Set Dynamic Memory Allocation Threshold
This example shows how to specify a dynamic memory allocation threshold for variable-
size arrays. Dynamic memory allocation optimizes storage requirements for variable-size
arrays, but causes slower execution of generated code. Instead of disabling dynamic
memory allocation for all variable-size arrays, you can disable dynamic memory allocation
for arrays less than a certain size.

Specify this threshold when you want to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static
memory allocation can speed up generated code. Static memory allocation can lead to
unused storage space. However, you can decide that the unused storage space is not a
significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use
dynamic memory allocation, you can significantly reduce storage requirements.

Set Dynamic Memory Allocation Threshold Using the MATLAB
Coder App
1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, select the Enable variable-sizing check box.
4 Set Dynamic memory allocation to For arrays with max size at or above

threshold.
5 Set Dynamic memory allocation threshold to the value that you want.

The Dynamic memory allocation threshold value is measured in bytes. Based on
information from the target hardware settings, the software estimates the size of the
array that a certain value of DynamicMemoryAllocationThreshold can
accommodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

 Set Dynamic Memory Allocation Threshold

27-27

Set Dynamic Memory Allocation Threshold at the Command
Line
1 Create a configuration object for code generation. Use coder.config with

arguments 'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');
2 Set DynamicMemoryAllocation to 'Threshold'.

cfg.DynamicMemoryAllocation='Threshold';
3 Set the property, DynamicMemoryAllocationThreshold, to the value that you

want.

cfg.DynamicMemoryAllocationThreshold = 40000;

The value stored in DynamicMemoryAllocationThreshold is measured in bytes.
Based on information from the target hardware settings, the software estimates the
size of the array that a certain value of DynamicMemoryAllocationThreshold can
accommodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

See Also

Related Examples
• “Minimize Dynamic Memory Allocation” on page 27-20
• “Provide Maximum Size for Variable-Size Arrays” on page 27-21
• “Disable Dynamic Memory Allocation During Code Generation” on page 27-26

More About
• “Dynamic Memory Allocation and Performance” on page 27-19

27 Generate Efficient and Reusable Code

27-28

Excluding Unused Paths from Generated Code
In certain situations, you do not need some branches of an: if, elseif, else
statement, or a switch, case, otherwise statement in your generated code. For
instance:

• You have a MATLAB function that performs multiple tasks determined by a control-
flow variable. You might not need some of the tasks in the code generated from this
function.

• You have an if/elseif/if statement in a MATLAB function performing different
tasks based on the nature (type/value) of the input. In some cases, you know the
nature of the input beforehand. If so, you do not need some branches of the if
statement.

You can prevent code generation for the unused branches of an if/elseif/else
statement or a switch/case/otherwise statement. Declare the control-flow variable as
a constant. The code generator produces code only for the branch that the control-flow
variable chooses.

See Also

Related Examples
• “Prevent Code Generation for Unused Execution Paths” on page 27-30

 Excluding Unused Paths from Generated Code

27-29

Prevent Code Generation for Unused Execution Paths
In this section...
“Prevent Code Generation When Local Variable Controls Flow” on page 27-30
“Prevent Code Generation When Input Variable Controls Flow” on page 27-31

If a variable controls the flow of an: if, elseif, else statement, or a switch,
case, otherwise statement, declare it as constant so that code generation takes place
for one branch of the statement only.

Depending on the nature of the control-flow variable, you can declare it as constant in
two ways:

• If the variable is local to the MATLAB function, assign it to a constant value in the
MATLAB code. For an example, see “Prevent Code Generation When Local Variable
Controls Flow” on page 27-30.

• If the variable is an input to the MATLAB function, you can declare it as constant using
coder.Constant. For an example, see “Prevent Code Generation When Input
Variable Controls Flow” on page 27-31.

Prevent Code Generation When Local Variable Controls Flow
1 Define a function SquareOrCube which takes an input variable, in, and squares or

cubes its elements based on whether the choice variable, ch, is set to s or c:

function out = SquareOrCube(ch,in) %#codegen
 if ch=='s'
 out = in.^2;
 elseif ch=='c'
 out = in.^3;
 else
 out = 0;
 end

2 Generate code for SquareOrCube using the codegen command:

codegen -config:lib SquareOrCube -args {'s',zeros(2,2)}

The generated C code squares or cubes the elements of a 2-by-2 matrix based on the
input for ch.

27 Generate Efficient and Reusable Code

27-30

3 Add the following line to the definition of SquareOrCube:

ch = 's';

The generated C code squares the elements of a 2-by-2 matrix. The choice variable,
ch, and the other branches of the if/elseif/if statement do not appear in the
generated code.

Prevent Code Generation When Input Variable Controls Flow
1 Define a function MathFunc, which performs different mathematical operations on an

input, in, depending on the value of the input, flag:

function out = MathFunc(flag,in) %#codegen
 %# codegen
 switch flag
 case 1
 out=sin(in);
 case 2
 out=cos(in);
 otherwise
 out=sqrt(in);
 end

2 Generate code for MathFunc using the codegen command:

codegen -config:lib MathFunc -args {1,zeros(2,2)}

The generated C code performs different math operations on the elements of a 2-by-2
matrix based on the input for flag.

3 Generate code for MathFunc, declaring the argument, flag, as a constant using
coder.Constant:

codegen -config:lib MathFunc -args {coder.Constant(1),zeros(2,2)}

The generated C code finds the sine of the elements of a 2-by-2 matrix. The variable,
flag, and the switch/case/otherwise statement do not appear in the generated
code.

 Prevent Code Generation for Unused Execution Paths

27-31

See Also

More About
• “Excluding Unused Paths from Generated Code” on page 27-29

27 Generate Efficient and Reusable Code

27-32

Generate Code with Parallel for-Loops (parfor)
This example shows how to generate C code for a MATLAB algorithm that contains a
parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10
 a(i,:)=real(fft(r(i,:)));
end

2 Generate C code for test_parfor. At the MATLAB command line, enter:

codegen -config:lib test_parfor

Because you did not specify the maximum number of threads to use, the generated C
code executes the loop iterations in parallel on the available number of cores.

3 To specify a maximum number of threads, rewrite the function test_parfor as
follows:

function a = test_parfor(u) %#codegen
a=ones(10,256);
r=rand(10,256);
parfor (i=1:10,u)
 a(i,:)=real(fft(r(i,:)));
end

4 Generate C code for test_parfor. Use -args 0 to specify that the input, u, is a
scalar double. At the MATLAB command line, enter:

codegen -config:lib test_parfor -args 0

In the generated code, the iterations of the parfor-loop run on at most the number
of cores specified by the input, u. If less than u cores are available, the iterations run
on the cores available at the time of the call.

 Generate Code with Parallel for-Loops (parfor)

27-33

See Also

More About
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 25-20
• “Classification of Variables in parfor-Loops” on page 25-28
• “Reduction Assignments in parfor-Loops” on page 25-27

27 Generate Efficient and Reusable Code

27-34

Minimize Redundant Operations in Loops
This example shows how to minimize redundant operations in loops. When a loop
operation does not depend on the loop index, performing it inside a loop is redundant.
This redundancy often goes unnoticed when you are performing multiple operations in a
single MATLAB statement inside a loop. For example, in the following code, the inverse of
the matrix B is being calculated 100 times inside the loop although it does not depend on
the loop index:

for i=1:100
 C=C + inv(B)*A^i*B;
 end

Performing such redundant loop operations can lead to unnecessary processing. To avoid
unnecessary processing, move operations outside loops as long as they do not depend on
the loop index.

1 Define a function, SeriesFunc(A,B,n), that calculates the sum of n terms in the
following power series expansion:

C B AB B A B= + + +
- -

1
1 1 2

...

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
 C=zeros(size(A));

% Perform the series sum
 for i=1:n
 C=C+inv(B)*A^i*B;
 end

2 Generate code for SeriesFunc with 4-by-4 matrices passed as input arguments for A
and B:

X = coder.typeof(zeros(4));
codegen -config:lib -launchreport SeriesFunc -args {X,X,10}

In the generated code, the inversion of B is performed n times inside the loop. It is
more economical to perform the inversion operation once outside the loop because it
does not depend on the loop index.

3 Modify SeriesFunc as follows:

 Minimize Redundant Operations in Loops

27-35

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
 C=zeros(size(A));

% Perform the inversion outside the loop
 inv_B=inv(B);

% Perform the series sum
 for i=1:n
 C=C+inv_B*A^i*B;
 end

This procedure performs the inversion of B only once, leading to faster execution of
the generated code.

27 Generate Efficient and Reusable Code

27-36

Unroll for-Loops
When the code generator unrolls a for-loop, instead of producing a for-loop in the
generated code, it produces a copy of the loop body for each iteration. For small, tight
loops, unrolling can improve performance. However, for large loops, unrolling can
significantly increase code generation time and generate inefficient code.

Force Loop Unrolling by Using coder.unroll
The code generator uses heuristics to determine when to unroll a for-loop. To force loop
unrolling, use coder.unroll. This affects only the for loop that is immediately after
coder.unroll. For example:

function z = call_myloop()
%#codegen
z = myloop(5);
end

function b = myloop(n)
b = zeros(1,n);
coder.unroll();
for i = 1:n
 b(i)=i+n;
end
end

Here is the generated code for the for-loop:

 z[0] = 6.0;
 z[1] = 7.0;
 z[2] = 8.0;
 z[3] = 9.0;
 z[4] = 10.0;

To control when a for-loop is unrolled, use the coder.unroll flag argument. For
example, unroll the loop only when the number of iterations is less than 10.

function z = call_myloop()
%#codegen
z = myloop(5);
end

function b = myloop(n)

 Unroll for-Loops

27-37

unroll_flag = n < 10;
b = zeros(1,n);
coder.unroll(unroll_flag);
for i = 1:n
 b(i)=i+n;
end
end

To unroll a for-loop, the code generator must be able to determine the bounds of the
for-loop. For example, code generation fails for the following code because the value of n
is not known at code generation time.

function b = myloop(n)
b = zeros(1,n);
coder.unroll();
for i = 1:n
 b(i)=i+n;
end
end

Set Loop Unrolling Threshold for All for-Loops in the MATLAB
Code
If a for-loop is not preceded by coder.unroll, the code generator uses a loop unrolling
threshold to determine whether to automatically unroll the loop. If the number of loop
iterations is less than the threshold, the code generator unrolls the loop. If the number of
iterations is greater than or equal to the threshold, the code generator produces a for-
loop. The default value of the threshold is 5. By modifying this threshold, you can fine-
tune loop unrolling. To modify the threshold:

• In a configuration object for standalone code generation (coder.CodeConfig or
coder.EmbeddedCodeConfig), set the LoopUnrollThreshold property.

• In the MATLAB Coder app, on the Speed tab, set Loop unrolling threshold.

Unlike the coder.unroll directive, the threshold applies to all for-loops in your
MATLAB code. The threshold can also apply to some for-loops produced during code
generation.

For an individual loop, a coder.unroll directive takes precedence over the loop
unrolling optimization.

27 Generate Efficient and Reusable Code

27-38

Unroll Simple for-Loops

Consider this function:

function [x,y] = call_myloops()
%#codegen
x = myloop1(5);
y = myloop2(5);
end

function b = myloop1(n)
b = zeros(1,n);
for i = 1:n
 b(i)=i+n;
end
end

function b = myloop2(n)
b = zeros(1,n);
for i = 1:n
 b(i)=i*n;
end
end

To set the value of the loop unrolling threshold to 6, and then generate a static library,
run:

cfg = coder.CodeConfig;
cfg.LoopUnrollThreshold = 6;
codegen call_myloops -config cfg

This is the generated code for the for-loops. The code generator unrolled both for-loops.

 x[0] = 6.0;
 y[0] = 5.0;
 x[1] = 7.0;
 y[1] = 10.0;
 x[2] = 8.0;
 y[2] = 15.0;
 x[3] = 9.0;
 y[3] = 20.0;
 x[4] = 10.0;
 y[4] = 25.0;

 Unroll for-Loops

27-39

Unroll Nested for-Loops

Suppose that your MATLAB code has two nested for-loops.

• If the number of iterations of the inner loop is less than the threshold, the code
generator first unrolls the inner loop. Subsequently, if the product of the number of
iterations of the two loops is also less than the threshold, the code generator unrolls
the outer loop. Otherwise the code generator produces the outer for-loop.

• If the number of iterations of the inner loop is equal to or greater than the threshold,
the code generator produces both for-loops.

This behavior is generalized to multiple nested for-loops.

Consider the function nestedloops_1 with two nested for-loops:

function y = nestedloops_1
%#codegen
y = zeros(2,2);
for i = 1:2
 for j = 1:2
 y(i,j) = i+j;
 end
end
end

Generate code for nestedloops_1 with the loop unrolling threshold set to the default
value of 5. Here is the generated code for the for-loops. The code generator unrolled
both for-loops because the product of the number of iterations of the two loops is 4,
which is less than the threshold.

 y[0] = 2.0;
 y[2] = 3.0;
 y[1] = 3.0;
 y[3] = 4.0;

Now, generate code for the function nestedloops_2 with the loop unrolling threshold
set to the default value of 5.

function y = nestedloops_2
%#codegen
y = zeros(3,2);
for i = 1:3
 for j = 1:2
 y(i,j) = i+j;

27 Generate Efficient and Reusable Code

27-40

 end
end
end

The number of iterations of the inner loop is less than the threshold. The code generator
unrolls the inner loop. But the product of the number of iterations of the two loops is 6,
which is greater than the threshold. Therefore, the code generator produces code for the
outer for-loop. Here is the generated code for the for-loops.

 for (i = 0; i < 3; i++) {
 y[i] = (double)i + 2.0;
 y[i + 3] = ((double)i + 1.0) + 2.0;
 }

See Also
coder.unroll

More About
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 29-16

 See Also

27-41

Disable Support for Integer Overflow or Nonfinites
The code generator produces supporting code for these situations:

• The result of an integer operation falls outside the range that a data type can
represent, known as integer overflow.

• An operation generates nonfinite values (inf and NaN).

If you know that these situations do not occur, to reduce the size of the generated code
and increase its speed, you can suppress generation of the supporting code. However, if
you suppress generation of the supporting code and one of these situations occurs, the
behavior of the generated code might not match the behavior of the original MATLAB
code.

Disable Support for Integer Overflow
By default, the code generator produces code to handle integer overflow. Overflows
saturate to either the minimum or maximum value that the data type can represent. If you
know that your code does not depend on integer overflow support, to improve
performance, you can disable the generation of the code that handles integer overflow. To
disable integer overflow support:

• In a code generation configuration object for MEX or standalone code (static library,
dynamically linked library, or executable program), set the
SaturateOnIntegerOverflow property to false.

• In the MATLAB Coder app, set Saturate on integer overflow to No.

Note Do not disable support for integer overflow unless you know that your code does
not depend on it. If you disable the support and run-time checking is enabled, the
generated code produces an error for integer overflow. If you disable integer overflow
support and also disable run-time checking, the behavior for integer overflow is
undefined. Most C compilers wrap on overflow.

To check whether your code depends on integer overflow support:

1 Disable integer overflow support.
2 Enable checks to detect integer overflow at run time.

27 Generate Efficient and Reusable Code

27-42

• For MEX, enable integrity checking. See “Control Run-Time Checks” on page 25-
17.

• For standalone code (static library, dynamically linked library, or executable
program), enable run-time checks. See “Run-Time Error Detection and Reporting
in Standalone C/C++ Code” on page 21-17.

3 Run the generated code over the full range of input values. If the generated code
detects integer overflow, it produces an error.

Disable Support for Nonfinite Numbers
By default, for standalone code (static library, dynamically linked library, or executable
program), the code generator produces code to handle nonfinite numbers (inf and NaN).
If you know that your code does not depend on nonfinite number support, to improve the
performance of the generated code, you can disable the support. To disable nonfinite
support:

• In a code generation configuration object, set the SupportNonFinite property to
false.

• In the MATLAB Coder app, set Support nonfinite numbers to No.

If you disable nonfinite support, test that your generated code behaves as expected.

See Also

More About
• “Configure Build Settings” on page 20-28
• “Control Run-Time Checks” on page 25-17
• “Run-Time Error Detection and Reporting in Standalone C/C++ Code” on page 21-

17

 See Also

27-43

Integrate External/Custom Code
This example shows how to integrate external or custom code to enhance performance of
generated code. Although MATLAB Coder generates optimized code for most
applications, you might have custom code optimized for your specific requirements. For
example:

• You have custom libraries optimized for your target environment.
• You have custom libraries for functions not supported by MATLAB Coder.
• You have custom libraries that meet standards set by your company.

In such cases, you can integrate your custom code with the code generated by MATLAB
Coder.

This example illustrates how to integrate the function cublasSgemm from the NVIDIA®

CUDA Basic Linear Algebra Subroutines (CUBLAS) library in generated code. This
function performs matrix multiplication on a Graphics Processing Unit (GPU).

1 Define a class ExternalLib_API that derives from the class
coder.ExternalDependency. ExternalLib_API defines an interface to the
CUBLAS library through the following methods:

• getDescriptiveName: Returns a descriptive name for ExternalLib_API to be
used for error messages.

• isSupportedContext: Determines if the build context supports the CUBLAS
library.

• updateBuildInfo: Adds header file paths and link files to the build information.
• GPU_MatrixMultiply: Defines the interface to the CUBLAS library function

cublasSgemm.

ExternalLib_API.m
classdef ExternalLib_API < coder.ExternalDependency
 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)
 bName = 'ExternalLib_API';
 end

27 Generate Efficient and Reusable Code

27-44

 function tf = isSupportedContext(ctx)
 if ctx.isMatlabHostTarget()
 tf = true;
 else
 error('CUBLAS library not available for this target');
 end
 end

 function updateBuildInfo(buildInfo, ctx)
 [~, linkLibExt, ~, ~] = ctx.getStdLibInfo();

 % Include header file path
 % Include header files later using coder.cinclude
 hdrFilePath = 'C:\My_Includes';
 buildInfo.addIncludePaths(hdrFilePath);

 % Include link files
 linkFiles = strcat('libcublas', linkLibExt);
 linkPath = 'C:\My_Libs';
 linkPriority = '';
 linkPrecompiled = true;
 linkLinkOnly = true;
 group = '';
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 linkFiles = strcat('libcudart', linkLibExt);
 buildInfo.addLinkObjects(linkFiles, linkPath, ...
 linkPriority, linkPrecompiled, linkLinkOnly, group);

 end

 %API for library function 'cuda_MatrixMultiply'
 function C = GPU_MatrixMultiply(A, B)
 assert(isa(A,'single'), 'A must be single.');
 assert(isa(B,'single'), 'B must be single.');

 if(coder.target('MATLAB'))
 C=A*B;
 else

 % Include header files
 % for external functions and typedefs
 % Header path included earlier using updateBuildInfo

 Integrate External/Custom Code

27-45

 coder.cinclude('"cuda_runtime.h"');
 coder.cinclude('"cublas_v2.h"');

 % Compute dimensions of input matrices
 m = int32(size(A, 1));
 k = int32(size(A, 2));
 n = int32(size(B, 2));

 % Declare pointers to matrices on destination GPU
 d_A = coder.opaque('float*');
 d_B = coder.opaque('float*');
 d_C = coder.opaque('float*');

 % Compute memory to be allocated for matrices
 % Single = 4 bytes
 size_A = m*k*4;
 size_B = k*n*4;
 size_C = m*n*4;

 % Define error variables
 error = coder.opaque('cudaError_t');
 cudaSuccessV = coder.opaque('cudaError_t', ...
 'cudaSuccess');

 % Assign memory on destination GPU
 error = coder.ceval('cudaMalloc', ...
 coder.wref(d_A), size_A);
 assert(error == cudaSuccessV, ...
 'cudaMalloc(A) failed');
 error = coder.ceval('cudaMalloc', ...
 coder.wref(d_B), size_B);
 assert(error == cudaSuccessV, ...
 'cudaMalloc(B) failed');
 error = coder.ceval('cudaMalloc', ...
 coder.wref(d_C), size_C);
 assert(error == cudaSuccessV, ...
 'cudaMalloc(C) failed');

 % Define direction of copying
 hostToDevice = coder.opaque('cudaMemcpyKind', ...
 'cudaMemcpyHostToDevice');

 % Copy matrices to destination GPU
 error = coder.ceval('cudaMemcpy', ...

27 Generate Efficient and Reusable Code

27-46

 d_A, coder.rref(A), size_A, hostToDevice);
 assert(error == cudaSuccessV, 'cudaMemcpy(A) failed');

 error = coder.ceval('cudaMemcpy', ...
 d_B, coder.rref(B), size_B, hostToDevice);
 assert(error == cudaSuccessV, 'cudaMemcpy(B) failed');

 % Define type and size for result
 C = zeros(m, n, 'single');

 error = coder.ceval('cudaMemcpy', ...
 d_C, coder.rref(C), size_C, hostToDevice);
 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 % Define handle variables for external library
 handle = coder.opaque('cublasHandle_t');
 blasSuccess = coder.opaque('cublasStatus_t', ...
 'CUBLAS_STATUS_SUCCESS');

 % Initialize external library
 ret = coder.opaque('cublasStatus_t');
 ret = coder.ceval('cublasCreate', coder.wref(handle));
 assert(ret == blasSuccess, 'cublasCreate failed');

 TRANSA = coder.opaque('cublasOperation_t', ...
 'CUBLAS_OP_N');
 alpha = single(1);
 beta = single(0);

 % Multiply matrices on GPU
 ret = coder.ceval('cublasSgemm', handle, ...
 TRANSA,TRANSA,m,n,k, ...
 coder.rref(alpha),d_A,m, ...
 d_B,k, ...
 coder.rref(beta),d_C,k);

 assert(ret == blasSuccess, 'cublasSgemm failed');

 % Copy result back to local host
 deviceToHost = coder.opaque('cudaMemcpyKind', ...
 'cudaMemcpyDeviceToHost');
 error = coder.ceval('cudaMemcpy', coder.wref(C), ...
 d_C, size_C, deviceToHost);

 Integrate External/Custom Code

27-47

 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 end
 end
 end
end

2 To perform the matrix multiplication using the interface defined in method
GPU_MatrixMultiply and the build information in ExternalLib_API, include the
following line in your MATLAB code:

C= ExternalLib_API.GPU_MatrixMultiply(A,B);

For instance, you can define a MATLAB function Matrix_Multiply that solely
performs this matrix multiplication.

function C = Matrix_Multiply(A, B) %#codegen
 C= ExternalLib_API.GPU_MatrixMultiply(A,B);

3 Define a MEX configuration object using coder.config. For using the CUBLAS
libraries, set the target language for code generation to C++.

cfg=coder.config('mex');
cfg.TargetLang='C++';

4 Generate code for Matrix_Multiply using cfg as the configuration object and two
2 X 2 matrices of type single as arguments. Since cublasSgemm supports matrix
multiplication for data type float, the corresponding MATLAB matrices must have
type single.

codegen -config cfg Matrix_Multiply ...
 -args {ones(2,'single'),ones(2,'single')}

5 Test the generated MEX function Matrix_Multiply_mex using two 2 X 2 identity
matrices of type single.

Matrix_Multiply_mex(eye(2,'single'),eye(2,'single'))

The output is also a 2 X 2 identity matrix.

See Also
assert | coder.BuildConfig | coder.ExternalDependency | coder.ceval |
coder.opaque | coder.rref | coder.wref

27 Generate Efficient and Reusable Code

27-48

More About
• “Develop Interface for External C/C++ Code” on page 26-14

 See Also

27-49

MATLAB Coder Optimizations in Generated Code
In this section...
“Constant Folding” on page 27-50
“Loop Fusion” on page 27-51
“Successive Matrix Operations Combined” on page 27-51
“Unreachable Code Elimination” on page 27-52
“memcpy Calls” on page 27-52
“memset Calls” on page 27-53

To improve the execution speed and memory usage of generated code, MATLAB Coder
introduces the following optimizations:

Constant Folding
When possible, the code generator evaluates expressions in your MATLAB code that
involve compile-time constants only. In the generated code, it replaces these expressions
with the result of the evaluations. This behavior is known as constant folding. Because of
constant folding, the generated code does not have to evaluate the constants during
execution.

The following example shows MATLAB code that is constant-folded during code
generation. The function MultiplyConstant multiplies every element in a matrix by a
scalar constant. The function evaluates this constant using the product of three compile-
time constants, a, b, and c.

function out=MultiplyConstant(in) %#codegen
 a=pi^4;
 b=1/factorial(4);
 c=exp(-1);
 out=in.*(a*b*c);
end

The code generator evaluates the expressions involving compile-time constants, a,b, and
c. It replaces these expressions with the result of the evaluation in generated code.

Constant folding can occur when the expressions involve scalars only. To explicitly enforce
constant folding of expressions in other cases, use the coder.const function. For more
information, see “Fold Function Calls into Constants” on page 27-14.

27 Generate Efficient and Reusable Code

27-50

Control Constant Folding

You can control the maximum number of instructions that can be constant-folded from the
command line or the project settings dialog box.

• At the command line, create a configuration object for code generation. Set the
property ConstantFoldingTimeout to the value that you want.

cfg=coder.config('lib');
cfg.ConstantFoldingTimeout = 200;

• Using the app, in the project settings dialog box, on the All Settings tab, set the field
Constant folding timeout to the value that you want.

Loop Fusion
When possible, the code generator fuses successive loops with the same number of runs
into a single loop in the generated code. This optimization reduces loop overhead.

The following code contains successive loops, which are fused during code generation.
The function SumAndProduct evaluates the sum and product of the elements in an array
Arr. The function uses two separate loops to evaluate the sum y_f_sum and product
y_f_prod.

function [y_f_sum,y_f_prod] = SumAndProduct(Arr) %#codegen
 y_f_sum = 0;
 y_f_prod = 1;
 for i = 1:length(Arr)
 y_f_sum = y_f_sum+Arr(i);
 end
 for i = 1:length(Arr)
 y_f_prod = y_f_prod*Arr(i);
 end

The code generated from this MATLAB code evaluates the sum and product in a single
loop.

Successive Matrix Operations Combined
When possible, the code generator converts successive matrix operations in your
MATLAB code into a single loop operation in generated code. This optimization reduces
excess loop overhead involved in performing the matrix operations in separate loops.

 MATLAB Coder Optimizations in Generated Code

27-51

The following example contains code where successive matrix operations take place. The
function ManipulateMatrix multiplies every element of a matrix Mat with a factor. To
every element in the result, the function then adds a shift:

function Res=ManipulateMatrix(Mat,factor,shift)
 Res=Mat*factor;
 Res=Res+shift;
end

The generated code combines the multiplication and addition into a single loop operation.

Unreachable Code Elimination
When possible, the code generator suppresses code generation from unreachable
procedures in your MATLAB code. For instance, if a branch of an if, elseif, else
statement is unreachable, then code is not generated for that branch.

The following example contains unreachable code, which is eliminated during code
generation. The function SaturateValue returns a value based on the range of its input
x.

function y_b = SaturateValue(x) %#codegen
 if x>0
 y_b = x;
 elseif x>10 %This is redundant
 y_b = 10;
 else
 y_b = -x;
 end

The second branch of the if, elseif, else statement is unreachable. If the variable x is
greater than 10, it is also greater than 0. Therefore, the first branch is executed in
preference to the second branch.

MATLAB Coder does not generate code for the unreachable second branch.

memcpy Calls
To optimize generated code that copies consecutive array elements, the code generator
tries to replace the code with a memcpy call. A memcpy call can be more efficient than
code, such as a for-loop or multiple, consecutive element assignments.

27 Generate Efficient and Reusable Code

27-52

See “memcpy Optimization” on page 27-56.

memset Calls
To optimize generated code that assigns a literal constant to consecutive array elements,
the code generator tries to replace the code with a memset call. A memset call can be
more efficient than code, such as a for-loop or multiple, consecutive element
assignments.

See “memset Optimization” on page 27-58.

 MATLAB Coder Optimizations in Generated Code

27-53

Use coder.const with Extrinsic Function Calls
You can use coder.const to fold a function call into a constant in the generated code.
The code generator evaluates the function call and replaces it with the result of the
evaluation. If you make the function call extrinsic, the function call is evaluated by
MATLAB instead of by the code generator. Use coder.const with an extrinsic function
call to:

• Reduce code generation time, especially for constant-folding of computationally
intensive expressions.

• Force constant-folding when coder.const is unable to constant-fold.

To make an individual function call extrinsic, use feval. To make all calls to a particular
function extrinsic, use coder.extrinsic.

Reduce Code Generation Time by Using coder.const with feval
Consider this function that folds a computationally intensive expression besselj(3,
zTable) into a constant:

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(besselj(3,zTable));
j = interp1(zTable,jTable,z);
end

To make code generation of fcn faster, evaluate besselj(3, zTable) in MATLAB by
using feval.

function j = fcn(z)
zTable = coder.const(0:0.01:100);
jTable = coder.const(feval('besselj',3,zTable));
j = interp1(zTable,jTable,z);
end

Force Constant-Folding by Using coder.const with coder.feval
Consider this function that folds the function call rand(1,100) into a constant.

function yi = fcn(xi)
y = coder.const(rand(1,100));

27 Generate Efficient and Reusable Code

27-54

yi = interp1(y,xi);
end

Code generation ends with an error.

codegen fcn -args {0} -config:lib -report

??? The input to coder.const cannot be reduced to a constant.

To successfully constant-fold rand(1,100), evaluate it in MATLAB by using feval.

function yi = fcn(xi)
y = coder.const(feval('rand',1,100));
yi = interp1(y,xi);
end

See Also
coder.const | coder.extrinsic

More About
• “Fold Function Calls into Constants” on page 27-14
• “Extrinsic Functions” on page 13-9

 See Also

27-55

memcpy Optimization
To optimize generated code that copies consecutive array elements, the code generator
tries to replace the code with a memcpy call. A memcpy call can be more efficient than a
for-loop or multiple, consecutive element assignments. This table shows examples of
generated C code with and without the memcpy optimization.

Code Generated with memcpy
Optimization

Code Generated Without memcpy
Optimization

 memcpy(&C[0], &A[0], 10000U * sizeof(double)); for (i0 = 0; i0 < 10000; i0++) {
 C[i0] = A[i0];

 memcpy(&Z[0], &X[0],1000U * sizeof(double)); Z[0] = X[0];
Z[1] = X[1];
Z[2] = X[2];
...
Z[999] = X[999];

To enable or disable the memcpy optimization:

• At the command line, set the code configuration object property EnableMemcpy to
true or false. The default value is true.

• In the MATLAB Coder app, set Use memcpy for vector assignment to Yes or No.
The default value is Yes.

When the memcpy optimization is enabled, the use of memcpy depends on the number of
bytes to copy. The number of bytes to copy is the number of array elements multiplied by
the number of bytes required for the C/C++ data type.

• If the number of elements to copy is known at compile time, then the code generator
produces a memcpy call only when the number of bytes is greater than or equal to the
memcpy threshold.

• If the number of elements is not known at compile time, then the code generator
produces a memcpy call without regard to the threshold.

The default memcpy threshold is 64 bytes. To change the threshold:

• At the command line, set the code configuration object property MemcpyThreshold.
• In the MATLAB Coder app, set Memcpy threshold (bytes).

The memset optimization also uses the memcpy threshold.

27 Generate Efficient and Reusable Code

27-56

In certain cases, the code generator can produce a memcpy call without regard to the
EnableMemcpy or MemcpyThreshold parameters, or their equivalent settings in the
app.

See Also

More About
• “memset Optimization” on page 27-58
• “MATLAB Coder Optimizations in Generated Code” on page 27-50
• “Optimization Strategies” on page 27-3

 See Also

27-57

memset Optimization
To optimize generated code that assigns a literal constant to consecutive array elements,
the code generator tries to replace the code with a memset call. A memset call can be
more efficient than a for-loop or multiple, consecutive element assignments. This table
shows examples of generated C code with and without memset.

Code Generated with memset
Optimization

Code Generated Without memset
Optimization

 memset(&Y[0], 125, 100U * sizeof(signed char)); for (i = 0; i < 100; i++) {
 Y[i] = 125;

memset(&Z[0], 0, 1000U * sizeof(double)); Z[0] = 0.0;
Z[1] = 0.0;
Z[2] = 0.0;
...
Z[999] = 0.0;

The code generator can use the memset optimization for assignment of an integer
constant or a floating-point zero. The use of memset depends on:

• The size of the value to assign. The size must meet the requirements for a C/C++
memset call.

• The number of bytes to assign. The number of bytes to assign is the number of array
elements multiplied by the number of bytes required for the C/C++ data type.

• If the number of elements to assign is known at compile time, then the code
generator produces a memset call only when the number of bytes is greater than or
equal to the threshold.

• If the number of elements is not known at compile time, then the code generator
produces a memset call without regard to the threshold.

The memset optimization threshold is the same as the memcpy optimization threshold.
The default threshold is 64 bytes. To change the threshold:

• At the command line, set the code configuration object property MemcpyThreshold.
• In the MATLAB Coder app, set Memcpy threshold (bytes).

For assignment of floating-point zero, to enable or disable the memset optimization:

• At the command line, set the code configuration object property
InitFltsAndDblsToZero to true or false. The default value is true.

27 Generate Efficient and Reusable Code

27-58

• In the MATLAB Coder app, set Use memset to initialize floats and doubles to 0.0
to Yes or No. The default value is Yes.

See Also

More About
• “memcpy Optimization” on page 27-56
• “MATLAB Coder Optimizations in Generated Code” on page 27-50
• “Optimization Strategies” on page 27-3

 See Also

27-59

Reuse Large Arrays and Structures
Variable reuse can reduce memory usage or improve execution speed, especially when
your code has large structures or arrays. However, variable reuse results in less readable
code. If reduced memory usage is more important than code readability, specify that you
want the code generator to reuse your variables in the generated code.

The code generator can reuse the name and memory of one variable for another variable
when:

• Both variables have the same memory requirements.
• Memory access for one variable does not interfere with memory access for the other

variable.

The code generator reuses your variable names for other variables or reuses other
variable names for your variables. For example, for code such as:

if (s>0)
 myvar1 = 0;
 ...
else
 myvar2 = 0;
 ...
end

the generated code can look like this code:

 if (s > 0.0) {
 myvar2 = 0.0;
 ...
 } else {
 myvar2 = 0.0;
 ...
 }

To specify that you want the code generator to reuse your variables:

• In a code generation configuration object, set the PreserveVariableNames
parameter to 'None'.

• In the MATLAB Coder app, set Preserve variable names to None.

27 Generate Efficient and Reusable Code

27-60

See Also

More About
• “Preserve Variable Names in Generated Code” on page 20-46
• “Optimization Strategies” on page 27-3
• “Configure Build Settings” on page 20-28

 See Also

27-61

LAPACK Calls in Generated Code
To improve the execution speed of code generated for certain linear algebra functions,
MATLAB Coder can generate calls to LAPACK functions instead of generating the code for
the linear algebra functions. LAPACK is a software library for numerical linear algebra.
MATLAB Coder uses the LAPACKE C interface to LAPACK.

For MEX generation, if the input arrays for the linear algebra functions meet certain
criteria, the code generator produces LAPACK calls. For standalone code (library or
executable program), by default, the code generator does not produce LAPACK calls. If
you specify that you want to generate LAPACK calls, and the input arrays for the linear
algebra functions meet the criteria, the code generator produces LAPACK calls. See
“Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” on
page 27-63.

For MEX functions, the code generator uses the LAPACK library that is included with
MATLAB. MATLAB uses LAPACK in some linear algebra functions such as eig and svd.
For standalone code, the code generator uses the LAPACK library that you specify. See
“Specify LAPACK Library” on page 27-63.

See Also

More About
• “Optimization Strategies” on page 27-3

External Websites
• www.netlib.org/lapack

27 Generate Efficient and Reusable Code

27-62

http://www.netlib.org/lapack
http://www.netlib.org/lapack/lapacke.html
http://www.netlib.org/lapack

Speed Up Linear Algebra in Generated Standalone Code
by Using LAPACK Calls

To improve the execution speed of code generated for certain linear algebra functions in
standalone (library or executable program) code, specify that you want MATLAB Coder to
generate LAPACK calls. LAPACK is a software library for numerical linear algebra.
MATLAB Coder uses the LAPACKE C interface to LAPACK. If you specify that you want to
generate LAPACK calls, and the input arrays for the linear algebra functions meet certain
criteria, the code generator produces the LAPACK calls. Otherwise, the code generator
produces code for the linear algebra functions.

For LAPACK calls in standalone code, MATLAB Coder uses the LAPACK library that you
specify. Specify a LAPACK library that is optimized for your execution environment. See
www.netlib.org/lapack/
faq.html#_what_and_where_are_the_lapack_vendors_implementations.

Specify LAPACK Library
To generate LAPACK calls in standalone code, you must have access to a LAPACK callback
class. A LAPACK callback class specifies the LAPACK library and LAPACKE header file for
the LAPACK calls. To indicate that you want to generate LAPACK calls and that you want
to use a specific LAPACK library, specify the name of the LAPACK callback class.

• At the command line, set the code configuration object property
CustomLAPACKCallback to the name of the callback class.

• In the MATLAB Coder app, set Custom LAPACK library callback to the name of the
callback class.

Write LAPACK Callback Class
To specify the locations of a particular LAPACK library and LAPACKE header file, write a
LAPACK callback class. Share the callback class with others who want to use this LAPACK
library for LAPACK calls in standalone code.

The callback class must derive from the abstract class coder.LAPACKCallback. Use the
following example callback class as a template.

classdef useMyLAPACK < coder.LAPACKCallback
 methods (Static)

 Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls

27-63

http://www.netlib.org/lapack
http://www.netlib.org/lapack/lapacke.html
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

 function hn = getHeaderFilename()
 hn = 'mylapacke_custom.h';
 end
 function updateBuildInfo(buildInfo, buildctx)
 buildInfo.addIncludePaths(fullfile(pwd,'include'));
 libName = 'mylapack';
 libPath = fullfile(pwd,'lib');
 [~,linkLibExt] = buildctx.getStdLibInfo();
 buildInfo.addLinkObjects([libName linkLibExt], libPath, ...
 '', true, true);
 buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
 buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');
 end
 end
end

You must provide the getHeaderFilename and updateBuildInfo methods. The
getHeaderFilename method returns the LAPACKE header file name. In the example
callback class, replace mylapacke_custom.h with the name of your LAPACKE header
file. The updateBuildInfo method provides the information required for the build
process to link to the LAPACK library. Use code like the code in the template to specify
the location of header files and the full path name of the LAPACK library. In the example
callback class, replace mylapack with the name of your LAPACK library.

If your compiler supports only complex data types that are represented as structures,
include these lines in the updateBuildInfo method.

buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');
buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');

Generate LAPACK Calls by Specifying a LAPACK Callback Class
This example shows how to generate code that calls LAPACK functions in a specific
LAPACK library. For this example, assume that the LAPACK callback class useMyLAPACK
specifies the LAPACK library that you want to use.

1 Write a MATLAB function that calls a linear algebra function. For example, write a
function mysvd that calls the MATLAB function svd.

function s = mysvd(A)
 %#codegen
 s = svd(A);
end

27 Generate Efficient and Reusable Code

27-64

2 Define a code configuration object for a static library, dynamically linked library, or
executable program. For example, define a configuration object for a dynamically
linked library on a Windows platform.

cfg = coder.config('dll');
3 Specify the LAPACK callback class useMyLAPACK.

cfg.CustomLAPACKCallback = 'useMyLAPACK';

The callback class must be on the MATLAB path.
4 Generate code. Specify that the input A is a 500-by-500 array of doubles.

codegen mysvd -args {zeros(500)} -config cfg -report

If A is large enough, the code generator produces a LAPACK call for svd. Here is an
example of a call to the LAPACK library function for svd.

info_t = LAPACKE_dgesvd(LAPACK_COL_MAJOR, 'N', 'N', (lapack_int)500,
 (lapack_int)500, &A[0], (lapack_int)500, &S[0], NULL, (lapack_int)1, NULL,
 (lapack_int)1, &superb[0]);

Locate LAPACK Library in Execution Environment
The LAPACK library must be available in your execution environment. If your LAPACK
library is shared, use environment variables or linker options to specify the location of the
LAPACK library.

• On a Windows platform, modify the PATH environment variable.
• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use the

rpath linker option.
• On a macOS platform, modify the DYLD_LIBRARY_PATH environment variable or use

the rpath linker option.

To specify the rpath linker option, you can use the build information addLinkFlags
method in the updateBuildInfo method of your coder.LAPACKCallback class. For
example, for a GCC compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

See Also
coder.LAPACKCallback

 See Also

27-65

More About
• “LAPACK Calls in Generated Code” on page 27-62
• “Optimization Strategies” on page 27-3

External Websites
• www.netlib.org/lapack
• www.netlib.org/lapack/

faq.html#_what_and_where_are_the_lapack_vendors_implementations

27 Generate Efficient and Reusable Code

27-66

http://www.netlib.org/lapack
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

BLAS Calls in Generated Code
To improve the execution speed of code generated for certain low-level vector and matrix
operations (such as matrix multiplication), MATLAB Coder can generate calls to BLAS
functions instead of generating code for these operations. BLAS is a software library for
low-level vector and matrix computations that has several highly optimized machine-
specific implementations. MATLAB Coder uses the CBLAS C interface to BLAS.

For MEX generation, if the input arrays for the matrix functions meet certain criteria, the
code generator produces BLAS calls. For standalone code (library or executable
program), by default, the code generator does not produce BLAS calls. If you specify that
you want to generate BLAS calls, and the input arrays for the matrix functions meet the
criteria, the code generator produces BLAS calls.

For MEX functions, the code generator uses the BLAS library that is included with
MATLAB. For standalone code, the code generator uses the BLAS library that you specify.
See “Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls” on
page 27-68.

See Also

More About
• “Optimization Strategies” on page 27-3

External Websites
• http://www.netlib.org/blas/

 BLAS Calls in Generated Code

27-67

http://www.netlib.org/blas/
http://www.netlib.org/blas/#_cblas
http://www.netlib.org/blas/

Speed Up Matrix Operations in Generated Standalone
Code by Using BLAS Calls

To improve the execution speed of code generated for certain low-level vector and matrix
operations (such as matrix multiplication) in standalone code, specify that you want
MATLAB Coder to generate BLAS calls. BLAS is a software library for low-level vector
and matrix computations that has several highly optimized machine-specific
implementations. The code generator uses the CBLAS C interface to BLAS. If you specify
that you want to generate BLAS calls, and the input arrays for the matrix functions meet
certain criteria, the code generator produces the BLAS calls. Otherwise, the code
generator produces code for the matrix functions.

For BLAS calls in standalone code, MATLAB Coder uses the BLAS library that you specify.
Specify a BLAS library that is optimized for your execution environment.

Specify BLAS Library
To generate BLAS calls in standalone code, you must have access to a BLAS callback
class. A BLAS callback class specifies the BLAS library, the CBLAS header file, certain C
data types that the particular CBLAS interface uses, and the compiler and linker options
for the build process. Do one of the following:

• At the command line, set the code configuration object property
CustomBLASCallback to the name of the callback class.

• In the MATLAB Coder app, set Custom BLAS library callback to the name of the
callback class.

Write BLAS Callback Class
To generate calls to a specific BLAS library in the generated code, write a BLAS callback
class. Share the callback class with others who want to use this BLAS library for BLAS
calls in standalone code.

The callback class must derive from the abstract class coder.BLASCallback. This
example is an implementation of the callback class mklcallback for integration with the
Intel MKL BLAS library on a Windows platform.

classdef mklcallback < coder.BLASCallback
 methods (Static)

27 Generate Efficient and Reusable Code

27-68

http://www.netlib.org/blas/
http://www.netlib.org/blas/#_cblas
http://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
https://software.intel.com/en-us/mkl-developer-reference-c-blas-and-sparse-blas-routines

 function updateBuildInfo(buildInfo, ~)
 libPath = fullfile(pwd,'mkl','WIN','lib','intel64');
 libPriority = '';
 libPreCompiled = true;
 libLinkOnly = true;
 libs = {'mkl_intel_ilp64.lib' 'mkl_intel_thread.lib' 'mkl_core.lib'};
 buildInfo.addLinkObjects(libs, libPath, libPriority, libPreCompiled, libLinkOnly);
 buildInfo.addLinkObjects('libiomp5md.lib',fullfile(matlabroot,'bin','win64'), ...
 libPriority, libPreCompiled, libLinkOnly);
 buildInfo.addIncludePaths(fullfile(pwd,'mkl','WIN','include'));
 buildInfo.addDefines('-DMKL_ILP64');
 end
 function headerName = getHeaderFilename()
 headerName = 'mkl_cblas.h';
 end
 function intTypeName = getBLASIntTypeName()
 intTypeName = 'MKL_INT';
 end
 end
end

You must provide the getHeaderFilename, getBLASIntTypeName, and
updateBuildInfo methods. The getHeaderFilename method returns the CBLAS
header file name. If you are using a different BLAS library, replace mkl_cblas.h with the
name of your CBLAS header file. The getBLASIntTypeName method returns the name of
the integer data type that your CBLAS interface uses. If you are using a different BLAS
library, replace MKL_INT with the name of the integer data type specific to your CBLAS
interface. The updateBuildInfo method provides the information required for the build
process to link to the BLAS library. Use code that is like the code in the example callback
class to specify the location of header file, the full path name of the BLAS library, and the
compiler and linker options. If you use the Intel MKL BLAS library, use the link line
advisor to see which libraries and compiler options are recommended for your use case.

There are three other methods that are already implemented in coder.BLASCallback.
These methods are getBLASDoubleComplexTypeName,
getBLASSingleComplexTypeName, and useEnumNameRatherThanTypedef. By
default, your callback class inherits these implementations from coder.BLASCallback.
In certain situations, you must override these methods with your own definitions when
you define your callback class.

The getBLASDoubleComplexTypeName method returns the type used for double-
precision complex variables in the generated code. If your BLAS library takes a type other

 Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls

27-69

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

than double* and void* for double-precision complex array arguments, include this
method in your callback class definition.

function doubleComplexTypeName = getBLASDoubleComplexTypeName()
doubleComplexTypeName = 'my_double_complex_type';
end

Replace my_double_complex_type with the type that your BLAS library takes for
double-precision complex array arguments.

The getBLASSingleComplexTypeName method returns the type used for single-
precision complex variables in the generated code. If your BLAS library takes a type other
than float* and void* for single-precision complex array arguments, include this
method in your callback class definition.

function singleComplexTypeName = getBLASSingleComplexTypeName()
doubleComplexTypeName = 'my_single_complex_type';
end

Replace my_single_complex_type with the type that your BLAS library takes for
single-precision complex array arguments.

The useEnumNameRatherThanTypedef method returns false by default. If types for
enumerations in your BLAS library include the enum keyword, redefine this method to
return true in your callback class definition.

function p = useEnumNameRatherThanTypedef()
p = true;
end

An excerpt from generated C source code that includes the enum keyword is:

enum CBLAS_SIDE t;
enum CBLAS_UPLO b_t;
double temp;
enum CBLAS_TRANSPOSE c_t;
enum CBLAS_DIAG d_t;

Generate BLAS Calls by Specifying a BLAS Callback Class
This example shows how to generate code that calls BLAS functions in a specific BLAS
library. The BLAS callback class useMyBLAS specifies the BLAS library that you want to
use in this example.

27 Generate Efficient and Reusable Code

27-70

1 Write a MATLAB function that calls a function for a basic matrix operation. For
example, write a function myMultiply that multiplies two matrices A and B.

function C = myMultiply(A,B) %#codegen
C = A*B;
end

2 Define a code configuration object for a static library, dynamically linked library, or
executable program. For example, define a configuration object for a dynamically
linked library on a Windows platform.

cfg = coder.config('dll');
3 Specify the BLAS callback class useMyBLAS.

cfg.CustomBLASCallback = 'useMyBLAS';

The callback class must be on the MATLAB path.
4 Generate code. Specify that the inputs A and B are 1000-by-1000 arrays of doubles.

codegen myMultiply -args {zeros(1000),zeros(1000)} -config cfg -report

If A and B are large enough, the code generator produces a BLAS call for the matrix
multiplication function.

Locate BLAS Library in Execution Environment
The BLAS library must be available in your execution environment. If your BLAS library is
shared, use environment variables or linker options to specify the location of the BLAS
library.

• On a Windows platform, modify the PATH environment variable.
• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use the

rpath linker option.
• On a macOS platform, modify the DYLD_LIBRARY_PATH environment variable or use

the rpath linker option.

To specify the rpath linker option, use the build information addLinkFlags method in
the updateBuildInfo method of your BLAS callback class. For example, for a GCC
compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

 Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls

27-71

Usage Notes and Limitations for OpenBLAS Library
If you generate code that includes calls to the OpenBLAS library functions, follow these
guidelines and restrictions:

• If you generate C++ code that includes calls to OpenBLAS library functions, compiling
it with the -pedantic option produces warnings. To disable the -pedantic compiler
option, include these lines in the updateBuildInfo method:

if ctx.getTargetLang() == 'C++'
 buildInfo.addCompileFlags('-Wno-pedantic');
end

• OpenBLAS does not support the C89/C90 standard.

See Also
coder.BLASCallback

More About
• “BLAS Calls in Generated Code” on page 27-67
• “Optimization Strategies” on page 27-3

External Websites
• http://www.netlib.org/blas/
• http://www.netlib.org/blas/

faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_s
upplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_b
las_libraries

• https://software.intel.com/en-us/mkl-developer-reference-c-blas-and-sparse-blas-
routines

• https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

27 Generate Efficient and Reusable Code

27-72

http://www.openblas.net/
http://www.netlib.org/blas/
http://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
http://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
http://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
http://www.netlib.org/blas/faq.html#_5_a_id_are_optimized_blas_libraries_available_where_can_i_find_vendor_supplied_blas_a_are_optimized_blas_libraries_available_where_can_i_find_optimized_blas_libraries
https://software.intel.com/en-us/mkl-developer-reference-c-blas-and-sparse-blas-routines
https://software.intel.com/en-us/mkl-developer-reference-c-blas-and-sparse-blas-routines
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Speed Up Fast Fourier Transforms in Generated
Standalone Code by Using FFTW Library Calls

This example shows how to produce calls to a specific installed FFTW library when you
generate standalone code (static library, dynamically linked library, or executable
program). For more information about FFTW, see www.fftw.org.

When you generate a MEX function from MATLAB code that includes fast Fourier
transform (FFT) functions, the code generator uses the library that MATLAB uses for FFT
algorithms. If you generate standalone C/C++ code, by default, the code generator
produces code for the FFT algorithms instead of producing FFT library calls. To increase
the speed of fast Fourier transforms in generated standalone code, specify that the code
generator produce calls to a specific installed FFTW library.

The code generator produces FFTW library calls when all of these conditions are true:

• Your MATLAB code calls one of these functions:fft, fft2, fftn, ifft, ifft2, or
ifftn.

• You generate standalone C/C++ code.
• You have access to an FFTW library installation, version 3.2 or later.
• You specify the FFTW library installation in an FFT library callback class that derives

from coder.fftw.StandaloneFFTW3Interface.
• You set the CustomFFTCallback configuration parameter to the name of the callback

class. In the MATLAB Coder app, use the Custom FFT library callback setting.

Install FFTW Library
If you do not have access to an installed FFTW library, version 3.2 or later, then you must
install one. For a Linux platform or a Mac platform, consider using a package manager to
install the FFTW library. For a Windows platform, in addition to .dll files, you must
have .lib import libraries, as described in the Windows installation notes on the FFTW
website.

See the installation instructions for your platform on the FFTW website.

 Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls

27-73

http://www.fftw.org
http://www.fftw.org

Write an FFT Callback Class
To specify your installation of the FFTW library, write an FFT callback class. Share the
callback class with others who want to use this FFTW library for FFTW calls in standalone
code.

The callback class must derive from the abstract class
coder.fftw.StandaloneFFTW3Interface. Use this example callback class as a
template.

% copyright 2017 The MathWorks, Inc.

classdef useMyFFTW < coder.fftw.StandaloneFFTW3Interface

 methods (Static)
 function th = getNumThreads
 coder.inline('always');
 th = int32(coder.const(1));
 end

 function updateBuildInfo(buildInfo, ctx)
 fftwLocation = '/usr/lib/fftw';
 includePath = fullfile(fftwLocation, 'include');
 buildInfo.addIncludePaths(includePath);
 libPath = fullfile(fftwLocation, 'lib');

 %Double
 libName1 = 'libfftw3-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName1 = [libName1 libExt];
 addLinkObjects(buildInfo, libName1, libPath, 1000, true, true);

 %Single
 libName2 = 'libfftw3f-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName2 = [libName2 libExt];
 addLinkObjects(buildInfo, libName2, libPath, 1000, true, true);
 end
 end
end

Implement the updateBuildInfo and getNumThreads methods. In the
updateBuildInfo method, set fftwLocation to the full path for your installation of
the library. Set includePath to the full path of the folder that contains fftw3.h. Set
libPath to the full path of the folder that contains the library files. If your FFTW
installation uses multiple threads, modify the getNumThreads method to return the
number of threads that you want to use.

Optionally, you can implement these methods:

27 Generate Efficient and Reusable Code

27-74

• getPlanMethod to specify the FFTW planning method. See
coder.fftw.StandaloneFFTW3Interface.

• lock and unlock to synchronize multithreaded access to the FFTW planning process.
See “Synchronize Multithreaded Access to FFTW Planning in Generated Standalone
Code” on page 27-77.

Generate FFTW Library Calls by Specifying an FFT Library
Callback Class
To generate FFTW library calls in standalone C code:

1 Write a MATLAB function that calls a MATLAB fast Fourier transform function. For
example, write a function myfft that calls the MATLAB function fft.

function y = myfft()
%#codegen
t = 0:1/50:10-1/50;
x = sin(2*pi*15*t) + sin(2*pi*20*t);
y = fft(x);
end

2 Define a code generation configuration object for a static library, dynamically linked
library, or executable program. For example, define a configuration object for a
dynamically linked library.

cfg = coder.config('dll');
3 Specify the FFTW callback class useMyFFTW.

cfg.CustomFFTCallback = 'useMyFFTW';

The callback class must be on the MATLAB path.
4 Generate code.

codegen myfft -config cfg -report

Locate FFTW Library in Execution Environment

The FFTW library must be available in your execution environment. If the FFTW library is
shared, use environment variables or linker options to specify the location of the library.

• On a Windows platform, modify the PATH environment variable.

 Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls

27-75

• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use the
rpath linker option.

• On a macOS platform, modify the DYLD_LIBRARY_PATH environment variable or use
the rpath linker option.

To specify the rpath linker option, you can use the build information addLinkFlags
method in the updateBuildInfo method of your
coder.fftw.StandaloneFFTW3Interface class. For example, for a GCC compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

See Also
coder.fftw.StandaloneFFTW3Interface

More About
• “Synchronize Multithreaded Access to FFTW Planning in Generated Standalone

Code” on page 27-77

External Websites
• www.fftw.org

27 Generate Efficient and Reusable Code

27-76

http://www.fftw.org/

Synchronize Multithreaded Access to FFTW Planning in
Generated Standalone Code

This example shows how to generate standalone code (static library, dynamically linked
library, or executable program) that synchronizes multithreaded access to the FFTW
planning process.

The code generator produces FFTW library calls when all of these conditions are true:

• Your MATLAB code calls one of these functions:fft, fft2, fftn, ifft, ifft2, or
ifftn.

• You generate standalone C/C++ code.
• You have access to an FFTW library installation, version 3.2 or later.
• You specify the FFTW library installation in an FFT library callback class that derives

from coder.fftw.StandaloneFFTW3Interface.
• You set the CustomFFTCallback configuration parameter to the name of the callback

class. In the MATLAB Coder app, use the Custom FFT library callback setting.

If multiple threads call the FFTW library, then the generated code must prevent
concurrent access to the FFTW planning process. To synchronize access to FFTW
planning, in your FFT library callback class, implement the lock and unlock methods.
You must also provide C code that manages a lock or mutex. Many libraries, such as
OpenMP, pthreads, and the C++ standard library (C++ 11 and later) provide locks. This
example shows how to implement the lock and unlock methods and provide supporting
C code. To manage a lock, this example uses the OpenMP library.

Prerequisites
Before you start, for the basic workflow for generating FFTW library calls in standalone
code, see “Speed Up Fast Fourier Transforms in Generated Standalone Code by Using
FFTW Library Calls” on page 27-73.

You must have:

• Access to an installed FFTW library.
• A compiler that supports the OpenMP library. To use a different library, such as

pthreads, modify the supporting C code accordingly.

 Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code

27-77

Create a MATLAB Function
Write a MATLAB function mycustomfft that calls a fast Fourier transform function inside
a parfor loop:

function y = mycustomfft()
%#codegen

t = 0:1/50:10-1/50;
x = sin(2*pi*15*t) + sin(2*pi*20*t);
y = fft(x);
parfor k = 1:100
 y = y + ifft(x+k);
end

Write Supporting C Code
Write C functions that initialize, set, and unset a lock. This example uses the OpenMP
library to manage the lock. For a different library, modify the code accordingly.

• Create a file mylock.c that contains this C code:

#include "mylock.h"
#include "omp.h"

static omp_nest_lock_t lockVar;

void mylock_initialize(void)
{
 omp_init_nest_lock(&lockVar);
}

void mylock(void)
{
 omp_set_nest_lock(&lockVar);
}

void myunlock(void)
{
 omp_unset_nest_lock(&lockVar);
}

• Create a header file mylock.h that contains:

27 Generate Efficient and Reusable Code

27-78

#ifndef MYLOCK_H
#define MYLOCK_H

 void mylock_initialize(void);
 void mylock(void);
 void myunlock(void);

#endif

Write an FFT Library Callback Class
Write an FFT callback class myfftcb that:

• Specifies the FFTW library.
• Implements lock and unlock methods that call the supporting C code to control

access to the FFTW planning.

Use this class as a template. Replace fftwLocation with the location of your FFTW
library installation.

classdef myfftcb < coder.fftw.StandaloneFFTW3Interface

 methods (Static)
 function th = getNumThreads
 coder.inline('always');
 th = int32(coder.const(1));
 end

 function lock()
 coder.cinclude('mylock.h', 'InAllSourceFiles', true);
 coder.inline('always');
 coder.ceval('mylock');
 end

 function unlock()
 coder.cinclude('mylock.h', 'InAllSourceFiles', true);
 coder.inline('always');
 coder.ceval('myunlock');
 end

 function updateBuildInfo(buildInfo, ctx)
 fftwLocation = '\usr\lib\fftw';
 includePath = fullfile(fftwLocation, 'include');

 Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code

27-79

 buildInfo.addIncludePaths(includePath);
 libPath = fullfile(fftwLocation, 'lib');

 %Double
 libName1 = 'libfftw3-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName1 = [libName1 libExt];
 addLinkObjects(buildInfo, libName1, libPath, 1000, true, true);

 %Single
 libName2 = 'libfftw3f-3';
 [~, libExt] = ctx.getStdLibInfo();
 libName2 = [libName2 libExt];
 addLinkObjects(buildInfo, libName2, libPath, 1000, true, true);

 end
 end
end

Generate a Dynamically Linked Library
1 Create a code generation configuration object for generation of a dynamically linked

library.

cfg = coder.config('dll');
2 Configure code generation to use the FFT callback class myfftcb.

cfg.CustomFFTCallback = 'myfftcb';
3 Include the supporting C code in the build.

cfg.CustomSource = 'mylock.c';
4 Generate a call to the lock initialization function in the initialization code.

cfg.CustomInitializer = 'mylock_initialize();';
5 Generate the library.

codegen -config cfg mycustomfft -report

This example uses the OpenMP library. Therefore, the EnableOpenMP configuration
parameter must be true or you must manually pass the OpenMP flags to your
compiler. By default, the EnableOpenMP parameter is true.

27 Generate Efficient and Reusable Code

27-80

Specify Configuration Parameters in the MATLAB Coder App
For the preceding example in the MATLAB Coder app, use these project settings:

• To specify the FFT library callback class, set Custom FFT library callback to
myfftcb.

• To specify the C code to include, set Additional source files to mylock.c.
• To specify generation of a call to mylock_initialize in the initialization code, set

Initialize function to mylock_initialize();.

See Also
coder.ceval | coder.fftw.StandaloneFFTW3Interface

More About
• “Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW

Library Calls” on page 27-73

External Websites
• www.fftw.org

 See Also

27-81

http://www.fftw.org

Speed Up MEX Generation by Using JIT Compilation
In this section...
“Specify Use of JIT Compilation in the MATLAB Coder App” on page 27-82
“Specify Use of JIT Compilation at the Command Line” on page 27-82
“JIT Compilation Incompatibilities” on page 27-83

To speed up generation of a MEX function, specify use of just-in-time (JIT) compilation
technology. When you iterate between modifying MATLAB code and testing the MEX
code, using this option can save time.

By default, MATLAB Coder creates a C/C++ MEX function by generating and compiling
C/C++ code. When you specify JIT compilation, MATLAB Coder creates a JIT MEX
function that contains an abstract representation of the MATLAB code. When you run the
JIT MEX function, MATLAB generates the executable code in memory.

JIT compilation is incompatible with certain code generation features or options. See “JIT
Compilation Incompatibilities” on page 27-83. If JIT compilation is enabled, the absence
of warning or error messages during code generation indicates successful JIT
compilation. In a code generation report, the Summary tab indicates that the Build Type
is JIT MEX Function.

Specify Use of JIT Compilation in the MATLAB Coder App
1 To open the Generate dialog box, click the Generate arrow .
2 Set Build type to MEX.
3 Select the Use JIT compilation check box.

Specify Use of JIT Compilation at the Command Line
Use the -jit option of the codegen command. For example, specify JIT compilation for
myfunction:

codegen -config:mex myfunction -jit -report

Alternatively, use the EnableJIT code configuration parameter.

27 Generate Efficient and Reusable Code

27-82

cfg = coder.config('mex');
cfg.EnableJIT = true;
codegen -config cfg myfunction -report

JIT Compilation Incompatibilities
The following table summarizes code generation features or options that are incompatible
with JIT compilation.

Incompatibility Message Type Generated MEX Action
Custom Code Warning C/C++ MEX To avoid the

warning, disable
JIT compilation.

Updating build information
(coder.updateBuildInfo)

Warning C/C++ MEX To avoid the
warning, disable
JIT compilation.

Use of OpenMP application
interface for parallelization of
for-loops (parfor)

Warning • JIT MEX
• No

parallelization

If you want
parallelization of
for-loops,
disable JIT
compilation.

Generation of C/C++ source
code only

Error None Specify either JIT
compilation or
generation of C/C
++ code only.

See Also
Functions
codegen | coder.updateBuildInfo | parfor

Objects
coder.MexCodeConfig

More About
• “JIT MEX Incompatibility Warning” on page 29-2

 See Also

27-83

• “JIT Compilation Does Not Support OpenMP” on page 29-3
• “Speed Up Compilation by Generating Only Code” on page 20-83
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 25-20

27 Generate Efficient and Reusable Code

27-84

Generating Reentrant C Code from
MATLAB Code

• “Generate Reentrant C Code from MATLAB Code” on page 28-2
• “Reentrant Code” on page 28-10
• “Specify Generation of Reentrant Code” on page 28-12
• “API for Generated Reusable Code” on page 28-14
• “Call Reentrant Code in a Single-Threaded Environment” on page 28-15
• “Call Reentrant Code in a Multithreaded Environment” on page 28-16
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page 28-18
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)”

on page 28-23
• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)”

on page 28-29

28

Generate Reentrant C Code from MATLAB Code
In this section...
“About This Tutorial” on page 28-2
“Copying Files Locally” on page 28-3
“About the Example” on page 28-4
“Providing a C main Function” on page 28-5
“Configuring Build Parameters” on page 28-7
“Generating the C Code” on page 28-7
“Viewing the Generated C Code” on page 28-8
“Running the Code” on page 28-8
“Key Points to Remember” on page 28-9
“Learn More” on page 28-9

About This Tutorial
Learning Objectives

This tutorial shows you how to:

• Generate reentrant code from MATLAB code that does not use persistent or global
data.

• Automatically generate C code from your MATLAB code.
• Define function input properties at the command line.
• Specify code generation properties.
• Generate a code generation report that you can use to view and debug your MATLAB

code.

Note This example runs on Windows only.

Prerequisites

To complete this example, install the following products:

28 Generating Reentrant C Code from MATLAB Code

28-2

• MATLAB
• MATLAB Coder
• C compiler

MATLAB Coder locates and uses a supported installed compiler. For the current list of
supported compilers, see https://www.mathworks.com/support/compilers/
current_release/ on the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Required Files

Type Name Description
Function code matrix_exp.m MATLAB function that

computes matrix
exponential of the input
matrix using Taylor series
and returns the computed
output.

C main function main.c Calls the reentrant code.

Copying Files Locally
Copy the tutorial files to a local working folder.

1 Create a local working folder, for example, c:\coder\work.
2 Change to the matlabroot\help\toolbox\coder\examples folder. At the

MATLAB command prompt, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))
3 Copy the reentrant_win folder to your local working folder.

Your work folder now contains the files for the tutorial.
4 Set your MATLAB current folder to the work folder that contains your files for this

tutorial. At the MATLAB command prompt, enter:

cd work

 Generate Reentrant C Code from MATLAB Code

28-3

work is the full path of the work folder containing your files.

About the Example
This example requires libraries that are specific to the Microsoft Windows operating
system and, therefore, runs only on Windows platforms. It is a simple, multithreaded
example that does not use persistent or global data. Two threads call the MATLAB
function matrix_exp with different sets of input data.

Contents of matrix_exp.m
function Y = matrix_exp(X) %#codegen
 %
 % The function matrix_exp computes matrix exponential of
 % the input matrix using Taylor series and returns the
 % computed output.
 E = zeros(size(X));
 F = eye(size(X));
 k = 1;
 while norm(E+F-E,1) > 0
 E = E + F;
 F = X*F/k;
 k = k+1;
 end
 Y = E;

When you generate reusable, reentrant code, MATLAB Coder supports dynamic allocation
of:

• Function variables that are too large for the stack
• Persistent variables
• Global variables

MATLAB Coder generates a header file, primary_function_name_types.h, that you
must include when using the generated code. This header file contains the following
structures:

• primary_function_nameStackData

Contains the user allocated memory. Pass a pointer to this structure as the first
parameter to functions that use it:

• Directly (the function uses a field in the structure)
• Indirectly (the function passes the structure to a called function)

28 Generating Reentrant C Code from MATLAB Code

28-4

If the algorithm uses persistent or global data, the
primary_function_nameStackData structure also contains a pointer to the
primary_function_namePersistentData structure. If you include this pointer,
you have to pass only one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, MATLAB Coder provides a
separate structure for them. The memory allocation structure contains a pointer to
this persistent data structure. Because you have a separate structure for persistent
and global variables, you can allocate memory for these variables once and share them
with all threads. However, if the threads do not communicate, you can allocate
memory for these variables per thread.

Providing a C main Function
To call the reentrant code, provide a main function that:

• Includes the generated header file matrix_exp.h. This file includes the generated
header file, matrix_exp_types.h.

• For each thread, allocates memory for stack data.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 24-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees up the for stack data memory.

 Generate Reentrant C Code from MATLAB Code

28-5

Contents of main.c

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 matrix_expStackData* spillData;
} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */
DWORD WINAPI thread_function(PVOID dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize();
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);
 matrix_exp_terminate();
 return 0;
}

void main() {
 HANDLE thread1, thread2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 /*Initializing the 2 threads and passing data to the thread functions*/
 printf("Starting thread 1...\n");
 thread1 = CreateThread(NULL , 0, thread_function, (PVOID) &data1, 0, NULL);
 if (thread1 == NULL){
 perror("Thread 1 creation failed.");
 exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);
 if (thread2 == NULL){
 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

28 Generating Reentrant C Code from MATLAB Code

28-6

 /*Wait for both the threads to finish execution*/
 if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 1 join failed.");
 exit(EXIT_FAILURE);
 }

 if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 2 join failed.");
 exit(EXIT_FAILURE);
 }

 free(sd1);
 free(sd2);

 printf("Finished Execution!\n");
 exit(EXIT_SUCCESS);
 }

Configuring Build Parameters
You can enable generation of reentrant code using a code generation configuration object.

1 Create a configuration object.

cfg = coder.config('exe');

2 Enable reentrant code generation.

cfg.MultiInstanceCode = true;

Generating the C Code
Call the codegen function to generate C code, with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify the class, size, and complexity of input arguments using example

data.

codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

codegen generates a C executable, matrix_exp.exe, in the current folder and C code
in the /codegen/exe/matrix_exp subfolder. Because you selected report generation,
codegen provides a link to the report.

 Generate Reentrant C Code from MATLAB Code

28-7

Viewing the Generated C Code
codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local variables that are
too large to fit on the stack.

To view this header file:

1 Click the View report link to open the code generation report.
2 In the list of generated files, click matrix_exp_types.h.

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Running the Code
Verify that the example is running on Windows platforms and call the code.

28 Generating Reentrant C Code from MATLAB Code

28-8

% This example can only be run on Windows platforms
if ~ispc
 error('This example requires Windows-specific libraries and can only be run on Windows.');
end
system('matrix_exp.exe')

The executable runs and reports completion.

Key Points to Remember
• Create a main function that:

• Includes the generated header file, primary_function_name_types.h. This file
defines the primary_function_nameStackData global structure. This structure
contains local variables that are too large to fit on the stack.

• For each thread, allocates memory for stack data.
• Calls primary_function_name_initialize.
• Calls primary_function_name.
• Calls primary_function_name_terminate.
• Frees the stack data memory.

• Use the -config option to pass the code generation configuration object to the
codegen function.

• Use the -args option to specify input parameters at the command line.
• Use the -report option to create a code generation report.

Learn More
To See
Learn more about the generated code API “API for Generated Reusable Code” on page 28-

14
Call reentrant code without persistent or global
data on UNIX

“Call Reentrant Code with No Persistent or
Global Data (UNIX Only)” on page 28-18

Call reentrant code with persistent data on
Windows

“Call Reentrant Code — Multithreaded with
Persistent Data (Windows Only)” on page 28-23

Call reentrant code with persistent data on UNIX “Call Reentrant Code — Multithreaded with
Persistent Data (UNIX Only)” on page 28-29

 Generate Reentrant C Code from MATLAB Code

28-9

Reentrant Code
Reentrant code is a reusable programming routine that multiple programs can use
simultaneously. Operating systems and other system software that use multithreading to
handle concurrent events use reentrant code. In a concurrent environment, multiple
threads or processes can attempt to read and write static data simultaneously. Therefore,
sharing code that uses persistent or static data is difficult. Reentrant code does not
contain static data. Calling programs maintain their state variables and pass them into
the function. Therefore, any number of threads or processes can share one copy of a
reentrant routine.

Generate reentrant code when you want to:

• Deploy your code in multithreaded environments.
• Use an algorithm with persistent data belonging to different processes or threads.
• Compile code that uses function variables that are too large to fit on the stack.

If you do not specify reentrant code, MATLAB Coder generates code that uses statically
allocated memory for:

• Function variables that are too large to fit on the stack
• Global variables
• Persistent variables

If the generated code uses static memory allocation for these variables, you cannot deploy
the generated code in environments that require reentrant code. If you cannot adjust the
static memory allocation size, the generated code can result in static memory size
overflow.

When you generate reentrant code, MATLAB Coder creates input data structures for:

• Function variables that are too large to fit on the stack
• Persistent variables
• Global variables

You can then dynamically allocate memory for these input structures. The use of dynamic
memory allocation means that you can deploy the code in reentrant environments.

28 Generating Reentrant C Code from MATLAB Code

28-10

See Also

Related Examples
• “Specify Generation of Reentrant Code” on page 28-12
• “Generate Reentrant C Code from MATLAB Code” on page 28-2
• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page 28-

18
• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on

page 28-23
• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page

28-29

 See Also

28-11

Specify Generation of Reentrant Code
In this section...
“Specify Generation of Reentrant Code Using the MATLAB Coder App” on page 28-12
“Specify Generation of Reentrant Code Using the Command-Line Interface” on page 28-
12

Specify Generation of Reentrant Code Using the MATLAB
Coder App
1 On the Generate Code page, click the Generate arrow .
2 Set Build type to one of the following:

• Source Code
• Static Library (.lib)
• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the Memory tab, select the Generate re-entrant code check box.

Specify Generation of Reentrant Code Using the Command-
Line Interface
1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib'); % or dll or exe
2 Set the MultiInstanceCode property to true. For example:

cfg.MultiInstanceCode = true;

See Also

Related Examples
• “Generate Reentrant C Code from MATLAB Code” on page 28-2

28 Generating Reentrant C Code from MATLAB Code

28-12

• “Call Reentrant Code with No Persistent or Global Data (UNIX Only)” on page 28-
18

• “Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)” on
page 28-23

• “Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)” on page
28-29

More About
• “Reentrant Code” on page 28-10

 See Also

28-13

API for Generated Reusable Code
When you generate reusable code, MATLAB Coder supports dynamic allocation of:

• Function variables that are too large for the stack
• Persistent variables
• Global variables

It generates a header file, primary_function_name_types.h, that you must include
when using the generated code. This header file contains the following structures:

• primary_function_nameStackData

This structure contains the user-allocated memory. You must pass a pointer to this
structure as the first parameter to all functions that use it:

• Directly, because the function uses a field in the structure.
• Indirectly, because the function passes the structure to a called function.

If the algorithm uses persistent or global data, the
primary_function_nameStackData structure also contains a pointer to the
primary_function_namePersistentData structure. If you include this pointer,
you only have to pass one parameter to each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, MATLAB Coder provides a
separate structure for them. The memory allocation structure contains a pointer to
this structure. Because you have a separate structure for persistent and global
variables, you can allocate memory for these variables once and share them with all
threads. However, if there is no communication between threads, you can allocate
memory for these variables per thread.

For more information on using these global structures, see “Multithreaded Examples” on
page 28-16.

28 Generating Reentrant C Code from MATLAB Code

28-14

Call Reentrant Code in a Single-Threaded Environment
To call reentrant code in a single-threaded environment, create a main function that:

• Includes the header file primary_function_name.h.
• Allocates memory for the global memory allocation structure

primary_function_nameStackData.
• If the algorithm uses persistent or global data, allocates memory for the global

structure primary_function_namePersistentData.
• Calls these functions:

• primary_function_name_initialize.
• primary_function_name.
• primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder generates two housekeeping functions. Call these
housekeeping functions in the code that calls the generated C/C++ function. For more
information, see “Calling Initialize and Terminate Functions” on page 24-9.

• Frees the memory used for global structures.

 Call Reentrant Code in a Single-Threaded Environment

28-15

Call Reentrant Code in a Multithreaded Environment
To call reentrant code, create a main function that:

• Includes the header file primary_function_name.h.
• For each thread, allocates memory for the global memory allocation structure

primary_function_nameStackData.
• If the algorithm uses persistent or global data, allocates memory for the global

structure primary_function_namePersistentData. If the threads communicate,
allocate this memory once for the root process. Otherwise, you can allocate memory
per thread.

• Contains a thread function that calls these functions:

• primary_function_name_initialize.
• primary_function_name.
• primary_function_name_terminate.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder generates two housekeeping functions. Call these
functions in the code that calls the generated C/C++ function. For more information,
see “Calling Initialize and Terminate Functions” on page 24-9.

• Initializes each thread and passes in a pointer to the memory allocation structure as
the first parameter to the thread function.

• Frees up the memory used for global structures.

Multithreaded Examples
Type of Reentrant Code Platform Reference
Multithreaded without
persistent or global data

Windows “Generate Reentrant C Code from MATLAB Code” on
page 28-2

UNIX “Call Reentrant Code with No Persistent or Global Data
(UNIX Only)” on page 28-18

Multithreaded with
persistent or global data

Windows “Call Reentrant Code — Multithreaded with Persistent
Data (Windows Only)” on page 28-23

28 Generating Reentrant C Code from MATLAB Code

28-16

Type of Reentrant Code Platform Reference
UNIX “Call Reentrant Code — Multithreaded with Persistent

Data (UNIX Only)” on page 28-29

 Call Reentrant Code in a Multithreaded Environment

28-17

Call Reentrant Code with No Persistent or Global Data
(UNIX Only)

In this section...
“Provide a Main Function” on page 28-18
“Generate Reentrant C Code” on page 28-20
“Examine the Generated Code” on page 28-21
“Run the Code” on page 28-22

This example requires POSIX thread (pthread) libraries and, therefore, runs only on UNIX
platforms. It is a simple multithreaded example that uses no persistent or global data.
Two threads call the MATLAB function matrix_exp with different sets of input data.

Provide a Main Function
To call the reentrant code, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 24-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees the memory used for stack data.

For this example, main.c contains:

28 Generating Reentrant C Code from MATLAB Code

28-18

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 matrix_expStackData* spillData;
} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */
void *thread_function(void *dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize();
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);
 matrix_exp_terminate();
}

int main() {
 pthread_t thread1, thread2;
 int iret1, iret2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expStackData* sd1=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2=(matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 /*Initializing the 2 threads and passing required data to the thread functions*/
 printf("Starting thread 1...\n");
 iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);
 if (iret1 != 0){
 perror("Thread 1 creation failed.");
 exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);
 if (iret2 != 0){

 Call Reentrant Code with No Persistent or Global Data (UNIX Only)

28-19

 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

 /*Wait for both the threads to finish execution*/
 iret1 = pthread_join(thread1, NULL);
 if (iret1 != 0){
 perror("Thread 1 join failed.");
 exit(EXIT_FAILURE);
 }

 iret2 = pthread_join(thread2, NULL);
 if (iret2 != 0){
 perror("Thread 2 join failed.");
 exit(EXIT_FAILURE);
 }

 free(sd1);
 free(sd2);

 printf("Finished Execution!\n");
 exit(EXIT_SUCCESS);

}

Generate Reentrant C Code
To generate code, run the following script at the MATLAB command prompt.

% This example can only be run on Unix platforms
if ~isunix
 error('This example requires pthread libraries and can only be run on Unix.');
end

% Setting the options for the Config object

% Create a code gen configuration object
cfg = coder.config('exe');

% Enable reentrant code generation
cfg.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling
codegen -config cfg main.c matrix_exp.m -report -args ones(160,160)

This script:

• Generates an error message if the example is not running on a UNIX platform.

28 Generating Reentrant C Code from MATLAB Code

28-20

• Creates a code configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Uses the PostCodeGenCommand option to set the post code generation command to

be the setbuildargs function. This function sets the -lpthread flag to specify that
the build include the pthread library.
function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library
% be included in the build
 linkFlags = {'-lpthread'};
 addLinkFlags(buildInfo, linkFlags);

For more information, see “Build Process Customization” on page 20-139.
• Invokes codegen with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local variables that are
too large to fit on the stack.

 Call Reentrant Code with No Persistent or Global Data (UNIX Only)

28-21

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Call the code using the command:
system('./matrix_exp')

The executable runs and reports completion.

28 Generating Reentrant C Code from MATLAB Code

28-22

Call Reentrant Code — Multithreaded with Persistent
Data (Windows Only)

In this section...
“MATLAB Code for This Example” on page 28-23
“Provide a Main Function” on page 28-24
“Generate Reentrant C Code” on page 28-26
“Examine the Generated Code” on page 28-27
“Run the Code” on page 28-28

This example requires libraries that are specific to the Microsoft Windows operating
system and, therefore, runs only on Windows platforms. It is a multithreaded example
that uses persistent data. Two threads call the MATLAB function matrix_exp with
different sets of input data.

MATLAB Code for This Example
function [Y,numTimes] = matrix_exp(X) %#codegen
 %
 % The function matrix_exp computes matrix exponential
 % of the input matrix using Taylor series and returns
 % the computed output. It also returns the number of
 % times this function has been called.
 %
 persistent count;
 if isempty(count)
 count = 0;
 end
 count = count+1;

 E = zeros(size(X));
 F = eye(size(X));
 k = 1;
 while norm(E+F-E,1) > 0
 E = E + F;
 F = X*F/k;
 k = k+1;
 end
 Y = E ;

 numTimes = count;

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

28-23

Provide a Main Function
To call reentrant code that uses persistent data, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Allocates memory for persistent data, once per root process if threads share data, and

once per thread otherwise.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 24-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees the memory used for stack and persistent data.

For this example, main.c contains:

28 Generating Reentrant C Code from MATLAB Code

28-24

#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 real_T numTimes;
 matrix_expStackData* spillData;
} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/
DWORD WINAPI thread_function(PVOID dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize(myIOData->spillData);
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData->numTimes);
 printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);
 matrix_exp_terminate();
 return 0;
}

void main() {
 HANDLE thread1, thread2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expPersistentData* pd1 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expPersistentData* pd2 = (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 sd1->pd = pd1;
 sd2->pd = pd2;
 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 data1.numTimes = 0;
 data2.numTimes = 0;

 /*Initializing the 2 threads and passing required data to the thread functions*/
 printf("Starting thread 1...\n");

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

28-25

 thread1 = CreateThread(NULL, 0, thread_function, (PVOID) &data1, 0, NULL);
 if (thread1 == NULL){
 perror("Thread 1 creation failed.");
 exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);
 if (thread2 == NULL){
 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

 /*Wait for both the threads to finish execution*/
 if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 1 join failed.");
 exit(EXIT_FAILURE);
 }

 if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){
 perror("Thread 2 join failed.");
 exit(EXIT_FAILURE);
 }

 free(sd1);
 free(sd2);
 free(pd1);
 free(pd2);

 printf("Finished Execution!\n");
 exit(EXIT_SUCCESS);

}

Generate Reentrant C Code
Run the following script at the MATLAB command prompt to generate code.

28 Generating Reentrant C Code from MATLAB Code

28-26

% This example can only be run on Windows platforms
if ~ispc
 error...
 ('This example requires Windows-specific libraries and can only be run on Windows.');
end

% Setting the options for the Config object
% Create a code gen configuration object
cfg = coder.config('exe');

% Enable reentrant code generation
cfg.MultiInstanceCode = true;

% Compiling
codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

This script:

• Generates an error message if the example is not running on a Windows platform.
• Creates a code generation configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Invokes codegen with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, that defines:

• The matrix_expStackData global structure that contains local variables that are too
large to fit on the stack and a pointer to the matrix_expPersistentData global
structure.

• The matrix_expPersistentData global structure that contains persistent data.

 Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)

28-27

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expPersistentData
#define typedef_matrix_expPersistentData

typedef struct {
 double count;
} matrix_expPersistentData;

#endif /*typedef_matrix_expPersistentData*/

#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;

 matrix_expPersistentData *pd;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Call the code using the command:
system('matrix_exp.exe')

The executable runs and reports completion.

28 Generating Reentrant C Code from MATLAB Code

28-28

Call Reentrant Code — Multithreaded with Persistent
Data (UNIX Only)

In this section...
“MATLAB Code for This Example” on page 28-29
“Provide a Main Function” on page 28-30
“Generate Reentrant C Code” on page 28-32
“Examine the Generated Code” on page 28-33
“Run the Code” on page 28-34

This example requires POSIX thread (pthread) libraries and, therefore, runs only on UNIX
platforms. It is a multithreaded example that uses persistent data. Two threads call the
MATLAB function matrix_exp with different sets of input data.

MATLAB Code for This Example
function [Y,numTimes] = matrix_exp(X) %#codegen
 %
 % The function matrix_exp computes matrix exponential
 % of the input matrix using Taylor series and returns
 % the computed output. It also returns the number of
 % times this function has been called.
 %

 persistent count;
 if isempty(count)
 count = 0;
 end
 count = count+1;

 E = zeros(size(X));
 F = eye(size(X));
 k = 1;
 while norm(E+F-E,1) > 0
 E = E + F;
 F = X*F/k;
 k = k+1;
 end
 Y = E ;

 numTimes = count;

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

28-29

Provide a Main Function
To call reentrant code that uses persistent data, provide a main function that:

• Includes the header file matrix_exp.h.
• For each thread, allocates memory for stack data.
• Allocates memory for persistent data, once per root process if threads share data, and

once per thread otherwise.
• Calls the matrix_exp_initialize housekeeping function. For more information,

see “Calling Initialize and Terminate Functions” on page 24-9.
• Calls matrix_exp.
• Calls matrix_exp_terminate.
• Frees the memory used for stack and persistent data.

For this example, main.c contains:

28 Generating Reentrant C Code from MATLAB Code

28-30

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include "matrix_exp.h"
#include "matrix_exp_initialize.h"
#include "matrix_exp_terminate.h"
#include "rtwtypes.h"
#define NUMELEMENTS (160*160)

typedef struct {
 real_T in[NUMELEMENTS];
 real_T out[NUMELEMENTS];
 real_T numTimes;
 matrix_expStackData* spillData;
} IODATA;

/*The thread_function calls the matrix_exp function written in MATLAB*/
void *thread_function(void *dummyPtr) {
 IODATA *myIOData = (IODATA*)dummyPtr;
 matrix_exp_initialize(myIOData->spillData);
 matrix_exp(myIOData->spillData, myIOData->in, myIOData->out, &myIOData>numTimes);
 printf("Number of times function matrix_exp is called is %g\n",myIOData->numTimes);
 matrix_exp_terminate();
}

int main() {
 pthread_t thread1, thread2;
 int iret1, iret2;
 IODATA data1;
 IODATA data2;
 int32_T i;

 /*Initializing data for passing to the 2 threads*/
 matrix_expPersistentData* pd1 =
 (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expPersistentData* pd2 =
 (matrix_expPersistentData*)calloc(1,sizeof(matrix_expPersistentData));
 matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));
 matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

 sd1->pd = pd1;
 sd2->pd = pd2;
 data1.spillData = sd1;
 data2.spillData = sd2;

 for (i=0;i<NUMELEMENTS;i++) {
 data1.in[i] = 1;
 data1.out[i] = 0;
 data2.in[i] = 1.1;
 data2.out[i] = 0;
 }

 data1.numTimes = 0;
 data2.numTimes = 0;

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

28-31

 /*Initializing the 2 threads and passing required data to the thread functions*/
 printf("Starting thread 1...\n");
 iret1 = pthread_create(&thread1, NULL, thread_function, (void*) &data1);
 if (iret1 != 0){
 perror("Thread 1 creation failed.");
exit(EXIT_FAILURE);
 }

 printf("Starting thread 2...\n");
 iret2 = pthread_create(&thread2, NULL, thread_function, (void*) &data2);
 if (iret2 != 0){
 perror("Thread 2 creation failed.");
 exit(EXIT_FAILURE);
 }

 /*Wait for both the threads to finish execution*/
 iret1 = pthread_join(thread1, NULL);
 if (iret1 != 0){
 perror("Thread 1 join failed.");
exit(EXIT_FAILURE);
 }

 iret2 = pthread_join(thread2, NULL);
 if (iret2 != 0){
 perror("Thread 2 join failed.");
exit(EXIT_FAILURE);
 }

 free(sd1);
 free(sd2);
 free(pd1);
 free(pd2);

 printf("Finished Execution!\n");
 return(0);

}

Generate Reentrant C Code
To generate code, run the following script at the MATLAB command prompt.

28 Generating Reentrant C Code from MATLAB Code

28-32

% This example can only be run on Unix platforms
if ~isunix
 error('This example requires pthread libraries and can only be run on Unix.');
end

% Setting the options for the Config object

% Specify an ERT target
cfg = coder.config('exe');

% Enable reentrant code generation
cfg.MultiInstanceCode = true;

% Set the post code generation command to be the 'setbuildargs' function
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

% Compiling
codegen -config cfg main.c -report matrix_exp.m -args ones(160,160)

This script:

• Generates an error message if the example is not running on a UNIX platform.
• Creates a code generation configuration object for generation of an executable.
• Enables the MultiInstanceCode option to generate reusable, reentrant code.
• Uses the PostCodeGenCommand option to set the post-code-generation command to

be the setbuildargs function. This function sets the -lpthread flag to specify that
the build include the pthread library.
function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library
% be included in the build
 linkFlags = {'-lpthread'};
 addLinkFlags(buildInfo, linkFlags);

For more information, see “Build Process Customization” on page 20-139.
• Invokes codegen with the following options:

• -config to pass in the code generation configuration object cfg.
• main.c to include this file in the compilation.
• -report to create a code generation report.
• -args to specify an example input with class, size, and complexity.

Examine the Generated Code
codegen generates a header file matrix_exp_types.h, which defines:

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

28-33

• The matrix_expStackData global structure that contains local variables that are too
large to fit on the stack and a pointer to the matrix_expPersistentData global
structure.

• The matrix_expPersistentData global structure that contains persistent data.

/*
 * matrix_exp_types.h
 *
 * Code generation for function 'matrix_exp'
 *
 */

#ifndef __MATRIX_EXP_TYPES_H__
#define __MATRIX_EXP_TYPES_H__

/* Include files */
#include "rtwtypes.h"

/* Type Definitions */
#ifndef typedef_matrix_expPersistentData
#define typedef_matrix_expPersistentData

typedef struct {
 double count;
} matrix_expPersistentData;

#endif /*typedef_matrix_expPersistentData*/

#ifndef typedef_matrix_expStackData
#define typedef_matrix_expStackData

typedef struct {
 struct {
 double F[25600];
 double Y[25600];
 double X[25600];
 } f0;

 matrix_expPersistentData *pd;
} matrix_expStackData;

#endif /*typedef_matrix_expStackData*/
#endif

/* End of code generation (matrix_exp_types.h) */

Run the Code
Call the code using the command:

28 Generating Reentrant C Code from MATLAB Code

28-34

system('./matrix_exp')

 Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)

28-35

Troubleshooting Code Generation
Problems

• “JIT MEX Incompatibility Warning” on page 29-2
• “JIT Compilation Does Not Support OpenMP” on page 29-3
• “Output Variable Must Be Assigned Before Run-Time Recursive Call” on page 29-4
• “Compile-Time Recursion Limit Reached” on page 29-7
• “Unable to Determine That Every Element of Cell Array Is Assigned” on page 29-12
• “Nonconstant Index into varargin or varargout in a for-Loop” on page 29-16
• “Unknown Output Type for coder.ceval” on page 29-19

29

JIT MEX Incompatibility Warning

Issue
When you generate a MEX function, you see a warning message that starts with:

JIT compilation is incompatible with

MATLAB Coder generates a C/C++ MEX function instead of a JIT MEX function.

Cause
JIT compilation is incompatible with certain code generation features and options. If you
include custom code or update the build information, you cannot generate a JIT MEX
function. In these cases, MATLAB Coder generates a C/C++ MEX function instead of a JIT
MEX function.

Solution
To eliminate the warning, disable JIT compilation.

See Also

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 27-82

29 Troubleshooting Code Generation Problems

29-2

JIT Compilation Does Not Support OpenMP

Issue
When you generate a MEX function for code that contains parfor, you see this warning
message:

JIT technology does not support using OpenMP library,
this loop will not be parallelized.

MATLAB Coder generates a JIT MEX function and treats the parfor-loop as a for-loop.

Cause
JIT compilation and use of the OpenMP application interface are enabled. JIT compilation
is incompatible with the OpenMP application interface.

Solution
If you want to parallelize for-loops, disable JIT compilation.

See Also
parfor

More About
• “Speed Up MEX Generation by Using JIT Compilation” on page 27-82
• “Algorithm Acceleration Using Parallel for-Loops (parfor)” on page 25-20

 JIT Compilation Does Not Support OpenMP

29-3

Output Variable Must Be Assigned Before Run-Time
Recursive Call

Issue
You see this error message:

All outputs must be assigned before any run-time
recursive call. Output 'y' is not assigned here.

Cause
Run-time recursion produces a recursive function in the generated code. The code
generator is unable to use run-time recursion for a recursive function in your MATLAB
code because an output is not assigned before the first recursive call.

Solution
Rewrite the code so that it assigns the output before the recursive call.

Direct Recursion Example

In the following code, the statement y = A(1) assigns a value to the output y. This
statement occurs after the recursive call y = A(1)+ mysum(A(2:end)).

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) > 1
 y = A(1)+ mysum(A(2:end));

else
 y = A(1);
end
end

29 Troubleshooting Code Generation Problems

29-4

Rewrite the code so that assignment y = A(1) occurs in the if block and the recursive
call occurs in the else block.

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');

if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

Alternatively, before the if block, add an assignment, for example, y = 0.

function z = call_mysum(A)
B = A;
coder.varsize('B');
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
y = 0;
if size(A,2) > 1
 y = A(1)+ mysum(A(2:end));

else
 y = A(1);
end
end

Indirect Recursion Example

In the following code, rec1 calls rec2 before the assignment y = 0.

function y = rec1(x)
%#codegen

 Output Variable Must Be Assigned Before Run-Time Recursive Call

29-5

if x >= 0
 y = rec2(x-1)+1;
else
 y = 0;
end
end

function y = rec2(x)
y = rec1(x-1)+2;
end

Rewrite this code so that in rec1, the assignment y = 0 occurs in the if block and the
recursive call occurs in the else block.

function y = rec1(x)
%#codegen

if x < 0
 y = 0;
else
 y = rec2(x-1)+1;
end
end

function y = rec2(x)
y = rec1(x-1)+2;
end

See Also

More About
• “Code Generation for Recursive Functions” on page 13-19

29 Troubleshooting Code Generation Problems

29-6

Compile-Time Recursion Limit Reached
Issue
You see a message such as:

Compile-time recursion limit reached. Size or type of
input #1 of function 'foo' may change at every call.

Compile-time recursion limit reached. Size of input #1
of function 'foo' may change at every call.

Compile-time recursion limit reached. Value of input #1
of function 'foo' may change at every call.

Cause
With compile-time recursion, the code generator produces multiple versions of the
recursive function instead of producing a recursive function in the generated code. These
versions are known as function specializations. The code generator is unable to use
compile-time recursion for a recursive function in your MATLAB code because the
number of function specializations exceeds the limit.

Solutions
To address the issue, try one of these solutions:

• “Force Run-Time Recursion” on page 29-7
• “Increase the Compile-Time Recursion Limit” on page 29-10

Force Run-Time Recursion
• For this message:

Compile-time recursion limit reached. Value of input #1
of function 'foo' may change at every call.

Use this solution:

“Force Run-Time Recursion by Treating the Input Value as Nonconstant” on page 29-
8.

 Compile-Time Recursion Limit Reached

29-7

• For this message:

Compile-time recursion limit reached. Size of input #1
of function 'foo' may change at every call.

Use this solution:

“Force Run-Time Recursion by Making the Input Variable-Size” on page 29-9.
• For this message:

Compile-time recursion limit reached. Size or type of
input #1 of function 'foo' may change at every call.

In the code generation report, look at the function specializations. If you can see that
the size of an argument is changing for each function specialization, then try this
solution:

“Force Run-Time Recursion by Making the Input Variable-Size” on page 29-9.

Force Run-Time Recursion by Treating the Input Value as Nonconstant

Consider this function:

function y = call_recfcn(n)
A = ones(1,n);
x = 100;
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

The second input to recfcn has the constant value 100. The code generator determines
that the number of recursive calls is finite and tries to produce 100 copies of recfcn.
This number of specializations exceeds the compile-time recursion limit. To force run-time
recursion, instruct the code generator to treat the second input as a nonconstant value by
using coder.ignoreConst.

29 Troubleshooting Code Generation Problems

29-8

function y = call_recfcn(n)
A = ones(1,n);
x = coder.ignoreConst(100);
y = recfcn(A,x);
end

function y = recfcn(A,x)
if size(A,2) == 1 || x == 1
 y = A(1);
else
 y = A(1)+recfcn(A(2:end),x-1);
end
end

If the code generator cannot determine that the number of recursive calls is finite, it
produces a run-time recursive function.

Force Run-Time Recursion by Making the Input Variable-Size

Consider this function:

function z = call_mysum(A)
%#codegen
z = mysum(A);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

If the input to mysum is fixed-size, the code generator uses compile-time recursion. If A is
large enough, the number of function specializations exceeds the compile-time limit. To
cause the code generator to use run-time conversion, make the input to mysum variable-
size by using coder.varsize.

function z = call_mysum(A)
%#codegen
B = A;
coder.varsize('B');

 Compile-Time Recursion Limit Reached

29-9

z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

Increase the Compile-Time Recursion Limit
The default compile-time recursion limit of 50 is large enough for most recursive
functions that require compile-time recursion. Usually, increasing the limit does not fix
the issue. However, if you can determine the number of recursive calls and you want
compile-time recursion, increase the limit. For example, consider this function:

function z = call_mysum()
%#codegen
B = 1:125;
z = mysum(B);
end

function y = mysum(A)
coder.inline('never');
if size(A,2) == 1
 y = A(1);
else
 y = A(1)+ mysum(A(2:end));
end
end

You can determine that the code generator produces 125 copies of the mysum function. In
this case, if you want compile-time recursion, increase the compile-time recursion limit to
125.

To increase the compile-time recursion limit:

• At the command line, in a code generation configuration object, increase the value of
the CompileTimeRecursionLimit configuration parameter.

29 Troubleshooting Code Generation Problems

29-10

• In the MATLAB Coder app, increase the value of the Compile-time recursion limit
setting.

See Also

More About
• “Code Generation for Recursive Functions” on page 13-19
• “Configure Build Settings” on page 20-28

 See Also

29-11

Unable to Determine That Every Element of Cell Array Is
Assigned

Issue
You see one of these messages:

Unable to determine that every element of 'y' is
assigned before this line.

Unable to determine that every element of 'y' is
assigned before exiting the function.

Unable to determine that every element of 'y' is
assigned before exiting the recursively called function.

Cause
For code generation, before you use a cell array element, you must assign a value to it.
When you use cell to create a variable-size cell array, for example, cell(1,n), MATLAB
assigns an empty matrix to each element. However, for code generation, the elements are
unassigned. For code generation, after you use cell to create a variable-size cell array,
you must assign all elements of the cell array before any use of the cell array.

The code generator analyzes your code to determine whether all elements are assigned
before the first use of the cell array. The code generator detects that all elements are
assigned when the code follows this pattern:

function z = mycell(n, j)
%#codegen
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
end

Here is the pattern for a multidimensional cell array:

function z = mycell(m,n,p)
%#codegen

29 Troubleshooting Code Generation Problems

29-12

x = cell(m,n,p);
for i = 1:m
 for j =1:n
 for k = 1:p
 x{i,j,k} = i+j+k;
 end
 end
end
z = x{m,n,p};
end

If the code generator detects that some elements are not assigned, code generation fails.
Sometimes, even though your code assigns all elements of the cell array, code generation
fails because the analysis does not detect that all elements are assigned.

Here are examples where the code generator is unable to detect that elements are
assigned:

• Elements are assigned in different loops

...
x = cell(1,n)
for i = 1:5
 x{i} = 5;
end
for i = 6:n
 x{i} = 7;
end
...

• The variable that defines the loop end value is not the same as the variable that
defines the cell dimension.

...
x = cell(1,n);
m = n;
for i = 1:m
 x{i} = 2;
end
...

For more information, see “Definition of Variable-Size Cell Array by Using cell” on page 8-
11.

 Unable to Determine That Every Element of Cell Array Is Assigned

29-13

Solution
Try one of these solutions:

• “Use recognized pattern for assigning elements” on page 29-14
• “Use repmat” on page 29-14
• “Use coder.nullcopy” on page 29-15

Use recognized pattern for assigning elements

If possible, rewrite your code to follow this pattern:

...
x = cell(1,n);
for i = 1:n
 x{i} = i;
end
z = x{j};
...

Use repmat

Sometimes, you can use repmat to define the variable-size cell array.

Consider this code that defines a variable-size cell array. It assigns the value 1 to odd
elements and the value 2 to even elements.

function z = mycell2(n, j)
%#codegen
c =cell(1,n);
for i = 1:2:n-1
 c{i} = 1;
end
for i = 2:2:n
 c{i} = 2;
end
z = c{j};

Code generation does not allow this code because:

• More than one loop assigns the elements.
• The loop counter does not increment by 1.

29 Troubleshooting Code Generation Problems

29-14

Rewrite the code to first use cell to create a 1-by-2 cell array whose first element is 1
and whose second element is 2. Then, use repmat to create a variable-size cell array
whose element values alternate between 1 and 2.

function z = mycell2(n, j)
%#codegen
c = cell(1,2);
c{1} = 1;
c{2} = 2;
c1= repmat(c,1,n);
z = c1{j};
end

Use coder.nullcopy

As a last resort, you can use coder.nullcopy to indicate that the code generator can
allocate the memory for your cell array without initializing the memory. For example:

function z = mycell3(n, j)
%#codegen
c =cell(1,n);
c1 = coder.nullcopy(c);
for i = 1:4
 c1{i} = 1;
end
for i = 5:n
 c1{i} = 2;
end
z = c1{j};
end

Use coder.nullcopy with caution. If you access uninitialized memory, results are
unpredictable.

See Also
cell | coder.nullcopy | repmat

More About
• “Cell Array Limitations for Code Generation” on page 8-10

 See Also

29-15

Nonconstant Index into varargin or varargout in a for-
Loop

Issue
Your MATLAB code contains a for-loop that indexes into varargin or varargout. When
you generate code, you see this error message:

Non-constant expression or empty matrix. This expression
must be constant because its value determines the size
or class of some expression.

Cause
At code generation time, the code generator must be able to determine the value of an
index into varargin or varagout. When varargin or varagout are indexed in a for-
loop, the code generator determines the index value for each loop iteration by unrolling
the loop. Loop unrolling makes a copy of the loop body for each loop iteration. In each
iteration, the code generator determines the value of the index from the loop counter.

The code generator is unable to determine the value of an index into varargin or
varagout when:

• The number of copies of the loop body exceeds the limit for loop unrolling.
• Heuristics fail to identify that loop unrolling is warranted for a particular for-loop.

For example, consider the following function:

function [x,y,z] = fcn(a,b,c)
%#codegen

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:nargin
 j = j+1;
 varargout{j} = varargin{j};
end

The heuristics do not detect the relationship between the index j and the loop counter
i. Therefore, the code generator does not unroll the for-loop.

29 Troubleshooting Code Generation Problems

29-16

Solution
Use one of these solutions:

• “Force Loop Unrolling” on page 29-17
• “Rewrite the Code” on page 29-17

Force Loop Unrolling

Force loop unrolling by using coder.unroll. For example:

function [x,y,z] = fcn(a,b,c)
%#codegen
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;

coder.unroll();
for i = 1:nargin
 j = j + 1;
 varargout{j} = varargin{j};
end

Rewrite the Code

Rewrite the code so that the code generator can detect the relationship between the
index and the loop counter. For example:

function [x,y,z] = fcn(a,b,c)
%#codegen
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:nargin
 varargout{i} = varargin{i};
end

See Also
coder.unroll

 See Also

29-17

More About
• “Code Generation for Variable Length Argument Lists” on page 12-2
• “Unroll for-Loops” on page 27-37
• “Optimization Strategies” on page 27-3

29 Troubleshooting Code Generation Problems

29-18

Unknown Output Type for coder.ceval

Issue
You see this error message:

Output of 'coder.ceval' has unknown type. The enclosing
expression cannot be evaluated.
Specify the output type by assigning the output of
'coder.ceval' to a variable with a known type.

Cause
This error message occurs when the code generator cannot determine the output type of
a coder.ceval call.

Solution
Initialize a temporary variable with the expected output type. Assign the output of
coder.ceval to this variable.

Example

Assume that you have a C function called cFunctionThatReturnsDouble. You want to
generate C library code for a function foo. The code generator returns the error message
because it cannot determine the return type of coder.ceval.

function foo
%#codegen
callFunction(coder.ceval('cFunctionThatReturnsDouble'));
end

function callFunction(~)
end

To fix the error, define the type of the C function output by using a temporary variable.

function foo
%#codegen
temp = 0;
temp = coder.ceval('cFunctionThatReturnsDouble');

 Unknown Output Type for coder.ceval

29-19

callFunction(temp);
end

function callFunction(~)
end

You can also use coder.opaque to initialize the temporary variable.

Example Using Classes

Assume that you have a class with a custom set method. This class uses the set method
to ensure that the object property value falls within a certain range.

classdef classWithSetter
 properties
 expectedResult = []
 end
 properties(Constant)
 scalingFactor = 0.001
 end
 methods
 function obj = set.expectedResult(obj,erIn)
 if erIn >= 0 && erIn <= 100
 erIn = erIn.*obj.scalingFactor;
 obj.expectedResult = erIn;
 else
 obj.expectedResult = NaN;
 end
 end
 end
end

When generating C library code for the function foo, the code generator produces the
error message. The input type into the set method cannot be determined.

function foo
%#codegen
obj = classWithSetter;
obj.expectedResult = coder.ceval('cFunctionThatReturnsDouble');
end

To fix the error, initialize a temporary variable with a known type. For this example, use a
type of scalar double.

function foo
%#codegen

29 Troubleshooting Code Generation Problems

29-20

obj = classWithSetter;
temp = 0;
temp = coder.ceval('cFunctionThatReturnsDouble');
obj.expectedResult = temp;
end

See Also
coder.ceval | coder.opaque

 See Also

29-21

Row-Major Array Layout

• “Row-Major and Column-Major Array Layouts” on page 30-2
• “Generate Code That Uses Row-Major Array Layout” on page 30-4
• “Specify Array Layout in Functions and Classes” on page 30-11
• “Code Design for Row-Major Array Layout” on page 30-16

30

Row-Major and Column-Major Array Layouts
The elements of an array can be stored in column-major layout or row-major layout. For
an array stored in column-major layout, the elements of the columns are contiguous in
memory. In row-major layout, the elements of the rows are contiguous. Array layout is
also called order, format, and representation. The order in which elements are stored can
be important for integration, usability, and performance. Certain algorithms perform
better on data stored in a particular order.

Programming languages and environments typically assume a single array layout for all
data. MATLAB and Fortran use column-major layout by default, whereas C and C++ use
row-major layout. With MATLAB Coder, you can generate C/C++ code that uses row-
major layout or column-major layout. See “Generate Code That Uses Row-Major Array
Layout” on page 30-4.

Array Storage in Computer Memory
Computer memory stores data in terms of one-dimensional arrays. For example, when you
declare a 3-by-3 matrix, the software stores this matrix as a one-dimensional array with
nine elements. By default, MATLAB stores these elements with a column-major array
layout. The elements of each column are contiguous in memory.

Consider the matrix A:

A =
 1 2 3
 4 5 6
 7 8 9

The matrix A is represented in memory by default with this arrangement:

 1 4 7 2 5 8 3 6 9

In row-major array layout, the programming language stores row elements contiguously
in memory. In row-major layout, the elements of the array are stored as:

 1 2 3 4 5 6 7 8 9

N-dimensional arrays can also be stored in column-major or row-major layout. In column-
major layout, the elements from the first (leftmost) dimension or index are contiguous in
memory. In row-major, the elements from the last (rightmost) dimension or index are
contiguous.

30 Row-Major Array Layout

30-2

Conversions Between Different Array Layouts
When you mix row-major data and column-major data in the same code, array layout
conversions are necessary. For example, you can generate code that includes row-major
and column-major function specializations. Function specializations use one type of array
layout for all input, output, and internal data. When passing data between functions, the
code generator automatically inserts array layout conversions as needed. Input and
output data to generated MEX functions is also converted as needed.

For two-dimensional data, transpose operations convert data between row-major layout
and column-major layout. Consider the transposed version of A:

A' =
 1 4 7
 2 5 8
 3 6 9

The column-major layout of A' matches the row-major layout of A. (For complex numbers,
array layout conversions use a nonconjugate transpose.)

See Also
coder.columnMajor | coder.isColumnMajor | coder.isRowMajor |
coder.rowMajor

More About
• “Generate Code That Uses Row-Major Array Layout” on page 30-4
• “MATLAB Data” (MATLAB)
• “Generate Code That Uses N-Dimensional Indexing” on page 20-185

 See Also

30-3

Generate Code That Uses Row-Major Array Layout
Array layout can be important for integration, usability, and performance. The code
generator produces code that uses column-major layout by default. However, many
devices, sensors, and libraries use row-major array layout for their data. You can apply
your code directly to this data by generating code that uses row-major layout. Array
layout can also affect performance. Many algorithms perform memory access more
efficiently for one specific array layout.

You can specify row-major array layout at the command line, with code generation
configuration properties, or by using the MATLAB Coderapp. You can also specify row-
major layout or column-major layout for individual functions and classes. The inputs and
outputs of your entry-point (top-level) functions must all use the same array layout.

Specify Row-Major Layout
Consider this function for adding two matrices. The algorithm performs the addition
through explicit row and column traversal.

function [S] = addMatrix(A,B)
%#codegen
S = zeros(size(A));
for row = 1:size(A,1)
 for col = 1:size(A,2)
 S(row,col) = A(row,col) + B(row,col);
 end
end

Generate C code for addMatrix by using the -rowmajor option. Specify the form of the
input parameters by using the -args option and launch the code generation report.

codegen addMatrix -args {ones(20,10),ones(20,10)} -config:lib -launchreport -rowmajor

Alternatively, configure your code for row-major layout by modifying the RowMajor
parameter in the code generation configuration object. You can use this parameter with
any type of configuration object: lib, mex, dll, or exe.

cfg = coder.config('lib');
cfg.RowMajor = true;
codegen addMatrix -args {ones(20,10),ones(20,10)} -config cfg -launchreport

Code generation results in this C code:

30 Row-Major Array Layout

30-4

...
/* generated code for addMatrix using row-major */
for (row = 0; row < 20; row++) {
 for (col = 0; col < 10; col++) {
 S[col + 10 * row] = A[col + 10 * row] + B[col + 10 * row];
 }
}
...

To specify row-major layout with the MATLAB Coder app:

1 Open the Generate dialog box. On the Generate Code page, click the Generate
arrow .

2 Click More Settings.
3 On the Memory tab, set Array layout: Row-major.

To verify that your generated code uses row-major layout, compare the array indexing in
your generated code with the array indexing in code that uses column-major layout. You
can also generate code that uses N-dimensional indexing. N-dimensional indexing can
make differences in array layout more apparent. For more information, see “Generate
Code That Uses N-Dimensional Indexing” on page 20-185.

MATLAB stores data in column-major layout by default. When you call a generated MEX
function that uses row-major layout, the software automatically converts input data from
column-major layout to row-major layout. Output data returned from the MEX function is
converted back to column-major layout. For standalone lib, dll, and exe code
generation, the code generator assumes that entry-point function inputs and outputs are
stored with the same array layout as the function.

Array Layout and Algorithmic Efficiency
For certain algorithms, row-major layout provides more efficient memory access.
Consider the C code shown for addMatrix that uses row-major layout. The arrays are
indexed by the generated code using the formula:

[col + 10 * row]

Because the arrays are stored in row-major layout, adjacent memory elements are
separated by single column increments. The stride length for the algorithm is equal to
one. The stride length is the distance in memory elements between consecutive memory
accesses. A shorter stride length provides more efficient memory access.

 Generate Code That Uses Row-Major Array Layout

30-5

Using column-major layout for the data results in a longer stride length and less efficient
memory access. To see this comparison, generate code that uses column-major layout:

codegen addMatrix -args {ones(20,10),ones(20,10)} -config:lib -launchreport

Code generation produces this C code:

...
/* generated code for addMatrix using column-major */
for (row = 0; row < 20; row++) {
 for (col = 0; col < 10; col++) {
 S[row + 20 * col] = A[row + 20 * col] + B[row + 20 * col];
 }
}
...

In column-major layout, the column elements are contiguous in memory in the generated
code. Adjacent memory elements are separated by single row increments and indexed by
the formula:

[row + 20 * col]

However, the algorithm iterates through the columns in the inner for-loop. Therefore, the
column-major C code must make a stride of 20 elements for each consecutive memory
access.

The array layout that provides the most efficient memory access depends on the
algorithm. For this algorithm, row-major layout of the data provides more efficient
memory access. The algorithm traverses over the data row by row. Row-major storage is
therefore more efficient.

Row-Major Layout for N-Dimensional Arrays
You can use row-major layout for N-dimensional arrays. When an array is stored in row-
major layout, the elements from the last (rightmost) dimension or index are contiguous in
memory. In column-major layout, the elements from the first (leftmost) dimension or index
are contiguous.

Consider the example function addMatrix3D, which accepts three-dimensional inputs.

function [S] = addMatrix3D(A,B)
%#codegen
S = zeros(size(A));

30 Row-Major Array Layout

30-6

for i = 1:size(A,1)
 for j = 1:size(A,2)
 for k = 1:size(A,3)
 S(i,j,k) = A(i,j,k) + B(i,j,k);
 end
 end
end
end

Generate code that uses row-major layout:

codegen addMatrix3D -args {ones(20,10,5),ones(20,10,5)} -config:lib -launchreport -rowmajor

The code generator produces this C code:

...
/* row-major layout */
for (i = 0; i < 20; i++) {
 for (j = 0; j < 10; j++) {
 for (k = 0; k < 5; k++) {
 S[(k + 5 * j) + 50 * i] = A[(k + 5 * j) + 50 * i]
 + B[(k + 5 * j) + 50 * i];
 }
 }
}
...

In row-major layout, adjacent memory elements are separated by single increments of the
last index, k. The inner for-loop iterates over adjacent elements separated by only one
position in memory. Compare the differences to generated code that uses column-major
layout:

...
/* column-major layout */
for (i = 0; i < 20; i++) {
 for (j = 0; j < 10; j++) {
 for (k = 0; k < 5; k++) {
 S[(i + 20 * j) + 200 * k] = A[(i + 20 * j) + 200 * k]
 + B[(i + 20 * j) + 200 * k];
 }
 }
}
...

 Generate Code That Uses Row-Major Array Layout

30-7

In column-major layout, adjacent elements are separated by single increments of the first
index, i. The inner for-loop now iterates over adjacent elements separated by 200
positions in memory. The long stride length can cause performance degradation due to
cache misses.

Because the algorithm iterates through the last index, k, in the inner for-loop, the stride
length is much longer for the generated code that uses column-major layout. For this
algorithm, row-major layout of the data provides more efficient memory access.

Specify Array Layout in External Function Calls
To call external C/C++ functions that expect data stored with a specific layout, use
coder.ceval with the layout syntax. If you do not use this syntax, the external function
inputs and outputs are assumed to use column-major layout by default.

Consider an external C function designed to use row-major layout called
myCFunctionRM. To integrate this function into your code, call the function using the '-
layout:rowMajor' or '-row' option. This option ensures that the input and output
arrays are stored in row-major order. The code generator automatically inserts array
layout conversions as needed.

coder.ceval('-layout:rowMajor','myCFunctionRM',coder.ref(in),coder.ref(out))

Within a MATLAB function that uses row-major layout, you may seek to call an external
function designed to use column-major layout. In this case, use the '-
layout:columnMajor' or '-col' option.

coder.ceval('-layout:columnMajor','myCFunctionCM',coder.ref(in),coder.ref(out))

You can perform row-major and column-major function calls in the same code. Consider
the function myMixedFn1 as an example:

function [E] = myMixedFn1(x,y)
%#codegen
% specify type of return arguments for ceval calls
D = zeros(size(x));
E = zeros(size(x));

% include external C functions that use row-major & column-major
coder.cinclude('addMatrixRM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixRM.c');
coder.cinclude('addMatrixCM.h');

30 Row-Major Array Layout

30-8

coder.updateBuildInfo('addSourceFiles', 'addMatrixCM.c');

% call C function that uses row-major order
coder.ceval('-layout:rowMajor','addMatrixRM', ...
 coder.rref(x),coder.rref(y),coder.wref(D));

% call C function that uses column-major order
coder.ceval('-layout:columnMajor','addMatrixCM', ...
 coder.rref(x),coder.rref(D),coder.wref(E));
end

The external files are:

addMatrixRM.h

extern void addMatrixRM(const double x[200], const double y[200], double z[200]);

addMatrixRM.c

#include "addMatrixRM.h"

void addMatrixRM(const double x[200], const double y[200], double z[200])
{
 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[col + 10 * row] = x[col + 10 * row] + y[col + 10 * row];
 }
 }
}

addMatrixCM.h

extern void addMatrixCM(const double x[200], const double y[200], double z[200]);

addMatrixCM.c

#include "addMatrixCM.h"

void addMatrixCM(const double x[200], const double y[200], double z[200])

 Generate Code That Uses Row-Major Array Layout

30-9

{
 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[row + 20 * col] = x[row + 20 * col] + y[row + 20 * col];
 }
 }
}

To generate code, enter:

codegen -config:lib myMixedFn1 -args {ones(20,10),ones(20,10)} -rowmajor -launchreport

See Also
codegen | coder.ceval | coder.columnMajor | coder.isColumnMajor |
coder.isRowMajor | coder.rowMajor

More About
• “Row-Major and Column-Major Array Layouts” on page 30-2
• “Specify Array Layout in Functions and Classes” on page 30-11
• “Code Design for Row-Major Array Layout” on page 30-16
• “Generate Code That Uses N-Dimensional Indexing” on page 20-185

30 Row-Major Array Layout

30-10

Specify Array Layout in Functions and Classes
You can specialize individual functions for row-major layout or column-major layout by
inserting coder.rowMajor or coder.columnMajor calls into the function body. Using
these function specializations, you can combine row-major data and column-major data in
your generated code. You can also specialize classes for one specific array layout.
Function and class specializations allow you to:

• Incrementally modify your code for row-major layout or column-major layout.
• Define array layout boundaries for applications that require different layouts in
different components.

• Structure the inheritance of array layout between many different functions and
classes.

For entry-point functions, all inputs and outputs must use the same array layout. The code
generator assumes that the entry-point function inputs and outputs are stored with the
same array layout as the function.

Specify Array Layout in a Function
For an example of a specialized function, consider addMatrixRM:

function [S] = addMatrixRM(A,B)
%#codegen
S = zeros(size(A));
coder.rowMajor; % specify row-major code
for row = 1:size(A,1)
 for col = 1:size(A,2)
 S(row,col) = A(row,col) + B(row,col);
 end
end

Generate code for addMatrixRM by using the codegen command.

codegen addMatrixRM -args {ones(20,10),ones(20,10)} -config:lib -launchreport

Because of the coder.rowMajor call, the code generator produces code that uses data
stored in row-major layout. The inputs and outputs to the function are also stored in row-
major layout.

 Specify Array Layout in Functions and Classes

30-11

Other functions called from a row-major function or column-major function inherit the
same array layout. If a called function has its own distinct coder.rowMajor or
coder.columnMajor call, the local call takes precedence.

You can mix column-major and row-major functions in the same code. The code generator
inserts transpose or conversion operations when passing data between row-major and
column-major functions. These conversion operations ensure that array elements are
stored as required by functions with different array layout specifications. For example,
the inputs to a column-major function, called from a row-major function, are converted to
column-major layout before being passed to the column-major function.

Query Array Layout of a Function
To query the array layout of a function at compile time, use coder.isRowMajor or
coder.isColumnMajor. This query can be useful for specializing your generated code
when it involves row-major and column-major functions. For example, consider this
function:

function [S] = addMatrixRouted(A,B)
 if coder.isRowMajor
 %execute this code if row-major
 S = addMatrixRM(A,B);
 elseif coder.isColumnMajor
 %execute this code if column-major
 S = addMatrix_OptimizedForColumnMajor(A,B);
 end

This function behaves differently depending on whether it is row-major or column-major.
When addMatrixRouted is row-major, it calls the addMatrixRM function, which has
efficient memory access for row-major data. When the function is column-major, it calls a
version of the addMatrixRM function optimized for column-major data.

For example, consider this function definition. The algorithm iterates through the columns
in the outer loop and the rows in the inner loop, in contrast to the addMatrixRM function.

function [S] = addMatrix_OptimizedForColumnMajor(A,B)
%#codegen
S = zeros(size(A));
for col = 1:size(A,2)
 for row = 1:size(A,1)
 S(row,col) = A(row,col) + B(row,col);
 end
end

30 Row-Major Array Layout

30-12

Code generation for this function yields:

...
/* column-major layout */
for (col = 0; col < 10; col++) {
 for (row = 0; row < 20; row++) {
 S[row + 20 * col] = A[row + 20 * col] + B[row + 20 * col];
 }
}
...

The generated code has a stride length of only one element. Due to the specializing
queries, the generated code for addMatrixRouted provides efficient memory access for
either choice of array layout.

Specify Array Layout in a Class
You can specify array layout for a class so that object property variables are stored with a
specific array layout. To specify the array layout, place a coder.rowMajor or
coder.columnMajor call in the class constructor. If you assign an object with a specified
array layout to the property of another object, the array layout of the assigned object
takes precedence.

Consider the row-major class rowMats as an example. This class contains matrix
properties and a method that consists of an element-wise addition algorithm. The
algorithm in the method performs more efficiently for data stored in row-major layout. By
specifying coder.rowMajor in the class constructor, the generated code uses row-major
layout for the property data.

classdef rowMats
 properties (Access = public)
 A;
 B;
 C;
 end
 methods
 function obj = rowMats(A,B)
 coder.rowMajor;
 if nargin == 0
 obj.A = 0;
 obj.B = 0;
 obj.C = 0;
 else

 Specify Array Layout in Functions and Classes

30-13

 obj.A = A;
 obj.B = B;
 obj.C = zeros(size(A));
 end
 end
 function obj = add(obj)
 for row = 1:size(obj.A,1)
 for col = 1:size(obj.A,2)
 obj.C(row,col) = obj.A(row,col) + obj.B(row,col);
 end
 end
 end
 end
end

Use the class in a simple function doMath. The inputs and outputs of the entry-point
function must all use the same array layout.

function [out] = doMath(in1,in2)
%#codegen
out = zeros(size(in1));
myMats = rowMats(in1,in2);
myMats = myMats.add;
out = myMats.C;
end

Generate code by using this script:

A = rand(20,10);
B = rand(20,10);
cfg = coder.config('lib');
codegen -config cfg doMath -args {A,B} -launchreport

The code generator assumes that the entry-point function inputs and outputs use column-
major layout, because you do not specify row-major layout for the function doMath.
Therefore, before calling the class constructor, the generated code converts in1 and in2
to row-major layout. Similarly, it converts the doMath function output back to column-
major layout.

If you place a coder.rowMajor call in the doMath function, or use the codegen -
rowmajor option, the code generator does not insert any array layout conversions. In
that case, entry-point function inputs and outputs are assumed to be provided and
returned in row-major array layout.

When designing a class for a specific array layout, consider:

30 Row-Major Array Layout

30-14

• If you do not specify the array layout in a class constructor, objects inherit their array
layout from the function that calls the class constructor, or from code generation
configuration settings.

• You cannot specify the array layout in a nonstatic method by using coder.rowMajor
or coder.columnMajor. Methods use the same array layout as the receiving object.
Methods do not inherit the array layout of the function that calls them. For static
methods, which are used similarly to ordinary functions, you can specify the array
layout in the method.

• If you specify the array layout of a superclass, the subclass inherits this array layout
specification. You cannot specify conflicting array layouts between superclasses and
subclasses.

See Also
codegen | coder.columnMajor | coder.isColumnMajor | coder.isRowMajor |
coder.rowMajor

More About
• “Generate Code That Uses Row-Major Array Layout” on page 30-4
• “Code Design for Row-Major Array Layout” on page 30-16
• “Generate Code That Uses N-Dimensional Indexing” on page 20-185

 See Also

30-15

Code Design for Row-Major Array Layout
Design your code to avoid potential inefficiencies related to array layout. Inefficiencies
can be caused by:

• Conversions between row-major layout and column-major layout.
• One-dimensional or linear indexing of row-major data.
• Reshaping or rearrangement of row-major data.

Outside of code generation, MATLAB uses column-major layout by default. Array layout
specifications do not affect self-contained MATLAB code. To test the efficiency of your
code, generate separate code versions with row-major layout and column-major layout.
Then, compare their performance.

Inefficiencies can also be caused by functions or algorithms that are less optimized for a
given choice of array layout. If a function or algorithm is more efficient for a different
layout, you can enforce that layout by embedding it in another function with a
coder.rowMajor or coder.columnMajor call.

Understand Potential Inefficiencies Caused by Array Layout
Consider the code for myMixedFn2, which uses coder.ceval to pass data with row-
major and column-major layout:

function [B, C] = myMixedFn2(x,y)
%#codegen
% specify type of return arguments for ceval calls
A = zeros(size(x));
B = zeros(size(x));
C = zeros(size(x));

% include external C functions that use row-major & column-major
coder.cinclude('addMatrixRM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixRM.c');
coder.cinclude('addMatrixCM.h');
coder.updateBuildInfo('addSourceFiles', 'addMatrixCM.c');

% call C function that uses column-major order
coder.ceval('-layout:columnMajor','addMatrixCM', ...
 coder.rref(x),coder.rref(y),coder.wref(A));

30 Row-Major Array Layout

30-16

% compute B
for i = 1:numel(A)
 B(i) = A(i) + 7;
end

% call C function that uses row-major order
coder.ceval('-layout:rowMajor','addMatrixRM', ...
 coder.rref(y),coder.rref(B),coder.wref(C));
end

The external files are:

addMatrixRM.h

extern void addMatrixRM(const double x[200], const double y[200], double z[200]);

addMatrixRM.c

#include "addMatrixRM.h"

void addMatrixRM(const double x[200], const double y[200], double z[200])
{
 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[col + 10 * row] = x[col + 10 * row] + y[col + 10 * row];
 }
 }
}

addMatrixCM.h

extern void addMatrixCM(const double x[200], const double y[200], double z[200]);

addMatrixCM.c

#include "addMatrixCM.h"

void addMatrixCM(const double x[200], const double y[200], double z[200])
{

 Code Design for Row-Major Array Layout

30-17

 int row;
 int col;

 /* add two matrices */
 for (row = 0; row < 20; row++) {
 /* row by row */
 for (col = 0; col < 10; col++) {
 /* each element in current row */
 z[row + 20 * col] = x[row + 20 * col] + y[row + 20 * col];
 }
 }
}

Declare the configuration object, cfg. Generate code that uses row-major layout by using
the -rowmajor option.

cfg = coder.config('lib');
cfg.HighlightPotentialRowMajorIssues = true;
codegen myMixedFn2 -args {ones(20,10),ones(20,10)} -config cfg -launchreport -rowmajor

Highlighted issues are displayed in the code generation report, on the Code Insights tab,
under the Potential row major issues section.

30 Row-Major Array Layout

30-18

Array layout inefficiencies occur here because:

• The code generator must convert the input variables x and y to column-major layout
before passing them to addMatrixCM. Transposes must be inserted into the
generated code.

• The code generator must transpose the output variable A back into row-major layout,
because myMixedFn2 uses row-major layout.

• The for-loop uses linear indexing, which requires column-major data. The code
generator must recalculate the linear indexing because variables A and B are stored in
row-major.

 Code Design for Row-Major Array Layout

30-19

Linear Indexing Uses Column-Major Array Layout
The code generator follows MATLAB column-major semantics for linear indexing. For
more information on linear indexing in MATLAB, see “Array Indexing” (MATLAB).

To use linear indexing on row-major data, the code generator must first recalculate the
data representation in column-major layout. This additional processing can slow
performance. To improve code efficiency, avoid using linear indexing on row-major data,
or use column-major layout for code that uses linear indexing.

For example, consider the function sumShiftedProducts, which accepts a matrix as an
input and outputs a scalar value. The function uses linear indexing on the input matrix to
sum up the product of each matrix element with an adjacent element. The output value of
this operation depends on the order in which the input elements are stored.

function mySum = sumShiftedProducts(A)
%#codegen
mySum = 0;

% create linear vector of A elements
B = A(:);

% multiply B by B with elements shifted by one, and take sum
mySum = sum(B.*circshift(B,1));
end

Generate code that uses row-major layout:

codegen -config:mex sumShiftedProducts -args {ones(2,3)} -launchreport -rowmajor

For an example input, consider the matrix:

D = reshape(1:6,3,2)'

which yields:

D =
 1 2 3
 4 5 6

If you pass this matrix as input to the generated code, the elements of A are stored in the
order:

 1 2 3 4 5 6

30 Row-Major Array Layout

30-20

In contrast, because the vector B is obtained by linear indexing, it is stored in the order:

 1 4 2 5 3 6

The code generator must insert a reshaping operation to rearrange the data from row-
major layout for A to column-major layout for B. This additional operation reduces the
efficiency of the function for row-major layout. The inefficiency increases with the size of
the array. Because linear indexing always uses column-major layout, the generated code
for sumShiftedProducts produces the same output result whether generated with row-
major layout or column-major layout.

In general, functions that compute indices or subscripts also use linear indexing, and
produce results corresponding to data stored in column-major layout. These functions
include:

• ind2sub
• sub2ind
• colon

See Also
coder.ceval | coder.columnMajor | coder.isColumnMajor | coder.isRowMajor |
coder.rowMajor

More About
• “Generate Code That Uses Row-Major Array Layout” on page 30-4
• “Specify Array Layout in Functions and Classes” on page 30-11
• “Generate Code That Uses N-Dimensional Indexing” on page 20-185
• “Code Generation Reports” on page 21-9

 See Also

30-21

Deep Learning with MATLAB Coder

• “Prerequisites for Deep Learning with MATLAB Coder” on page 31-2
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 31-5
• “Deep Learning Networks and Layers Supported for C++ Code Generation”

on page 31-7
• “Load Pretrained Networks for Code Generation” on page 31-10
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 31-12
• “Code Generation for Deep Learning Networks with ARM Compute Library”

on page 31-19
• “Deep Learning Prediction with Intel MKL-DNN” on page 31-22
• “Deep Learning Prediction with ARM Compute” on page 31-31

31

Prerequisites for Deep Learning with MATLAB Coder

MathWorks Products
To use MATLAB Coder to generate code for deep learning networks, you must also install:

• Deep Learning Toolbox
• MATLAB Coder Interface for Deep Learning Libraries

Third-Party Hardware and Software
You can use MATLAB Coder to generate C++ code for deep learning networks that you
deploy to Intel or ARM® processors. The generated code takes advantage of deep learning
libraries optimized for the target CPU. The hardware and software requirements depend
on the target platform.

 Intel CPUs ARM CPUs
Hardware Requirements Intel processor with support

for Intel Advanced Vector
Extensions 2 (Intel AVX2)
instructions.

ARM Cortex-A processors
that support the NEON
extension.

Software Libraries Intel Math Kernel Library
for Deep Neural Networks,
v0.13(Intel MKL-DNN).

ARM Compute Library for
computer vision and
machine learning, v18.03

Operating System
Support

Windows and Linux only. Windows and Linux only.

C++ Compiler MATLAB Coder locates and uses a supported installed
compiler. For the list of supported compilers, see
Supported and Compatible Compilers on the MathWorks
website.

On Windows, code generation for deep learning networks
by using the codegen command requires Microsoft Visual
Studio 2015 or later.

You can use mex -setup to change the default compiler.
See “Change Default Compiler” (MATLAB).

31 Deep Learning with MATLAB Coder

31-2

https://01.org/mkl-dnn
https://developer.arm.com/technologies/compute-library
https://www.mathworks.com/support/compilers/current_release/

 Intel CPUs ARM CPUs
Other Open Source Computer Vision Library (OpenCV), v3.1.0 is

required for some deep learning examples.

Note: The examples require separate libraries such as
opencv_core.lib and opencv_video.lib. The
OpenCV library that ships with Computer Vision System
Toolbox does not have the required libraries and the
OpenCV installer does not install them. Therefore, you
must download the OpenCV source and build the libraries.

For more information, refer to the OpenCV
documentation.

Environment Variables
MATLAB Coder uses environment variables to locate the libraries required to generate
code for deep learning networks.

Platfor
m

Variable Name Default Value Description

Window
s

INTEL_MKLDNN C:\Program Files
\mkl-dnn

Path to the root folder of the
Intel MKL-DNN library
installation.

ARM_COMPUTELI
B

/usr/local/
arm_compute

Path to the root folder of the
ARM Compute Library
installation on the ARM target
hardware.

OPENCV_DIR C:\Program Files
\opencv\build

Path to the build folder of
OpenCV. This variable is
required for building deep
learning examples.

PATH C:\Program Files
\mkl-dnn\bin

Path to the Intel MKL-DNN
library folder.

 Prerequisites for Deep Learning with MATLAB Coder

31-3

https://opencv.org/
https://opencv.org/

Platfor
m

Variable Name Default Value Description

C:\Program Files
\opencv\build
\x64\vc15\bin

Path to the dynamic-link libraries
(DLL) of OpenCV. This variable is
required for running deep
learning examples.

Linux PATH /usr/lib/ Path to the OpenCV libraries.
This variable is required for
building and running deep
learning examples.

/usr/include/opencv Path to the OpenCV header files.
This variable is required for
building deep learning examples.

LD_LIBRARY_PATH /usr/local/mkl-
dnn/lib/

Path to the Intel MKL-DNN
library folder.

INTEL_MKLDNN /usr/local/mkl-dnn/ Path to the root folder of the
Intel MKL-DNN library
installation.

ARM_COMPUTELIB /usr/local/
arm_compute/

Path to the root folder of the
ARM Compute Library
installation on the ARM target
hardware.

See Also

More About
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 31-5

31 Deep Learning with MATLAB Coder

31-4

Workflow for Deep Learning Code Generation with
MATLAB Coder

With MATLAB Coder, you can generate code for prediction from a pretrained
convolutional neural network (CNN), targeting an embedded platform that uses an Intel
processor or an ARM processor. The generated code calls the Intel MKL-DNN or ARM
Compute Library to leverage high performance.

1 Get a trained network by using Deep Learning Toolbox. Construct and train the
network or use a pretrained network. For more information, see:

• “Deep Learning in MATLAB” (Deep Learning Toolbox).
• “Pretrained Convolutional Neural Networks” (Deep Learning Toolbox).

The network must be supported for code generation. See “Deep Learning Networks
and Layers Supported for C++ Code Generation” on page 31-7.

2 Load a network object from the trained network.

See “Load Pretrained Networks for Code Generation” on page 31-10.
3 Generate C++ code for the trained network. The way that you generate code

depends on the target processor.

• To generate code that uses Intel MKL-DNN, use codegen, the MATLAB Coder
app, or cnncodegen.

• See “Code Generation for Deep Learning Networks with MKL-DNN” on page 31-
12.

• To generate code that uses the ARM Compute Library, use cnncodegen.

See “Code Generation for Deep Learning Networks with ARM Compute Library”
on page 31-19.

See Also

More About
• “Deep Learning in MATLAB” (Deep Learning Toolbox)

 Workflow for Deep Learning Code Generation with MATLAB Coder

31-5

• “Learn About Convolutional Neural Networks” (Deep Learning Toolbox)
• “Prerequisites for Deep Learning with MATLAB Coder” on page 31-2
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 31-12
• “Deep Learning Prediction with Intel MKL-DNN” on page 31-22
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page

31-19
• “Deep Learning Prediction with ARM Compute” on page 31-31
• “Deep Learning with GPU Coder” (GPU Coder)

31 Deep Learning with MATLAB Coder

31-6

Deep Learning Networks and Layers Supported for C++
Code Generation

MATLAB Coder supports code generation for series and directed acyclic graph (DAG)
convolutional neural networks (CNNs or ConvNets). You can generate code for any
trained convolutional neural network whose layers are supported for code generation.
See “Supported Layers” on page 31-8.

Supported Pretrained Networks
The following pretrained networks, available in Deep Learning Toolbox, are supported for
code generation.

Network
Name

Description ARM
Compute
Library

Intel MKL-
DNN

AlexNet AlexNet convolutional neural network. For
the pretrained AlexNet model, see
alexnet.

Yes Yes

GoogLeNet GoogLeNet convolutional neural network.
For the pretrained GoogLeNet model, see
googlenet.

Yes Yes

ResNet ResNet-50 and ResNet-101 convolutional
neural networks. For the pretrained
ResNet models, see resnet50 and
resnet101.

Yes Yes

SqueezeNet Small, deep neural network. For the
pretrained ResNet models, see
squeezenet.

Yes Yes

VGG-16 VGG-16 convolutional neural network. For
the pretrained VGG-16 model, see vgg16.

Yes Yes

VGG-19 VGG-19 convolutional neural network. For
the pretrained VGG-19 model, see vgg19.

Yes Yes

 Deep Learning Networks and Layers Supported for C++ Code Generation

31-7

Supported Layers
The following layers are supported for code generation by MATLAB Coder for the target
deep learning libraries specified in the table.

Once you install the support package MATLAB Coder Interface for Deep Learning
Libraries, you can use coder.getDeepLearningLayers to see a list of the layers
supported for a specific deep learning library. For example:

coder.getDeepLearningLayers('mkldnn')

Layer Name Description ARM Compute
Library

Intel MKL-DNN

additionLayer Addition layer Yes Yes
averagePooling2d
Layer

Average pooling
layer

Yes Yes

batchNormalizati
onLayer

Batch normalization
layer

Yes Yes

classificationLa
yer

Create classification
output layer

Yes Yes

clippedReluLayer Clipped Rectified
Linear Unit (ReLU)
layer

No Yes

convolution2dLay
er

2-D convolution layer Yes Yes

crossChannelNorm
alizationLayer

Channel-wise local
response
normalization layer

Yes Yes

depthConcatenati
onLayer

Depth concatenation
layer

Yes Yes

dropoutLayer Dropout layer Yes Yes
fullyConnectedLa
yer

Fully connected layer Yes Yes

imageInputLayer Image input layer Yes Yes

31 Deep Learning with MATLAB Coder

31-8

Layer Name Description ARM Compute
Library

Intel MKL-DNN

leakyReluLayer Leaky Rectified
Linear Unit (ReLU)
layer

 Yes

maxPooling2dLaye
r

Max pooling layer Yes Yes

PixelClassificat
ionLayer

Create pixel
classification layer
for semantic
segmentation

Yes Yes

regressionLayer Create a regression
output layer

Yes Yes

reluLayer Rectified Linear Unit
(ReLU) layer

Yes Yes

softmaxLayer Softmax layer Yes Yes

See Also
coder.getDeepLearningLayers

More About
• “Pretrained Convolutional Neural Networks” (Deep Learning Toolbox)
• “Learn About Convolutional Neural Networks” (Deep Learning Toolbox)
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 31-5

 See Also

31-9

Load Pretrained Networks for Code Generation
You can generate code for a pretrained convolutional neural network (CNN). To provide
the network to the code generator, load a SeriesNetwork or DAGNetwork network
object from the trained network.

Load a Network by Using coder.loadDeepLearningNetwork
You can load the network object from any network that is supported for code generation
by using coder.loadDeepLearningNetwork. You can specify the network as a MAT-file.
For example:

net = coder.loadDeepLearningNetwork('alexnet.mat')

You can also specify the network by providing the name of a function that returns a
pretrained SeriesNetwork or DAGNetwork network object. For example, these Deep
Learning Toolbox functions return a pretrained network object:

• alexnet
• googlenet
• resnet50
• resnet101
• squeezenet
• vgg16
• vgg19

The Deep Learning Toolbox functions in the previous list require that you install a support
package for the function. See “Pretrained Convolutional Neural Networks” (Deep
Learning Toolbox).

The following code loads a network object by calling the alexnet function.

net = coder.loadDeepLearningNetwork('alexnet')

Load a Network Directly from a Network Function
If you install the support package for a Deep Learning Toolbox function such as alexnet,
you can load the network object directly from the function. For example:

31 Deep Learning with MATLAB Coder

31-10

net = alexnet

Provide the Network Object to the Code Generator
If you generate code by using codegen or the app, load the network object inside of your
entry-point function. For example:

function out = alexnet_predict(in) %#codegen

% A persistent object mynet is used to load the series network object.
% At the first call to this function, the persistent object is constructed and
% set up. When the function is called subsequent times, the same object is reused
% to call predict on inputs, avoiding reconstructing and reloading the
% network object.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('alexnet');
end

% pass in input
out = predict(mynet,in);

If you generate code by using cnncodegen, load the network object in the MATLAB
workspace. Then, pass the object to cnncodegen. For example:

net = alexnet;
cnncodegen(net,'targetlib','arm-compute');

See Also

More About
• “Deep Learning Networks and Layers Supported for C++ Code Generation” on page

31-7
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 31-12
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page

31-19

 See Also

31-11

Code Generation for Deep Learning Networks with MKL-
DNN

With MATLAB Coder, you can generate code for prediction from an already trained
convolutional neural network (CNN), targeting an embedded platform that uses an Intel
processor. The code generator takes advantage of the Intel Math Kernel Library for Deep
Neural Networks (MKL-DNN). The generated code implements a CNN with the
architecture, layers, and parameters specified in the input SeriesNetwork or
DAGNetwork network object.

Generate code by using one of these methods:

• The standard codegen command for C/C++ code generation from MATLAB code.
• The MATLAB Coder app.
• The cnncodegen command that generates C++ code and builds a static library for a

CNN.

When you generate code for a neural network by using codegen or the MATLAB Coder
app, the generated code uses column-major layout for your array data. To match the row-
major layout that the deep learning library uses, the code generator must insert
operations to convert the column-major layout to row-major layout. These conversion
operations can degrade the performance of the generated code. Code generation for deep
learning neural networks does not support MATLAB Coder row-major options, such as the
RowMajor configuration parameter.

Requirements
• On Windows, code generation for deep learning networks with the codegen function

requires Microsoft Visual Studio 2015 or later.
• MATLAB Coder Interface for Deep Learning Libraries. To install this support package,

select it from the MATLAB Add-Ons menu.
• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Deep Learning Toolbox.
• Environment variables for the compilers and libraries. For more information, see

“Prerequisites for Deep Learning with MATLAB Coder” on page 31-2.

31 Deep Learning with MATLAB Coder

31-12

Generate Code by Using codegen
1 Write an entry-point function in MATLAB that:

• Uses the coder.loadDeepLearningNetwork function to load a deep learning
model, and to construct and set up a CNN class.

For more information, see “Load Pretrained Networks for Code Generation” on
page 31-10.

• Calls predict to predict the responses.

For example:
function out = alexnet_predict(in) %#codegen

% A persistent object mynet is used to load the series network object.
% At the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is reused
% to call predict on inputs, thus avoiding reconstructing and reloading the
% network object.

persistent mynet;

if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('alexnet');
end

% pass in input
out = predict(mynet,in);

2 Create a code generation configuration object for MEX or for a static or dynamically
linked library. To specify code generation parameters for MKL-DNN, set the
DeepLearningConfig property to a coder.MklDNNConfig object that you create
with coder.DeepLearningConfig.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');

3 Run the codegen command. Use the -config option to specify the configuration
object. Use the -args option to specify the input type. The input size corresponds to
the input layer size of the AlexNet network.

codegen -config cfg alexnet_predict -args {ones(227,227,3)} -report

Generated Code

The series network is generated as a C++ class containing an array of layer classes.

 Code Generation for Deep Learning Networks with MKL-DNN

31-13

class b_alexnet_0
{
 ...
 public:
 b_alexnet_0();
 ...
 void setup();
 void predict();
 void cleanup();
 ...
 ~b_alexnet_0();
};

The setup() method of the class sets up handles and allocates memory for each layer of
the network object. The predict() method invokes prediction for each of the layers in
the network. In the generated code file alexnet_predict.cpp, the entry-point function
alexnet_predict() constructs a static object of b_alexnet_0 class type and invokes
setup and predict on this network object.

static b_alexnet_0 mynet;
static boolean_T mynet_not_empty;

// Function Definitions

//
// A persistent object mynet is used to load the series network object.
// At the first call to this function, the persistent object is constructed and
// setup. When the function is called subsequent times, the same object is reused
// to call predict on inputs, thus avoiding reconstructing and reloading the
// network object.
// Arguments : const real_T in[154587]
// real32_T out[1000]
// Return Type : void
//
void alexnet_predict(const real_T in[154587], real32_T out[1000])
{
 if (!mynet_not_empty) {
 DeepLearningNetwork_setup(&mynet);
 mynet_not_empty = true;
 }

 // pass in input
 DeepLearningNetwork_predict(&mynet, in, out);
}

31 Deep Learning with MATLAB Coder

31-14

Binary files are exported for layers with parameters such as fully connected and
convolution layers in the network. For example, files cnn_alexnet_conv*_w and
cnn_alexnet_conv*_b correspond to weights and bias parameters for the convolution
layers in the network.

cnn_alexnet_conv1_b cnn_alexnet_conv4_b
cnn_alexnet_conv1_w cnn_alexnet_conv4_w
cnn_alexnet_conv2_b cnn_alexnet_conv5_b
cnn_alexnet_conv2_w cnn_alexnet_conv5_w
cnn_alexnet_conv3_b
cnn_alexnet_conv3_w

Generate Code by Using the App
1 Follow the usual steps for specifying the entry-point function and specifying input

types. See “C Code Generation Using the MATLAB Coder App”.
2 In the Generate Code step:

• Set Language to C++.
• Click More Settings. In the Deep Learning pane, set Target library to MKL-

DNN.

 Code Generation for Deep Learning Networks with MKL-DNN

31-15

3 Generate the code.

Generate Code by Using cnncodegen
1 Load the pretrained network.

For more information, see “Load Pretrained Networks for Code Generation” on page
31-10.

2 Call cnncodegen with 'targetlib' specified as 'mkldnn'.

For example:

31 Deep Learning with MATLAB Coder

31-16

net = alexnet;
cnncodegen(net,'targetlib','mkldnn');

Generated Code

The cnncodegen command generates C++ code and a makefile, cnnbuild_rtw.mk. The
generated files are in the codegen folder.

The Series Network is generated as a C++ class containing an array of layer classes.

class CnnMain
{
 ...
 public:
 CnnMain();
 ...
 void setup();
 void predict();
 void cleanup();
 ...
 ~CnnMain();
};

The setup() method of the class sets up handles and allocates memory for each layer of
the network object. The predict() method invokes prediction for each of the layers in
the network.
void CnnMain::predict()
{
 int32_T idx;
 for (idx = 0; idx < 20; idx++) {
 this->layers[idx]->predict();
 }
}

Binary files are exported for layers with parameters such as fully connected and
convolution layers in the network. For instance, files cnn_CnnMain_conv*_w and
cnn_CnnMain_conv*_b correspond to weights and bias parameters for the convolution
layers in the network.
cnn_CnnMain_avg cnn_CnnMain_conv5_w
cnn_CnnMain_conv1_b cnn_CnnMain_fc6_b
cnn_CnnMain_conv1_w cnn_CnnMain_fc6_w
cnn_CnnMain_conv2_b cnn_CnnMain_fc7_b
cnn_CnnMain_conv2_w cnn_CnnMain_fc7_w
cnn_CnnMain_conv3_b cnn_CnnMain_fc8_b
cnn_CnnMain_conv3_w cnn_CnnMain_fc8_w
cnn_CnnMain_conv4_b cnn_CnnMain_labels.txt
cnn_CnnMain_conv4_w
cnn_CnnMain_conv5_b

 Code Generation for Deep Learning Networks with MKL-DNN

31-17

See Also
cnncodegen | codegen | coder.DeepLearningConfig | coder.MklDNNConfig |
coder.loadDeepLearningNetwork

More About
• “Deep Learning Prediction with Intel MKL-DNN” on page 31-22
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 31-5
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page

31-19
• “Code Generation for Deep Learning Networks with cuDNN” (GPU Coder)
• “Code Generation for Deep Learning Networks with TensorRT” (GPU Coder)
• “C Code Generation Using the MATLAB Coder App”

31 Deep Learning with MATLAB Coder

31-18

Code Generation for Deep Learning Networks with ARM
Compute Library

With MATLAB Coder, you can generate code for prediction from an already trained
convolutional neural network (CNN), targeting an embedded platform that uses an ARM
processor. The code generator takes advantage of the ARM Compute Library for
computer vision and machine learning. The generated code implements a CNN with the
architecture, layers, and parameters specified in the input SeriesNetwork or
DAGNetwork network object.

Generate code by using cnncodegen. The cnncodegen command generates C++ code
for the CNN.

Requirements for Code Generation with ARM Compute Library
• MATLAB Coder Interface for Deep Learning Libraries. To install this support package,

select it from the MATLAB Add-Ons menu.
• ARM Compute Library for computer vision and machine learning.
• Deep Learning Toolbox.
• Environment variables for the compilers and libraries. For more information, see

“Prerequisites for Deep Learning with MATLAB Coder” on page 31-2.

Code Generation by Using cnncodegen
1 Load the pretrained network.

For more information, see “Load Pretrained Networks for Code Generation” on page
31-10.

2 Call cnncodegen with 'targetlib' specified as 'arm-compute'.

For example:

net = alexnet;
cnncodegen(net,'targetlib','arm-compute');

 Code Generation for Deep Learning Networks with ARM Compute Library

31-19

https://developer.arm.com/technologies/compute-library
https://developer.arm.com/technologies/compute-library

Generated Code

The cnncodegen command generates C++ code and a makefile, cnnbuild_rtw.mk. The
generated files are in the codegen folder. Do not compile the generated code on the
MATLAB host. Move the generated code to the ARM target platform for compilation.

The Series Network is generated as a C++ class containing an array of layer classes.

class CnnMain
{
 ...
 public:
 CnnMain();
 ...
 void setup();
 void predict();
 void cleanup();
 ...
 ~CnnMain();
};

The setup() method of the class sets up handles and allocates memory for each layer of
the network object. The predict() method invokes prediction for each of the layers in
the network.
void CnnMain::predict()
{
 int32_T idx;
 for (idx = 0; idx < 25; idx++) {
 this->layers[idx]->predict();
 }
}

Binary files are exported for layers with parameters such as fully connected and
convolution layers in the network. For instance, files cnn_CnnMain_conv*_w and
cnn_CnnMain_conv*_b correspond to weights and bias parameters for the convolution
layers in the network.
cnn_CnnMain_avg cnn_CnnMain_conv5_w
cnn_CnnMain_conv1_b cnn_CnnMain_fc6_b
cnn_CnnMain_conv1_w cnn_CnnMain_fc6_w
cnn_CnnMain_conv2_b cnn_CnnMain_fc7_b
cnn_CnnMain_conv2_w cnn_CnnMain_fc7_w
cnn_CnnMain_conv3_b cnn_CnnMain_fc8_b
cnn_CnnMain_conv3_w cnn_CnnMain_fc8_w
cnn_CnnMain_conv4_b cnn_CnnMain_labels.txt
cnn_CnnMain_conv4_w
cnn_CnnMain_conv5_b

31 Deep Learning with MATLAB Coder

31-20

See Also
cnncodegen | coder.loadDeepLearningNetwork

More About
• “Deep Learning Prediction with ARM Compute” on page 31-31
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 31-5
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 31-12
• “Code Generation for Deep Learning Networks with cuDNN” (GPU Coder)
• “Code Generation for Deep Learning Networks with TensorRT” (GPU Coder)

 See Also

31-21

Deep Learning Prediction with Intel MKL-DNN
This example shows how to use codegen to generate code for an image classification
application that uses deep learning on Intel® processors. The generated code takes
advantage of the Intel Math Kernel Library for Deep Neural Networks (MKL-DNN). First,
the example generates a MEX function that runs prediction by using the ResNet-50 image
classification network. Then, the example builds a static library and compiles it with a
main file that runs prediction using the ResNet-50 image classification network.

Prerequisites

• Xeon processor with support for Intel Advanced Vector Extensions 2 (Intel AVX2)
instructions

• Intel Math Kernel Library for Deep Neural Networks (MKL-DNN)
• Open Source Computer Vision Library (OpenCV) v3.1
• Environment variables for Intel MKL-DNN and OpenCV
• MATLAB® Coder™, for C++ code generation.
• The support package MATLAB Coder Interface for Deep Learning.
• Deep Learning Toolbox™, for using the DAGNetwork object
• The Support package Deep Learning Toolbox Model for ResNet-50 Network support

package, for using the pretrained ResNet network.

For more information, see “Prerequisites for Deep Learning with MATLAB Coder” on page
31-2.

This example is supported on Linux® and Windows® platforms.

resnet_predict Function

This example uses the DAG network ResNet-50 to show image classification with MKL-
DNN. A pretrained ResNet-50 model for MATLAB is available in the support package
Deep Learning Toolbox Model for ResNet-50 Network. To download and install the
support package, use the Add-On Explorer. See “Get Add-Ons” (MATLAB).

The resnet_predict function loads the ResNet-50 network into a persistent network
object. On subsequent calls to the function, the persistent object is reused.

type resnet_predict

31 Deep Learning with MATLAB Coder

31-22

% Copyright 2018 The MathWorks, Inc.

function out = resnet_predict(in)
%#codegen

% A persistent object mynet is used to load the series network object.
% At the first call to this function, the persistent object is constructed and
% setup. When the function is called subsequent times, the same object is reused
% to call predict on inputs, avoiding reconstructing and reloading the
% network object.

persistent mynet;

if isempty(mynet)
 % Call the function resnet50 that returns a DAG network
 % for ResNet-50 model.
 mynet = coder.loadDeepLearningNetwork('resnet50','resnet');
end

% pass in input
out = mynet.predict(in);

Generate MEX Code for the resnet_predict Function

To generate a MEX function from the resnet_predict.m function, use codegen with a
deep learning configuration object created for the MKL-DNN library. Attach the deep
learning configuration object to the MEX code generation configuration oject that you
pass to codegen.

 cfg = coder.config('mex');
 cfg.TargetLang = 'C++';
 cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
 codegen -config cfg resnet_predict -args {ones(224,224,3,'single')} -report

Code generation successful: To view the report, open('codegen\mex\resnet_predict\html\report.mldatx').

Call predict on a Test Image

im = imread('peppers.png');
im = imresize(im, [224,224]);
imshow(im);
predict_scores = resnet_predict_mex(single(im));

 Deep Learning Prediction with Intel MKL-DNN

31-23

Map the top five prediction scores to words in the synset dictionary.

fid = fopen('synsetWords.txt');
synsetOut = textscan(fid,'%s', 'delimiter', '\n');
synsetOut = synsetOut{1};
fclose(fid);
[val,indx] = sort(predict_scores, 'descend');
scores = val(1:5)*100;
top5labels = synsetOut(indx(1:5));

Display the top five classification labels on the image.

outputImage = zeros(224,400,3, 'uint8');
for k = 1:3
 outputImage(:,177:end,k) = im(:,:,k);
end

scol = 1;
srow = 1;
outputImage = insertText(outputImage, [scol, srow], 'Classification with ResNet-50', 'TextColor', 'w','FontSize',20, 'BoxColor', 'black');
srow = srow + 30;
for k = 1:5

31 Deep Learning with MATLAB Coder

31-24

 outputImage = insertText(outputImage, [scol, srow], [top5labels{k},' ',num2str(scores(k), '%2.2f'),'%'], 'TextColor', 'w','FontSize',15, 'BoxColor', 'black');
 srow = srow + 25;
end

imshow(outputImage);

Clear the static network object from memory.

clear mex;

Generate a Static Library for the resnet_predict Function

To generate a static library from the resnet_predict.m function, use codegen with a
deep learning configuration object created for the MKL-DNN library. Attach the deep
learning configuration object to the code generation configuration oject that you pass to
codegen.

cfg = coder.config('lib');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');
codegen -config cfg resnet_predict -args {ones(224,224,3,'single')} -report

 Deep Learning Prediction with Intel MKL-DNN

31-25

%
codegendir = fullfile(pwd, 'codegen', 'lib', 'resnet_predict');

Code generation successful: To view the report, open('codegen\lib\resnet_predict\html\report.mldatx').

main_resnet.cpp File

The main file is used to generate an executable from the static library created by the
codegen command. The main file reads the input image, runs prediction on the image,
and displays the classification labels on the image.

type main_resnet.cpp

/* Copyright 2018 The MathWorks, Inc. */

#include "resnet_predict.h"

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include "opencv2/opencv.hpp"
using namespace cv;

int readData(void* inputBuffer, char* inputImage) {

 Mat inpImage, intermImage;
 inpImage = imread(inputImage, 1);
 Size size(224, 224);
 resize(inpImage, intermImage, size);
 if (!intermImage.data) {
 printf(" No image data \n ");
 exit(1);
 }
 float* input = (float*)inputBuffer;

 for (int j = 0; j < 224 * 224; j++) {
 // BGR to RGB
 input[2 * 224 * 224 + j] = (float)(intermImage.data[j * 3 + 0]);
 input[1 * 224 * 224 + j] = (float)(intermImage.data[j * 3 + 1]);
 input[0 * 224 * 224 + j] = (float)(intermImage.data[j * 3 + 2]);
 }
 return 1;
}

31 Deep Learning with MATLAB Coder

31-26

#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) || defined(_WIN64)

int cmpfunc(void* r, const void* a, const void* b) {
 float x = ((float*)r)[*(int*)b] - ((float*)r)[*(int*)a];
 return (x > 0 ? ceil(x) : floor(x));
}
#else

int cmpfunc(const void* a, const void* b, void* r) {
 float x = ((float*)r)[*(int*)b] - ((float*)r)[*(int*)a];
 return (x > 0 ? ceil(x) : floor(x));
}

#endif

void top(float* r, int* top5) {
 int t[1000];
 for (int i = 0; i < 1000; i++) {
 t[i] = i;
 }
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32) || defined(_WIN64)
 qsort_s(t, 1000, sizeof(int), cmpfunc, r);
#else
 qsort_r(t, 1000, sizeof(int), cmpfunc, r);
#endif
 top5[0] = t[0];
 top5[1] = t[1];
 top5[2] = t[2];
 top5[3] = t[3];
 top5[4] = t[4];
 return;
}

int prepareSynset(char synsets[1000][100]) {
 FILE* fp1 = fopen("synsetWords.txt", "r");
 if (fp1 == 0) {
 return -1;
 }

 for (int i = 0; i < 1000; i++) {
 if (fgets(synsets[i], 100, fp1) != NULL)
 ;

 Deep Learning Prediction with Intel MKL-DNN

31-27

 strtok(synsets[i], "\n");
 }
 fclose(fp1);
 return 0;
}

void writeData(float* output, char synsetWords[1000][100], Mat &frame) {
 int top5[5], j;

 top(output, top5);

 copyMakeBorder(frame, frame, 0, 0, 400, 0, BORDER_CONSTANT, CV_RGB(0,0,0));
 char strbuf[50];
 sprintf(strbuf, "%4.1f%% %s", output[top5[0]]*100, synsetWords[top5[0]]);
 putText(frame, strbuf, cvPoint(30,80), CV_FONT_HERSHEY_DUPLEX, 1.0, CV_RGB(220,220,220), 1);
 sprintf(strbuf, "%4.1f%% %s", output[top5[1]]*100, synsetWords[top5[1]]);
 putText(frame, strbuf, cvPoint(30,130), CV_FONT_HERSHEY_DUPLEX, 1.0, CV_RGB(220,220,220), 1);
 sprintf(strbuf, "%4.1f%% %s", output[top5[2]]*100, synsetWords[top5[2]]);
 putText(frame, strbuf, cvPoint(30,180), CV_FONT_HERSHEY_DUPLEX, 1.0, CV_RGB(220,220,220), 1);
 sprintf(strbuf, "%4.1f%% %s", output[top5[3]]*100, synsetWords[top5[3]]);
 putText(frame, strbuf, cvPoint(30,230), CV_FONT_HERSHEY_DUPLEX, 1.0, CV_RGB(220,220,220), 1);
 sprintf(strbuf, "%4.1f%% %s", output[top5[4]]*100, synsetWords[top5[4]]);
 putText(frame, strbuf, cvPoint(30,280), CV_FONT_HERSHEY_DUPLEX, 1.0, CV_RGB(220,220,220), 1);

}

// Main function
int main(int argc, char* argv[]) {
 int n = 1;
 char synsetWords[1000][100];

 namedWindow("Classification with ResNet-50",CV_WINDOW_NORMAL);
 resizeWindow("Classification with ResNet-50",440,224);

 Mat im;
 im = imread(argv[1], 1);

 float* ipfBuffer = (float*)calloc(sizeof(float), 224*224*3);

 float* opBuffer = (float*)calloc(sizeof(float), 1000);
 if (argc != 2) {
 printf("Input image missing \nSample Usage-./resnet_exe image.png\n");
 exit(1);
 }

31 Deep Learning with MATLAB Coder

31-28

 if (prepareSynset(synsetWords) == -1) {
 printf("ERROR: Unable to find synsetWords.txt\n");
 return -1;
 }

 //read input imaget to the ipfBuffer
 readData(ipfBuffer, argv[1]);

 //run prediction on image stored in ipfBuffer
 resnet_predict(ipfBuffer, opBuffer);

 //write predictions on input image
 writeData(opBuffer, synsetWords, im);

 //show predictions on input image
 imshow("Classification with ResNet-50", im);
 waitKey(5000);
 destroyWindow("Classification with ResNet-50");
 return 0;
}

Build and Run the Executable

Build the executable based on the target platform. On a Windows platform, this example
uses Microsoft® Visual Studio® 2017 for C++.

if ispc
 setenv('MATLAB_ROOT', matlabroot);
 system('make_mkldnn_win17.bat');
 system('resnet.exe peppers.png');
else
 setenv('MATLAB_ROOT', matlabroot);
 system('make -f Makefile_mkldnn_linux.mk');
 system('./resnet_exe peppers.png');
end

 Deep Learning Prediction with Intel MKL-DNN

31-29

The results from the MEX function might not match the results from the generated static
library function due to differences in the version of the library that is used to read the
input image file. The image that is passed to the MEX function is read using the version
that MATLAB ships. The image that is passed to the static library function is read using
the version that OpenCV uses.

See Also
codegen | coder.DeepLearningConfig | coder.MklDNNConfig |
coder.loadDeepLearningNetwork

More About
• “Code Generation for Deep Learning Networks with MKL-DNN” on page 31-12
• “Deep Learning Prediction with ARM Compute” on page 31-31
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 31-5

31 Deep Learning with MATLAB Coder

31-30

Deep Learning Prediction with ARM Compute
This example shows how to use cnncodegen to generate code for a Logo classification
application that uses deep learning on ARM® processors. The logo classification
application uses the LogoNet series network to perform logo recognition from images.
The generated code takes advantage of the ARM Compute library for computer vision and
machine learning.

Prerequisites

• ARM processor that supports the NEON extension.
• Open Source Computer Vision Library (OpenCV) v3.1
• Environment variables for ARM Compute and OpenCV libraries
• MATLAB® Coder™ for C++ code generation.
• The support package MATLAB Coder Interface for Deep Learning.
• Deep Learning Toolbox™ for using the SeriesNetwork object

For more information, see “Prerequisites for Deep Learning with MATLAB Coder” on page
31-2.

This example is supported on Linux® and Windows® platforms.

Get the Pretrained SeriesNetwork

Download the pretrained LogoNet network and save it as logonet.mat, if it does not
exist. The network was developed in MATLAB® and its architecture is similar to that of
AlexNet. This network can recognize 32 logos under various lighting conditions and
camera angles.

net = getLogonet();

The network contains 22 layers including convolution, fully connected, and the
classification output layers.

net.Layers

ans =

 22x1 Layer array with layers:

 Deep Learning Prediction with ARM Compute

31-31

 1 'imageinput' Image Input 227x227x3 images with 'zerocenter' normalization and 'randfliplr' augmentations
 2 'conv_1' Convolution 96 5x5x3 convolutions with stride [1 1] and padding [0 0 0 0]
 3 'relu_1' ReLU ReLU
 4 'maxpool_1' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 5 'conv_2' Convolution 128 3x3x96 convolutions with stride [1 1] and padding [0 0 0 0]
 6 'relu_2' ReLU ReLU
 7 'maxpool_2' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 8 'conv_3' Convolution 384 3x3x128 convolutions with stride [1 1] and padding [0 0 0 0]
 9 'relu_3' ReLU ReLU
 10 'maxpool_3' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 11 'conv_4' Convolution 128 3x3x384 convolutions with stride [2 2] and padding [0 0 0 0]
 12 'relu_4' ReLU ReLU
 13 'maxpool_4' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0 0 0]
 14 'fc_1' Fully Connected 2048 fully connected layer
 15 'relu_5' ReLU ReLU
 16 'dropout_1' Dropout 50% dropout
 17 'fc_2' Fully Connected 2048 fully connected layer
 18 'relu_6' ReLU ReLU
 19 'dropout_2' Dropout 50% dropout
 20 'fc_3' Fully Connected 32 fully connected layer
 21 'softmax' Softmax softmax
 22 'classoutput' Classification Output crossentropyex with 'adidas' and 31 other classes

Generate Code for ARM Targets

Code generation for ARM processors using ARM Compute Library is done on host
development computer, but the build and execution is performed on the target platform
by copying all the generated files to the platform. The target platform must support Neon
instruction set architecture (ISA). Raspberry Pi3, Firefly, HiKey are some of the target
platforms on which the generated code can be executed. Use the cnncodegen command
to generate code for the ARM platform by using 'arm-compute' option.

cnncodegen(net,'targetlib','arm-compute');

Description of the Generated Code

The SeriesNetwork is generated as a C++ class containing an array of 22 layer classes.
The setup() method of the class sets up handles and allocates memory for each layer
object. The predict() method invokes prediction for each of the 22 layers in the network.
The postsetup() function does the allocation of buffers for each layer. These buffers are
used by ARM Compute Library during inference. The files cnn_CnnMain_Conv_*_w and
cnn_CnnMain_Conv_*_b in the codegen folder are the binary weights and bias files for
the convolution layers in the network. The files cnn_CnnMain_fc_*_w and
cnn_CnnMain_fc_*_b are the binary weights and bias files for the fully connected layers

31 Deep Learning with MATLAB Coder

31-32

in the network. cnnbuild_rtw.mk is the generated Makefile and cnnbuild is obtained
after building this Makefile.

 class CnnMain
 {
 public:
 int32_T batchSize;
 int32_T numLayers;
 real32_T *inputData;
 real32_T *outputData;
 MWCNNLayer *layers[22];
 private:
 MWTargetNetworkImpl *targetImpl;
 public:
 CnnMain();
 void presetup();
 void postsetup();
 void setup();
 void predict();
 void cleanup();
 ~CnnMain();
 };

Build and Execute

Move the codegen folder and all the desired files from the host development computer to
the target platform using the scp command with the format, system('sshpass -p
[password] scp (sourcefile) [username]@[hostname]:~/');

For example, to transfer the files to the Raspberry Pi

system('sshpass -p alarm scp main_arm_logo.cpp alarm@alarmpi:~/');
system('sshpass -p alarm scp coderdemo_google.png alarm@alarmpi:~/');
system('sshpass -p alarm scp makefile_arm_logo alarm@alarmpi:~/');
system('sshpass -p alarm scp synsetWords.txt alarm@alarmpi:~/');
system('sshpass -p alarm scp -r codegen alarm@alarmpi:/home/alarm');

To build the lib on target platform, use the command with the format, system('sshpass
-p [password] ssh [username]@[hostname] "make -C /home/$(username)/
codegen -f cnnbuild_rtw.mk"');

For example, on the Raspberry Pi

system('sshpass -p alarm ssh alarm@alarmpi "make -C /home/alarm/codegen -f cnnbuild_rtw.mk"');

 Deep Learning Prediction with ARM Compute

31-33

Set the ARM_COMPUTELIB environment variable on the target platform pointing to the
ARM compute library install path. Use the command with the format, export
ARM_COMPUTELIB=${DESTINATION_PATH}

For example, on the Raspberry Pi

export ARM_COMPUTELIB=${HOME}/ComputeLibrary

Similarly, set the TARGET_OPENCV_DIR on the target platform.

export TARGET_OPENCV_DIR=/usr

To build and run the exe on target platform, use the command with the format, make -
C /home/$(username) and ./execfile -f makefile_arm_logo

For example, on the Raspberry Pi

make -C /home/alarm arm_neon -f makefile_arm_logo

Run the executable with an input image file.

./logo_recognition_exe coderdemo_google.png

The top five predictions for the input image file.

31 Deep Learning with MATLAB Coder

31-34

See Also
cnncodegen | coder.DeepLearningConfig | coder.loadDeepLearningNetwork

More About
• “Deep Learning Prediction with Intel MKL-DNN” on page 31-22
• “Workflow for Deep Learning Code Generation with MATLAB Coder” on page 31-5
• “Code Generation for Deep Learning Networks with ARM Compute Library” on page

31-19

 See Also

31-35

